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Endpoint boundedness of Riesz transforms on Hardy
spaces associated with operators
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Abstract Let L1 be a nonnegative self-adjoint operator in L2(Rn) satisfying the
Davies-Gaffney estimates and L2 a second order divergence form elliptic opera-
tor with complex bounded measurable coefficients. A typical example of L1 is the
Schrödinger operator −� + V , where � is the Laplace operator on R

n and 0 ≤ V ∈
L1

loc(R
n). Let H

p
Li

(Rn) be the Hardy space associated to Li for i ∈ {1, 2}. In this pa-

per, the authors prove that the Riesz transform D(L
−1/2
i ) is bounded from H

p
Li

(Rn)

to the classical weak Hardy space WHp(Rn) in the critical case that p = n/(n + 1).
Recall that it is known that D(L

−1/2
i ) is bounded from H

p
Li

(Rn) to the classical Hardy
space Hp(Rn) when p ∈ (n/(n + 1), 1].
Keywords Riesz transform · Davies-Gaffney estimate · Schrödinger operator ·
Second order elliptic operator · Hardy space · Weak Hardy space

Mathematics Subject Classification (2000) Primary 47B06 · Secondary 42B20 ·
42B25 · 42B30 · 35J10

1 Introduction

The Hardy spaces, as a suitable substitute of Lebesgue spaces Lp(Rn) when
p ∈ (0,1], play an important role in various fields of analysis and partial differen-
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tial equations. For example, when p ∈ (0, 1], the Riesz transform ∇(−�)−1/2 is not
bounded on Lp(Rn), but bounded on the Hardy space Hp(Rn), where � is the Lapla-

cian operator
∑n

i=1
∂2

∂x2
i

and ∇ is the gradient operator ( ∂
∂x1

, . . . , ∂
∂xn

) on R
n. It is

well known that the classical Hardy spaces Hp(Rn) are essentially related to �,
which has been intensively studied in, for example, [7, 15, 30, 32, 33] and their ref-
erences.

In recent years, the study of Hardy spaces associated to differential operators in-
spires great interests; see, for example, [2–4, 10–13, 17–20] and their references.
In particular, Auscher, Duong and McIntosh [3] first introduced the Hardy space
H 1

L(Rn) associated to L, where the heat kernel generated by L satisfies a pointwise
Poisson type upper bound. Later, Duong and Yan [9, 10] introduced its dual space
BMOL(Rn) and established the dual relation between H 1

L(Rn) and BMOL∗(Rn),
where L∗ denotes the adjoint operator of L in L2(Rn). Yan [35] further introduced
the Hardy space H

p
L (Rn) for some p ∈ (0, 1] but near to 1 and generalized these

results to H
p
L (Rn) and their dual spaces. A theory of the Orlicz-Hardy space and its

dual space associated to a such L was developed in [24, 25].
Moreover, for the Schrödinger operator −� + V , Dziubański and Zienkiewicz

[12, 13] first introduced the Hardy spaces H
p
−�+V (Rn) with the nonnegative potential

V belonging to the reverse Hölder class Bq(Rn) for certain q ∈ (1,∞). As a special
case, the Hardy space H

p
−�+V (Rn) associated with −� + V with 0 ≤ V ∈ L1

loc(R
n)

and p ∈ (0,1] but near to 1 was also studied in, for example, [8, 10, 19, 23, 25, 35–
37]. More generally, for nonnegative self-adjoint operators L satisfying the Davies-
Gaffney estimates, Hofmann et al. [19] introduced a new Hardy space H 1

L(Rn). In
particular, when L ≡ −� + V with 0 ≤ V ∈ L1

loc(R
n), Hofmann et al. originally

showed that the Riesz transform ∇(L−1/2) is bounded from H 1
L(Rn) to the classical

Hardy space H 1(Rn). These results in [19] were further extended to the Orlicz-Hardy
space and its dual space in [23]. In particular, as a special case of [23, Theorem 6.3], it
was proved that ∇(−�+V )−1/2 with 0 ≤ V ∈ L1

loc (Rn) is bounded from the Hardy
space H

p
−�+V (Rn) to Hp(Rn) if p ∈ ( n

n+1 ,1].
Also, Auscher and Russ [2] studied the Hardy space H 1

L on strongly Lipschitz do-
mains associated with a second order divergence form elliptic operator L whose heat
kernels have the Gaussian upper bounds and certain regularity. Hofmann and May-
boroda [17, 18] and Hofmann et al. [20] introduced the Hardy and Sobolev spaces
associated to a second order divergence form elliptic operator L on R

n with complex
bounded measurable coefficients. Notice that, for the second order divergence form
elliptic operator L, the kernel of the heat semigroup may fail to satisfy the Gaus-
sian upper bound estimate and, moreover, L may not be nonnegative self-adjoint in
L2(Rn). Hofmann et al. [20] also proved that the associated Riesz transform ∇L−1/2

is bounded from H
p
L (Rn) to the classical Hardy space Hp(Rn) with p ∈ ( n

n+1 , 1],
which was also independently obtained by Jiang and Yang in [21, Theorem 7.4].
Moreover, a theory of the Orlicz-Hardy space and its dual space associated to L was
developed in [21, 22].

Recently, the Hardy space H 1
(−�)2+V 2(R

n) associated to the Schrödinger-type op-

erators (−�)2 + V 2 with 0 ≤ V satisfying the reverse Hölder inequality was also
studied in [6]. Moreover, the Hardy space H

p
L (Rn) associated to a one-to-one oper-
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ator of type ω satisfying the k-Davies-Gaffney estimate and having a bounded H∞
functional calculus was introduced in [5], where k ∈ N. Notice that when k = 1, the
k-Davies-Gaffney estimate is just the Davies-Gaffney estimate. Typical examples of
such operators include the 2k-order divergence form homogeneous elliptic operator
T1 with complex bounded measurable coefficients and the 2k-order Schrödinger-type
operator T2 ≡ (−�)k + V k , where 0 ≤ V ∈ Lk

loc(R
n). It was further proved that

the associated Riesz transform ∇kT
−1/2
i for i ∈ {1,2} is bounded from H

p
Ti

(Rn) to
Hp(Rn) with p ∈ ( n

n+k
, 1] in [5].

On the other hand, the weak Hardy space WH1(Rn) was first introduced by Fef-
ferman and Soria in [14]. Then, Liu [26] studied the weak WHp(Rn) space for
p ∈ (0, ∞) and established a weak atomic decomposition for p ∈ (0, 1]. Liu in
[26] also showed that the δ-Calderón-Zygmund operator is bounded from Hp(Rn)

to WHp(Rn) with p = n/(n + δ), which was extended to the weighted weak Hardy
spaces in [29].

Let L1 be a nonnegative self-adjoint operator in L2(Rn) satisfying the Davies-
Gaffney estimates and L2 a second order divergence form elliptic operator with com-
plex bounded measurable coefficients. A typical example of L1 is the Schrödinger
operator −� + V , where 0 ≤ V ∈ L1

loc(R
n). Let H

p
Li

(Rn) be the Hardy space asso-

ciated to Li for i ∈ {1, 2}. In this paper, we prove that the Riesz transform D(L
−1/2
i )

is bounded from H
p
Li

(Rn) to the weak Hardy space WHp(Rn) in the critical case that
p = n/(n + 1). To be precise, we have the following general result.

Theorem 1.1 Let p ≡ n/(n + 1), L1 be a nonnegative self-adjoint operator in
L2(Rn) satisfying the assumptions (A1) and (A2) as in Sect. 2 and D the opera-
tor satisfying the assumptions (B1), (B2) and (B3) as in Sect. 2. Then the operator
D(L

−1/2
1 ) is bounded from H

p
L1

(Rn) to the classical weak Hardy space WHp(Rn).

Moreover, there exists a positive constant C such that for all f ∈ H
p
L1

(Rn),

∥
∥D(L

−1/2
1 )f

∥
∥

WHp(Rn)
≤ C‖f ‖H

p
L1

(Rn).

As an application of Theorem 1.1, we obtain the boundedness of ∇(−�+V )−1/2

with 0 ≤ V ∈ L1
loc (Rn) from H

p
−�+V (Rn) to the classical weak Hardy space

WHp(Rn) in the critical case that p = n/(n + 1) as follows.

Corollary 1.1 Let p ≡ n/(n + 1) and 0 ≤ V ∈ L1
loc(R

n). Then the Riesz transform
∇(−� + V )−1/2 is bounded from H

p
−�+V (Rn) to WHp(Rn). Moreover, there exists

a positive constant C such that for all f ∈ H
p
−�+V (Rn),

∥
∥∇(−� + V )−1/2f

∥
∥

WHp(Rn)
≤ C‖f ‖H

p
−�+V (Rn).

On the Riesz transform defined by the second order divergence form elliptic op-
erator with complex bounded measurable coefficients, we also have the following
endpoint boundedness in the critical case that p ≡ n/(n + 1).
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Theorem 1.2 Let p ≡ n/(n+1) and L2 be the second order divergence form elliptic
operator with complex bounded measurable coefficients. Then the Riesz transform
∇(L

−1/2
2 ) is bounded from H

p
L2

(Rn) to WHp(Rn). Moreover, there exists a positive

constant C such that for all f ∈ H
p
L2

(Rn),

∥
∥∇(L

−1/2
2 )f

∥
∥

WHp(Rn)
≤ C‖f ‖H

p
L2

(Rn).

Recall that the second order divergence form elliptic operator with complex
bounded measurable coefficients may not be nonnegative self-adjoint operator in
L2(Rn). Thus, we cannot deduce the conclusion of Theorem 1.2 from Theorem 1.1.
However, if L is a second order divergence form elliptic operator with real symmet-
ric bounded measurable coefficients, then L satisfies the assumptions of both Theo-
rems 1.1 and 1.2.

We prove Theorems 1.1 and 1.2 by using the characterization of WHp(Rn) in
terms of the radial maximal function, namely, we need to estimate the weak Lp(Rn)

quasi-norm of the radial maximal function of the Riesz transform acting on the atoms
or molecules of the Hardy spaces H

p
Li

(Rn). Unlike the proof of the endpoint bound-

edness of the classical Riesz transform ∇(−�)−1/2, whose kernel has the pointwise
size estimate and regularity, the strategy to show Theorems 1.1 and 1.2 is to divide
the radial maximal function into two parts by the time t based on the radius of the
associated balls of atoms or molecules and then estimate each part via using L2 off-
diagonal estimates (see [16, 20] or Lemma 2.1 below).

This paper is organized as follows. In Sect. 2, we describe some assumptions on
the operator L1; then we recall some notion and properties concerning the Hardy
space associated to L1 and the second order divergence form elliptic operator L2
with complex bounded measurable coefficients. We also recall the definition of weak
Hardy spaces and present some technical lemmas which are used later in the next sec-
tion. Section 3 is devoted to the proof Theorem 1.1, Corollary 1.1, and Theorem 1.2.
In Sect. 4, a similar result on the Riesz transforms defined by higher order divergence
form homogeneous elliptic operators with complex bounded measurable coefficients
or Schrödinger-type operators is also presented.

Finally, we make some conventions on the notation. Throughout the whole pa-
per, we always let N ≡ {1,2, . . .} and Z+ ≡ N ∪ {0}. We use C to denote a positive
constant, that is independent of the main parameters involved but whose value may
differ from line to line. Constants with subscripts, such as C0, do not change in dif-
ferent occurrences. If f ≤ Cg, we then write f � g; and if f � g � f , we then
write f ∼ g. For all x ∈ R

n and r ∈ (0,∞), let B(x, r) ≡ {y ∈ R
n : |x − y| < r} and

αB(x, r) ≡ B(x,αr) for any α > 0. Also, for any set E ∈ R
n, we use E� to denote

the set R
n \ E and χE the characteristic function of E.

2 Preliminaries

We begin with recalling some known results on the Hardy spaces associated to oper-
ators and the weak Hardy spaces.
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Let L1 be a linear operator initially defined in L2(Rn) satisfying the following
assumptions:

(A1) L1 is nonnegative self-adjoint;
(A2) The semigroup {e−tL1}t>0 generated by L1 is analytic on L2(Rn) and satisfies

the Davies-Gaffney estimates, namely, there exist positive constants C1 and C2
such that for all closed sets E, F ⊂ R

n, t ∈ (0, ∞) and f ∈ L2(Rn) supported
in E,

‖e−tL1f ‖L2(F ) ≤ C1 exp

{

−[dist(E, F )]2

C2t

}

‖f ‖L2(E), (2.1)

where and in what follows, dist(E, F ) ≡ infx∈E,y∈F |x − y| is the distance
between E and F .

Typical examples of operators satisfying assumptions (A1) and (A2) include the
second order divergence form elliptic operator with real symmetric bounded measur-
able coefficients and the Schrödinger operator −� + V with 0 ≤ V ∈ L1

loc (Rn).
Let �(x) ≡ {(y, t) ∈ R

n × (0, ∞) : |x − y| < t} be the cone with the vertex
x ∈ R

n. For all f ∈ L2(Rn) and x ∈ R
n, the L1-adapted square function SL1f (x)

is defined by

SL1f (x) ≡
{∫∫

�(x)

∣
∣t2L1e

−t2L1f (y)
∣
∣2 dy dt

tn+1

}1/2

.

As in [19, 23], we define the Hardy space H
p
L1

(Rn) associated to the operator L1
as follows.

Definition 2.1 [19, 23] Let p ∈ (0, 1] and L1 be an operator defined in L2(Rn) satis-
fying the assumptions (A1) and (A2). A function f ∈ L2(Rn) is said to be in H

p
L1

(Rn)

if SL1f ∈ Lp(Rn); moreover, define ‖f ‖H
p
L1

(Rn) ≡ ‖SL1f ‖Lp(Rn). The Hardy space

H
p
L1

(Rn) is then defined to be the completion of H
p
L1

(Rn) with respect to the quasi-
norm ‖ · ‖H

p
L1

(Rn).

For all p ∈ (0, 1] and M ∈ N, a function a ∈ L2(Rn) is called a (p, 2, M)L1 -atom
if there exists a function b ∈ D(LM

1 ) and a ball B ≡ B(xB, rB) ⊂ R
n such that

(i) a = LM
1 b;

(ii) for each 	 ∈ {0, 1, . . . , M}, suppL	
1b ⊂ B;

(iii) for all 	 ∈ {0, 1, . . . , M},
∥
∥
(
r2
BL1

)k
b
∥
∥

L2(Rn)
≤ r

2M+n( 1
2 − 1

p
)

B . (2.2)

We then have the following atomic decomposition of H
p
L1

(Rn).

Theorem 2.1 [19, 23] Let p ∈ (0, 1]. Suppose that M ∈ N and M > n
2 ( 1

p
− 1

2 ). Then

for all f ∈ L2(Rn) ∩ H
p
L1

(Rn), there exist a sequence {aj }∞j=0 of (p, 2, M)L1 -atoms
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and a sequence {λj }∞j=0 of numbers such that f = ∑∞
j=0 λjaj in both H

p
L1

(Rn) and

L2(Rn), and ‖f ‖H
p
L1

(Rn) ∼ {∑∞
j=0 |λj |p}1/p .

For the second order divergence form operator, the associated Hardy space was
studied in [17, 18, 20, 21]. More precisely, let L2 ≡ −div(A∇) be a second order
divergence form elliptic operator with complex bounded measurable coefficients. We
say that L2 is elliptic if the matrix A ≡ {ai, j }ni, j=1 satisfies the elliptic condition,

namely, there exist positive constants 0 < λ ≤ � < ∞ such that λ|ξ |2 ≤ (Aξ · ξ̄ )

and |Aξ · ξ̄ | ≤ �|ξ |2, where for any z ∈ C, z denotes the real part of z.

Definition 2.2 [17, 20, 21] Let p ∈ (0, 1] and L2 be the second order divergence
form elliptic operator with complex bounded measurable coefficients. A function f ∈
L2(Rn) is said to be in H

p
L2

(Rn) if SL2f ∈ Lp(Rn); moreover, define ‖f ‖H
p
L2

(Rn) ≡
‖SL2f ‖Lp(Rn). The Hardy space H

p
L2

(Rn) is then defined to be the completion of

H
p
L2

(Rn) with respect to the quasi-norm ‖ · ‖H
p
L2

(Rn).

Recall that in [20, 21], for all p ∈ (0, 1], ε ∈ (0, ∞) and M ∈ N, a function A ∈
L2(Rn) is called an (H

p
L2

, ε, M)-molecule if there exists a ball B ≡ B(xB, rB) ⊂ R
n

such that

(i) for each 	 ∈ {1, . . . , M}, A belongs to the range of L	
2 in L2(Rn);

(ii) for all i ∈ Z+ and 	 ∈ {0, 1, . . . , M},
∥
∥
(
r2
BL2

)−	
A

∥
∥

L2(Si (B))
≤ (2i rB)

n( 1
2 − 1

p
)2−iε, (2.3)

where S0(B) ≡ B and Si(B) ≡ 2iB \ 2i−1B for all i ∈ N.

Assume that {mj }j is a sequence of (H
p
L2

, ε, M)-molecules and {λj }j a sequence

of numbers satisfying
∑

j |λj |p < ∞. For any f ∈ L2(Rn), if f = ∑
j λjmj in

L2(Rn), then
∑

j λjmj is called a molecular (H
p
L2

, 2, ε, M)-representation of f .

The molecular Hardy space H
p

L2,mol,M(Rn) is then defined to be the completion of
the space

H
p

L2,mol,M(Rn) ≡ {f : f has a molecular (H
p
L2

, 2, ε, M)-representation}
with respect to the quasi-norm

‖f ‖H
p
L2,mol,M (Rn) ≡ inf

{( ∞∑

j=0

|λj |p
)1/p

: f =
∞∑

j=0

λjAj is a molecular

(
H

p
L2

, 2, ε, M
)
-representation

}

,

where the infimum is taken over all the molecular (H
p
L2

, 2, ε, M)-representations of
f as above.

We have the following molecular characterization of H
p
L2

(Rn).
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Theorem 2.2 [20, 21] Let p ∈ (0,1]. Suppose that M > n
2 ( 1

p
− 1

2 ) and ε > 0. Then

H
p
L2

(Rn) = H
p

L2,mol,M(Rn). Moreover, ‖f ‖H
p
L2

(Rn) ∼ ‖f ‖H
p
L2,mol,M (Rn), where the

implicit constants depend only on M, n, p, ε and the constants appearing in the
ellipticity.

We now recall the definition of the weak Hardy space (see, for example, [14, 26,
27]). Let p ∈ (0, 1] and ϕ ∈ S(Rn) with support in the unit ball B(0, 1). The weak
Hardy space WHp(Rn) is defined to be the space

{

f ∈ S ′(Rn) : ‖f ‖WHp(Rn) ≡ sup
α>0

(

αp

∣
∣
∣
∣

{

x ∈ R
n : sup

t>0
|ϕt ∗f (x)| > α

}∣
∣
∣
∣

)1/p

< ∞
}

.

Let L1 be a nonnegative self-adjoint operator in L2(Rn) satisfying the assump-
tions (A1) and (A2). Following [1], let the operator D be a linear operator defined
densely in L2(Rn) and satisfy the following assumptions:

(B1) DL
−1/2
1 is bounded on L2(Rn);

(B2) the family of operators, {√tDe−tL1}t>0, satisfy the Davies-Gaffney estimates
as in (2.1);

(B3) for all (p, 2, M)L1 -atoms a,
∫

Rn DL
−1/2
1 a(x) dx = 0.

Typical examples of D and L1 satisfying the assumptions (B1), (B2) and (B3)
include that D is the gradient operator ∇ on R

n, and L1 is the second order divergence
form elliptic operator with real symmetric bounded measurable coefficients or the
Schrödinger operator −� + V with 0 ≤ V ∈ L1

loc (Rn) as proved below.

Lemma 2.1 Let 0 ≤ V ∈ L1
loc (Rn). Then the Schrödinger operator T ≡ −� + V

satisfies the assumptions (A1) and (A2), and both T and the gradient operator ∇
satisfy the assumptions (B1), (B2) and (B3).

Proof It is easy to see that T is nonnegative self-adjoint.
Let e−tT (· , ·) be the integral kernel of the semigroup e−tT . By Trotter’s formula

(see, for example, [34]), we know that for all t ∈ (0, ∞) and x, y ∈ R
n,

0 ≤ e−tT (x, y) ≤ et�(x, y) ∼ t−
n
2 exp

{

−|x − y|2
t

}

,

which implies that the semigroup {e−tT }t>0 satisfies (2.1). Thus, T satisfies the as-
sumptions (A1) and (A2).

Moreover, by [19, Lemma 8.5], we conclude that there exists a positive constant
C2 such that for all closed sets E, F ⊂ R

n, t ∈ (0, ∞) and f ∈ L2(Rn) supported in
E,

∥
∥t∇e−t2T f

∥
∥

L2(F )
� exp

{

−[dist(E, F )]2

C2t2

}

‖f ‖L2(E),

which, combining the L2(Rn)-boundedness of the Riesz transform ∇(T −1/2) (see
[19, (8.20)]) and the fact that

∫
Rn ∇(T −1/2)a(y) dy = 0 (see, for example [19, 23]),
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implies that both T and the gradient operator satisfy the assumptions (B1), (B2) and
(B3). This finishes the proof of Lemma 2.1. �

We also need the following technical lemmas.

Lemma 2.2 [27, 31] Let p ∈ (0, 1) and {fj }j be a sequence of measurable functions.
If

∑
j |λj |p < ∞ and there exists a positive constant C̃ such that for all {fj }j and

α ∈ (0,∞), |{x ∈ R
n : |fj | > α}| ≤ C̃α−p . Then, for all α ∈ (0,∞),

∣
∣
∣
∣

{

x ∈ R
n :

∣
∣
∣
∣

∑

j

λjfj (x)

∣
∣
∣
∣ > α

}∣
∣
∣
∣ ≤ C̃

2 − p

1 − p
α−p

∑

j

|λj |p.

Lemma 2.3 [1, 16] Let L1 be a nonnegative self-adjoint operator satisfying the as-
sumptions (A1) and (A2) and D the operator satisfying the assumptions (B1), (B2)
and (B3). Let M ∈ N. Then there exists a positive constant C, depending on M , such
that for all closed sets E, F in R

n with dist(E, F ) > 0, f ∈ L2(Rn) supported in E

and t ∈ (0, ∞),

∥
∥DL

−1/2
1 (I − e−tL1)Mf

∥
∥

L2(F )
≤ C

(
t

[dist(E, F )]2

)M

‖f ‖L2(E) (2.4)

and

∥
∥DL

−1/2
1

(
tL1e

−tL1
)M

f
∥
∥

L2(F )
≤ C

(
t

[dist(E, F )]2

)M

‖f ‖L2(E). (2.5)

Moreover, if L2 is a second order divergence form elliptic operator with complex
bounded measurable coefficients, then (2.4) and (2.5) still hold when D and L1 are
replaced, respectively, by the gradient operator ∇ and L2.

3 Proofs of main results

In this section, we show Theorem 1.1, Corollary 1.1 and Theorem 1.2.

Proof of Theorem 1.1 Let p ≡ n
n+1 . By the density of H

p
L1

(Rn)∩L2(Rn) in H
p
L1

(Rn),

we only need to consider f ∈ H
p
L1

(Rn) ∩ L2(Rn). Let M ∈ N and M > max{ 1
2 +

n
4 , 1}. By Theorem 2.1, we know that there exist a sequence {aj }j of (p, 2, M)L1 -
atoms and a sequence {λj }j of numbers such that

f =
∑

j

λjaj (3.1)

in L2(Rn) and ‖f ‖H
p
L1

(Rn) ∼ {∑j |λj |p}1/p . To show Theorem 1.1, by (3.1) and the

definition of WHp(Rn), we see that it suffices to prove that for all α ∈ (0,∞),
∣
∣
∣
∣

{

x ∈ R
n : sup

0<t<∞

∣
∣
∣
∣ϕt ∗

(∑

j

λjDL
−1/2
1 aj

)

(x)

∣
∣
∣
∣ > α

}∣
∣
∣
∣ � 1

αp

∑

j

|λj |p, (3.2)
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where ϕ ∈ C∞
c (Rn) satisfies suppϕ ⊂ B(0,1) and, for all x ∈ R

n and t ∈ (0,∞),
ϕt (x) ≡ 1

tn
ϕ( x

t
). In order to prove (3.2), by Lemma 2.2, it suffices to show that for

any (p, 2, M)L1 -atom a associated with the ball B ≡ B(xB, rB) and α ∈ (0,∞),

∣
∣
∣
{
x ∈ R

n : sup
0<t<∞

∣
∣
∣ϕt ∗

(
DL

−1/2
1 a

)
(x)

∣
∣
∣ > α

}∣
∣
∣ � 1

αp
.

Let M be the Hardy-Littlewood maximal function. It is easy to see that

sup
0<t<∞

∣
∣ϕt ∗ (

DL
−1/2
1 a

)∣
∣ � M

(
DL

−1/2
1 a

)
.

Then by Chebyshev’s inequality, Hölder’s inequality, the L2(Rn)-boundedness of M,
the L2(Rn)-boundedness of DL

−1/2
1 via (B1), and (2.2), we know that

∣
∣
∣
{
x ∈ 16B : sup

0<t<∞

∣
∣
∣ϕt ∗ (

DL
−1/2
1 a

)
(x)

∣
∣
∣ > α

}∣
∣
∣

� 1

αp

∥
∥
∥ sup

0<t<∞

∣
∣
∣ϕt ∗ (

DL
−1/2
1 a

)∣∣
∣
∥
∥
∥

p

Lp(16B)
� 1

αp

∥
∥M

(
DL

−1/2
1 a

)∥
∥p

Lp(16B)

� 1

αp

∥
∥M

(
DL

−1/2
1 a

)∥
∥p

L2(Rn)
|B|1− p

2 � 1

αp
‖a‖p

L2(Rn)
|B|1− p

2 � 1

αp
.

On the other hand, we have
{
x ∈ (16B)� : sup

0<t<∞

∣
∣ϕt ∗ (

DL
−1/2
1 a

)
(x)

∣
∣ > α

}

⊂
{
x ∈ (16B)� : sup

0<t<rB

∣
∣ϕt ∗ (

DL
−1/2
1 a

)
(x)

∣
∣ > α/2

}

∪
{
x ∈ (16B)� : sup

rB<t<∞
| · · · | > α/2

}
≡ I ∪ J.

To estimate I, let Si(B) ≡ 2iB \ 2i−1B and S̃i (B) ≡ 2i+1B \ 2i−2B with i ∈ N.
For all i ≥ 5, x ∈ Si(B) and y ∈ B(x, rB), from suppϕ ⊂ B(0, 1), it follows that
y ∈ S̃i (B). For i ≥ 5, let

Ii ≡
{
x ∈ Si(B) : sup

0<t<rB

∣
∣ϕt ∗ (

DL
−1/2
1 a

)
(x)

∣
∣ > α/2

}
.

By Chebyshev’s inequality, Hölder’s inequality, the L2(Rn)-boundedness of M,
Lemma 2.3 and (2.2), we conclude that

|Ii | � α−p

∫

Si(B)

[

sup
0<t<rB

∣
∣
∣
∣

∫

S̃i (B)

t−nϕ

(
x − y

t

)
[
χS̃i (B)(y)DL

−1/2
1 a(y)

]
dy

∣
∣
∣
∣

]p

dx

� α−p

∫

Si(B)

[
M

(
χS̃i (B)DL

−1/2
1 a

)
(x)

]p
dx

� α−p|Si(B)|1−p/2
∥
∥DL

−1/2
1 a

∥
∥p

L2(S̃i (B))
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� α−p|Si(B)|1−p/2

[
∥
∥DL

−1/2
1

(
I − e−r2

BL1
)M

a
∥
∥p

L2(S̃i (B))

+
M∑

k=1

∥
∥DL

−1/2
1

(
r2
BL1e

− k
M

r2
BL1

)M
r−2M
B b

∥
∥p

L2(S̃i (B))

]

� α−p|Si(B)|1−p/2
[

r2
B

(2i rB)2

]Mp

|B|p/2−1 ∼ 2−i[2Mp−n(1−p/2)]α−p.

From this, the definition of Ii , p = n
n+1 and M > 1

2 + n
4 , we deduce that |I| �

∑∞
i=1 |Ii | � 1

αp , which is a desired estimate for I.

To estimate J, by the assumption that
∫

Rn DL
− 1

2
1 a(y) dy = 0 via (B3), we know

that

|J| �
∣
∣
∣
∣
∣

{

x ∈ (16B)� :

∞∑

i=0

sup
rB<t<∞

∣
∣
∣
∣

∫

Si(B)

1

tn

[

ϕ

(
x − y

t

)

− ϕ

(
x − xB

t

)]

DL
− 1

2
1 a(y) dy

∣
∣
∣
∣ > α/2

}∣
∣
∣
∣
∣
.

Let Fi(x) ≡ suprB<t<∞ | ∫
Si(B)

1
tn

[ϕ(
x−y

t
) − ϕ(x−xB

t
)]DL

− 1
2

1 a(y) dy| and

Ji ≡ {
x ∈ (16B)� : Fi(x) > α/2

}
.

To obtain a desired estimate for J, by Lemma 2.2, it suffices to show that there exists
a positive constant C0 such that

|Ji | � 2−C0i

αp
. (3.3)

From the mean value theorem, Hölder’s inequality, suppϕ ⊂ B(0, 1), Lemma 2.3
and (2.2), we infer that

Fi(x) ≤ sup
j∈Z+

sup
2j rB≤t<2j+1rB

χ(2i+1+2j+1)B(x)

×
∫

Si (B)

1

tn
‖∇ϕ‖L∞(Rn)

∣
∣
∣
∣
y − xB

t

∣
∣
∣
∣

∣
∣
∣
∣DL

− 1
2

1 a(y)

∣
∣
∣
∣dy

� sup
j∈Z+

χ(2i+1+2j+1)B(x) sup
2j rB≤t<2j+1rB

2−j (n+1)|B|−12i |Si(B)|1/2

× ‖DL
− 1

2
1 a‖L2(Si (B))

� sup
j∈Z+

χ(2i+1+2j+1)B(x) sup
2j rB≤t<2j+1rB

2−j (n+1)2i(n/2+1)

[
r2
B

(2i rB)2

]M

|B|−1/p
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≡ C3 sup
j∈Z+

χ(2i+1+2j+1)B(x) sup
2j rB≤t<2j+1rB

2−j (n+1)2−i(2M−n/2−1)|B|−1/p.

Let

j0 ≡ max
{
j ∈ Z+ : C32−j (n+1)2−i(2M−n/2−1)|B|−1/p > α/2

}
.

For all x ∈ [(2i+1 + 2j0+1)B]�, we see that

Fi(x) ≤ C3 sup
j≥j0

χ(2i+1+2j+1)B(x)

× sup
2j rB≤t<2j+1rB

2−j (n+1)2−i(2M−n/2−1)|B|−1/p ≤ α/2,

which implies that x ∈ J�
i . Thus, Ji ⊂ (2i+1 + 2j0+1)B . From this and Chebyshev’s

inequality, we then deduce that

|Ji | � α−p

∫

(2i+1+2j0+1)B

2−pj0(n+1)2−ip(2M−1+n)|B|−1 dx

� 2−i[(2M−1)p−n(1−p)]α−p,

which implies that (3.3) holds with C0 ≡ (2M −1)p−n(1−p). Observe that C0 > 0,
since M > 1 and p = n

n+1 . Thus, combining the estimate of I and J, we then complete
the proof of Theorem 1.1. �

Proof of Corollary 1.1 From Lemma 2.1, we deduce that the Schrödinger opera-
tor −� + V with 0 ≤ V ∈ L1

loc (Rn) satisfies the assumptions (A1) and (A2) as in
Sect. 2, and both −� + V and the gradient operator ∇ satisfy the assumptions (B1),
(B2) and (B3) as in Sect. 2. Thus, from Theorem 1.1, we deduce that the Riesz trans-
form ∇(−� + V )−1/2 is bounded from H

p
−�+V (Rn) to the classical weak Hardy

space WHp(Rn) in the critical case that p = n/(n+ 1), which completes the proof of
Corollary 1.1. �

Proof of Theorem 1.2 Let p ≡ n
n+1 and M ∈ N satisfy M > n

4 + 1
2 . To prove The-

orem 1.2, similar to the proof of Theorem 1.1, by Theorem 2.2 and Lemma 2.2,
for each (H

p
L , ε, M)-molecule A associated to the ball B(xB, rB), m ∈ Z+ and

α ∈ (0, ∞), we only need estimate the measure of the following sets:

Ĩ ≡
{
x ∈ (16B)� : sup

0<t<rB

∣
∣ϕt ∗ (∇L

−1/2
2 A

)
(x)

∣
∣ > α/2

}

and

J̃ ≡
{
x ∈ (16B)� : sup

rB≤t<∞
∣
∣ϕt ∗ (∇L

−1/2
2 A

)
(x)

∣
∣ > α/2

}
.
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The estimate of Ĩ is similar to that of I in the proof of Theorem 1.1. We omit the
details. Now we estimate J̃. Since

|̃J| �
∣
∣
∣
∣
∣

{

x ∈ (16B)� :
∞∑

i=0

sup
rB≤t<∞

∣
∣
∣
∣

∫

Si(B)

1

tn

[

ϕ

(
x − y

t

)

− ϕ

(
x − xB

t

)]

× ∇L
− 1

2
2

(
I − e−r2

BL2
)M

A(y)dy

∣
∣
∣
∣ > α/2

}∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

{

x ∈ (16B)� :
∞∑

i=0

M∑

k=1

sup
rB≤t<∞

∣
∣
∣
∣

∫

Si(B)

1

tn

[

ϕ

(
x − y

t

)

− ϕ

(
x − xB

t

)]

× ∇L
− 1

2
2

(
r2
BL2e

− k
M

r2
BL2

)M(
r2
BL2

)−M
A(y)dy

∣
∣
∣
∣ > α/2

}∣
∣
∣
∣
∣
.

Let F̃1,i (x) ≡ suprB≤t<∞ | ∫
Si(B)

1
tn

[ϕ(
x−y

t
) − ϕ(x−xB

t
)]∇L

− 1
2

2 (I − e−r2
BL2)M ×

A(y)dy|,

F̃2,i (x) ≡
M∑

k=1

sup
rB≤t<∞

∣
∣
∣
∣

∫

Si(B)

1

tn

[

ϕ

(
x − y

t

)

− ϕ

(
x − xB

t

)]

×∇L
− 1

2
2

(
r2
BL2e

− k
M

r2
BL2

)M(
r2
BL2

)−M
A(y)dy

∣
∣
∣
∣
∣
,

J̃1,k ≡ {x ∈ (16B)� : F̃1,i (x) > α/2} and J̃2,k ≡ {x ∈ (16B)� : F̃2,i (x) > α/2}. By
Lemma 2.2, it suffices to show that there exist positive constants C4 and C5 such that

for all α ∈ (0, ∞), |J̃1,k| � 2−C4i

αp and |J̃2,k| � 2−C5i

αp . We only prove the first inequality,
the proof of the second inequality is similar. Take ε ∈ (n+1−1/(n+1), ∞). By the
mean value theorem, Hölder’s inequality, Lemma 2.3, (2.3) and suppϕ ⊂ B(0, 1),
we conclude that

F̃1,i (x) � sup
j∈Z+

χ(2i+1+2j+1)B(x) sup
2j rB≤t<2j+1rB

∫

Si(B)

1

tn
‖∇ϕ‖L∞(Rn)

∣
∣
∣
∣
y − xB

t

∣
∣
∣
∣

× ∣
∣∇L

− 1
2

2

(
I − e−r2

BL2
)M

A(y)
∣
∣dy

� sup
j∈Z+

χ(2i+1+2j+1)B(x) sup
2j rB≤t<2j+1rB

∫

Si(B)

1

tn
‖∇ϕ‖L∞(Rn)

∣
∣
∣
∣
y − xB

t

∣
∣
∣
∣

× ∣
∣∇L

− 1
2

2

(
I − e−r2

BL2
)M

(χS̃i (B)A)(y)
∣
∣dy

+ sup
j∈Z+

χ(2i+1+2j+1)B(x) sup
2j rB≤t<2j+1rB

∫

Si(B)

1

tn
‖∇ϕ‖L∞(Rn)

∣
∣
∣
∣
y − xB

t

∣
∣
∣
∣

× ∣
∣∇L

− 1
2

2

(
I − e−r2

BL2
)M

(χ
Rn\S̃i (B)A)(y)

∣
∣dy
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� sup
j∈Z+

χ(2i+1+2j+1)B(x)

× sup
2j rB≤t<2j+1rB

2−j (n+1)
[
2−i(ε+n/p−n−1) + 2−i(2M−n/2−1)

]|B|−1/p,

where Si(B) and S̃i (B) are as in the proof of Theorem 1.1. The rest of the proof
is similar to that of Theorem 1.1; we omit the details. This finishes the proof of
Theorem 1.2. �

4 Further remarks

In this section, we establish a variant of Theorems 1.1 and 1.2 for the higher order
divergence form elliptic operators with complex bounded measurable coefficients and
the higher order Schrödinger-type operators.

To this end, we first recall some notions and notation. For θ ∈ [0, π), the closed
sector, Sθ , of angle θ in the complex plane C is defined by Sθ ≡ {z ∈ C \ {0} :
| arg z| ≤ θ} ∪ {0}. Let ω ∈ [0, π). A closed operator T in L2(Rn) is called of
type ω (see, for example, [28]), if its spectrum, σ(T ), is contained in Sω, and for
each θ ∈ (ω, π), there exists a nonnegative constant C such that for all z ∈ C \ Sθ ,
‖(T − zI)−1‖L(L2(Rn)) ≤ C|z|−1, where and in what follows, ‖S‖L(H) denotes the
operator norm of the linear operator S on the normed linear space H. Let T be a
one-to-one operator of type ω, with ω ∈ [0, π) and μ ∈ (ω, π), and f ∈ H∞(S0

μ) ≡
{f is holomorphic on S0

μ : ‖f ‖L∞(S0
μ) < ∞}, where S0

μ denotes the interior of Sμ.
By the H∞ functional calculus, the function of the operator T , f (T ) is well defined.
The operator T is said to have a bounded H∞ functional calculus in the Hilbert space
H, if there exist μ ∈ (0, π) and positive constant C such that for all ψ ∈ H∞(S0

μ),
‖ψ(T )‖L(H) ≤ C‖ψ‖L∞(S0

μ).

As in [5], let T be an operator defined in L2(Rn) which satisfies the following
assumptions:

(E1) The operator T is a one-to-one operator of type ω in L2(Rn) with ω ∈ [0, π/2);
(E2) The operator T has a bounded H∞ functional calculus in L2(Rn);
(E3) Let k ∈ N. The operator T generates a holomorphic semigroup {e−tT }t>0 which

satisfies the k-Davies-Gaffney estimate, namely, there exist positive constants
C6 and C7 such that for all closed sets E and F in R

n, t ∈ (0, ∞) and f ∈
L2(Rn) supported in E,

‖e−tT f ‖L2(F ) ≤ C6 exp

{

−[dist(E, F )]2k/(2k−1)

C7t1/(2k−1)

}

‖f ‖L2(E).

When k = 1, the k-Davies-Gaffney estimate is just (2.1).
Let k ∈ N. Typical examples of operators, satisfying the above assumptions (E1),

(E2) and (E3), include the following 2k-order divergence form homogeneous elliptic
operator

T1 ≡ (−1)k
∑

|α|=|β|=k

∂α(aα,β∂β) (4.1)
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with complex bounded measurable coefficients {aα,β}|α|=|β|=k , and the following 2k-
order Schrödinger-type operator

T2 ≡ (−�)k + V k (4.2)

with 0 ≤ V ∈ Lk
loc (Rn).

For all f ∈ L2(Rn) and x ∈ R
n, define the T -adapted square function ST f (x) by

ST f (x) ≡
{∫∫

�(x)

∣
∣t2kT e−t2kT f (y)

∣
∣2 dy dt

tn+1

}1/2

.

Using the T -adapted square function ST f , Cao and Yang [5] introduced the fol-
lowing Hardy space H

p
T (Rn) associated to T .

Definition 4.1 [5] Let p ∈ (0, 1] and T satisfy the assumptions (E1), (E2) and (E3).
A function f ∈ L2(Rn) is said to be in H

p
T (Rn) if ST f ∈ Lp(Rn); moreover, de-

fine ‖f ‖H
p
T (Rn) ≡ ‖ST f ‖Lp(Rn). The Hardy space H

p
T (Rn) is then defined to be the

completion of H
p
T (Rn) with respect to the quasi-norm ‖ · ‖H

p
T (Rn).

Let i ∈ {1, 2}. By first establishing the molecular characterization of H
p
Ti

(Rn),
Cao and Yang [5] then obtained the following boundedness of the Riesz transform
∇k(T

−1/2
i ) from H

p
Ti

(Rn) to Hp(Rn) when p ∈ (n/(n + k), 1].

Theorem 4.1 [5] Let k ∈ N, p ∈ (n/(n + k), 1], T1 be the 2k-order divergence form
homogeneous elliptic operator with complex bounded measurable coefficients as in
(4.1), and T2 the 2k-order Schrödinger-type operator as in (4.2). Then, for i ∈ {1, 2},
the Riesz transform ∇k(T

−1/2
i ) is bounded from H

p
Ti

(Rn) to Hp(Rn).

Again, for i ∈ {1, 2}, applying the molecular characterization of H
p
Ti

(Rn) from [5], by
an argument similar to that used in the proof of Theorem 1.2, we obtain the endpoint
boundedness of ∇k(T

−1/2
i ) in the critical case that p = n/(n+k). We omit the details

by similarity.

Theorem 4.2 Let k ∈ N, p ≡ n/(n + k), T1 be the 2k-order divergence form homo-
geneous elliptic operator with complex bounded measurable coefficients as in (4.1),
and T2 the 2k-order Schrödinger-type operator as in (4.2). Then, for i ∈ {1, 2}, the
Riesz transform ∇k(T

−1/2
i ) is bounded from H

p
Ti

(Rn) to WHp(Rn).
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