Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators

Jun Cao · Dachun Yang · Sibei Yang

Received: 30 September 2011 / Accepted: 14 December 2011 / Published online: 28 December 2011 © Revista Matemática Complutense 2011

Abstract Let L_1 be a nonnegative self-adjoint operator in $L^2(\mathbb{R}^n)$ satisfying the Davies-Gaffney estimates and L_2 a second order divergence form elliptic operator with complex bounded measurable coefficients. A typical example of L_1 is the Schrödinger operator $-\Delta + V$, where Δ is the Laplace operator on \mathbb{R}^n and $0 \le V \in L^1_{loc}(\mathbb{R}^n)$. Let $H^p_{L_i}(\mathbb{R}^n)$ be the Hardy space associated to L_i for $i \in \{1, 2\}$. In this paper, the authors prove that the Riesz transform $D(L_i^{-1/2})$ is bounded from $H^p_{L_i}(\mathbb{R}^n)$ to the classical weak Hardy space $WH^p(\mathbb{R}^n)$ in the critical case that p = n/(n + 1). Recall that it is known that $D(L_i^{-1/2})$ is bounded from $H^p_{L_i}(\mathbb{R}^n)$ to the classical Hardy space $H^p(\mathbb{R}^n)$ when $p \in (n/(n + 1), 1]$.

Keywords Riesz transform · Davies-Gaffney estimate · Schrödinger operator · Second order elliptic operator · Hardy space · Weak Hardy space

Mathematics Subject Classification (2000) Primary 47B06 · Secondary 42B20 · 42B25 · 42B30 · 35J10

1 Introduction

The Hardy spaces, as a suitable substitute of Lebesgue spaces $L^p(\mathbb{R}^n)$ when $p \in (0, 1]$, play an important role in various fields of analysis and partial differen-

J. Cao e-mail: caojun1860@mail.bnu.edu.cn

S.-B. Yang e-mail: yangsibei@mail.bnu.edu.cn

J. Cao · D.-C. Yang (🖂) · S.-B. Yang

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People's Republic of China e-mail: dcyang@bnu.edu.cn

tial equations. For example, when $p \in (0, 1]$, the *Riesz transform* $\nabla(-\Delta)^{-1/2}$ is not bounded on $L^p(\mathbb{R}^n)$, but bounded on the Hardy space $H^p(\mathbb{R}^n)$, where Δ is the *Laplacian operator* $\sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ and ∇ is the *gradient operator* $(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n})$ on \mathbb{R}^n . It is well known that the classical Hardy spaces $H^p(\mathbb{R}^n)$ are essentially related to Δ , which has been intensively studied in, for example, [7, 15, 30, 32, 33] and their references.

In recent years, the study of Hardy spaces associated to differential operators inspires great interests; see, for example, [2–4, 10–13, 17–20] and their references. In particular, Auscher, Duong and McIntosh [3] first introduced the Hardy space $H_L^1(\mathbb{R}^n)$ associated to *L*, where the *heat kernel generated by L satisfies a pointwise Poisson type upper bound*. Later, Duong and Yan [9, 10] introduced its dual space BMO_L(\mathbb{R}^n) and established the dual relation between $H_L^1(\mathbb{R}^n)$ and BMO_{L*}(\mathbb{R}^n), where *L** denotes the *adjoint operator* of *L* in $L^2(\mathbb{R}^n)$. Yan [35] further introduced the Hardy space $H_L^p(\mathbb{R}^n)$ for some $p \in (0, 1]$ but near to 1 and generalized these results to $H_L^p(\mathbb{R}^n)$ and their dual spaces. A theory of the Orlicz-Hardy space and its dual space associated to a such *L* was developed in [24, 25].

Moreover, for the *Schrödinger operator* $-\Delta + V$, Dziubański and Zienkiewicz [12, 13] first introduced the Hardy spaces $H^p_{-\Delta+V}(\mathbb{R}^n)$ with the *nonnegative potential* V belonging to the reverse Hölder class $B_q(\mathbb{R}^n)$ for certain $q \in (1, \infty)$. As a special case, the Hardy space $H^p_{-\Delta+V}(\mathbb{R}^n)$ associated with $-\Delta + V$ with $0 \le V \in L^1_{loc}(\mathbb{R}^n)$ and $p \in (0, 1]$ but near to 1 was also studied in, for example, [8, 10, 19, 23, 25, 35–37]. More generally, for *nonnegative self-adjoint operators* L satisfying the Davies-Gaffney estimates, Hofmann et al. [19] introduced a new Hardy space $H^1_L(\mathbb{R}^n)$. In particular, when $L \equiv -\Delta + V$ with $0 \le V \in L^1_{loc}(\mathbb{R}^n)$, Hofmann et al. originally showed that the Riesz transform $\nabla(L^{-1/2})$ is bounded from $H^1_L(\mathbb{R}^n)$ to the classical Hardy space $H^1(\mathbb{R}^n)$. These results in [19] were further extended to the Orlicz-Hardy space and its dual space in [23]. In particular, as a special case of [23, Theorem 6.3], it was proved that $\nabla(-\Delta+V)^{-1/2}$ with $0 \le V \in L^1_{loc}(\mathbb{R}^n)$ is bounded from the Hardy space $H^p_{-\Delta+V}(\mathbb{R}^n)$ to $H^p(\mathbb{R}^n)$ if $p \in (\frac{n}{n+1}, 1]$.

Also, Auscher and Russ [2] studied the Hardy space H_L^1 on strongly Lipschitz domains associated with a *second order divergence form elliptic operator* L whose heat kernels have the Gaussian upper bounds and certain regularity. Hofmann and Mayboroda [17, 18] and Hofmann et al. [20] introduced the Hardy and Sobolev spaces associated to a *second order divergence form elliptic operator* L on \mathbb{R}^n with complex *bounded measurable coefficients*. Notice that, for the second order divergence form elliptic operator L, the kernel of the heat semigroup may fail to satisfy the Gaussian upper bound estimate and, moreover, L may not be nonnegative self-adjoint in $L^2(\mathbb{R}^n)$. Hofmann et al. [20] also proved that the associated Riesz transform $\nabla L^{-1/2}$ is bounded from $H_L^p(\mathbb{R}^n)$ to the classical Hardy space $H^p(\mathbb{R}^n)$ with $p \in (\frac{n}{n+1}, 1]$, which was also independently obtained by Jiang and Yang in [21, Theorem 7.4]. Moreover, a theory of the Orlicz-Hardy space and its dual space associated to L was developed in [21, 22].

Recently, the Hardy space $H^1_{(-\Delta)^2+V^2}(\mathbb{R}^n)$ associated to the Schrödinger-type operators $(-\Delta)^2 + V^2$ with $0 \le V$ satisfying the reverse Hölder inequality was also studied in [6]. Moreover, the Hardy space $H^p_L(\mathbb{R}^n)$ associated to a *one-to-one oper-*

ator of type ω satisfying the k-Davies-Gaffney estimate and having a bounded H_{∞} functional calculus was introduced in [5], where $k \in \mathbb{N}$. Notice that when k = 1, the k-Davies-Gaffney estimate is just the Davies-Gaffney estimate. Typical examples of such operators include the 2k-order divergence form homogeneous elliptic operator T_1 with complex bounded measurable coefficients and the 2k-order Schrödinger-type operator $T_2 \equiv (-\Delta)^k + V^k$, where $0 \le V \in L^k_{loc}(\mathbb{R}^n)$. It was further proved that the associated Riesz transform $\nabla^k T_i^{-1/2}$ for $i \in \{1, 2\}$ is bounded from $H^p_{T_i}(\mathbb{R}^n)$ to $H^p(\mathbb{R}^n)$ with $p \in (\frac{n}{n+k}, 1]$ in [5].

On the other hand, the weak Hardy space $WH^1(\mathbb{R}^n)$ was first introduced by Fefferman and Soria in [14]. Then, Liu [26] studied the weak $WH^p(\mathbb{R}^n)$ space for $p \in (0, \infty)$ and established a weak atomic decomposition for $p \in (0, 1]$. Liu in [26] also showed that the δ -Calderón-Zygmund operator is bounded from $H^p(\mathbb{R}^n)$ to $WH^p(\mathbb{R}^n)$ with $p = n/(n + \delta)$, which was extended to the weighted weak Hardy spaces in [29].

Let L_1 be a nonnegative self-adjoint operator in $L^2(\mathbb{R}^n)$ satisfying the Davies-Gaffney estimates and L_2 a second order divergence form elliptic operator with complex bounded measurable coefficients. A typical example of L_1 is the Schrödinger operator $-\Delta + V$, where $0 \le V \in L^1_{loc}(\mathbb{R}^n)$. Let $H^p_{L_i}(\mathbb{R}^n)$ be the Hardy space associated to L_i for $i \in \{1, 2\}$. In this paper, we prove that the Riesz transform $D(L_i^{-1/2})$ is bounded from $H^p_{L_i}(\mathbb{R}^n)$ to the weak Hardy space $WH^p(\mathbb{R}^n)$ in the critical case that p = n/(n + 1). To be precise, we have the following general result.

Theorem 1.1 Let $p \equiv n/(n + 1)$, L_1 be a nonnegative self-adjoint operator in $L^2(\mathbb{R}^n)$ satisfying the assumptions (A₁) and (A₂) as in Sect. 2 and D the operator satisfying the assumptions (B₁), (B₂) and (B₃) as in Sect. 2. Then the operator $D(L_1^{-1/2})$ is bounded from $H_{L_1}^p(\mathbb{R}^n)$ to the classical weak Hardy space $WH^p(\mathbb{R}^n)$. Moreover, there exists a positive constant C such that for all $f \in H_{L_1}^p(\mathbb{R}^n)$,

$$\|D(L_1^{-1/2})f\|_{WH^p(\mathbb{R}^n)} \le C \|f\|_{H^p_{L_1}(\mathbb{R}^n)}.$$

As an application of Theorem 1.1, we obtain the boundedness of $\nabla(-\Delta + V)^{-1/2}$ with $0 \le V \in L^1_{loc}(\mathbb{R}^n)$ from $H^p_{-\Delta+V}(\mathbb{R}^n)$ to the classical weak Hardy space $WH^p(\mathbb{R}^n)$ in the critical case that p = n/(n+1) as follows.

Corollary 1.1 Let $p \equiv n/(n+1)$ and $0 \le V \in L^1_{loc}(\mathbb{R}^n)$. Then the Riesz transform $\nabla(-\Delta + V)^{-1/2}$ is bounded from $H^p_{-\Delta+V}(\mathbb{R}^n)$ to $WH^p(\mathbb{R}^n)$. Moreover, there exists a positive constant *C* such that for all $f \in H^p_{-\Delta+V}(\mathbb{R}^n)$,

$$\|\nabla(-\Delta+V)^{-1/2}f\|_{WH^{p}(\mathbb{R}^{n})} \leq C\|f\|_{H^{p}_{-\Delta+V}(\mathbb{R}^{n})}$$

On the Riesz transform defined by the second order divergence form elliptic operator with complex bounded measurable coefficients, we also have the following endpoint boundedness in the critical case that $p \equiv n/(n + 1)$.

101

Theorem 1.2 Let $p \equiv n/(n+1)$ and L_2 be the second order divergence form elliptic operator with complex bounded measurable coefficients. Then the Riesz transform $\nabla(L_2^{-1/2})$ is bounded from $H_{L_2}^p(\mathbb{R}^n)$ to $WH^p(\mathbb{R}^n)$. Moreover, there exists a positive constant *C* such that for all $f \in H_{L_2}^p(\mathbb{R}^n)$,

$$\|\nabla(L_2^{-1/2})f\|_{WH^p(\mathbb{R}^n)} \le C \|f\|_{H^p_{L_2}(\mathbb{R}^n)}.$$

Recall that the second order divergence form elliptic operator with complex bounded measurable coefficients may not be nonnegative self-adjoint operator in $L^2(\mathbb{R}^n)$. Thus, we cannot deduce the conclusion of Theorem 1.2 from Theorem 1.1. However, if *L* is a second order divergence form elliptic operator with real symmetric bounded measurable coefficients, then *L* satisfies the assumptions of both Theorems 1.1 and 1.2.

We prove Theorems 1.1 and 1.2 by using the characterization of $WH^p(\mathbb{R}^n)$ in terms of the radial maximal function, namely, we need to estimate the weak $L^p(\mathbb{R}^n)$ quasi-norm of the radial maximal function of the Riesz transform acting on the atoms or molecules of the Hardy spaces $H_{L_i}^p(\mathbb{R}^n)$. Unlike the proof of the endpoint boundedness of the classical Riesz transform $\nabla(-\Delta)^{-1/2}$, whose kernel has the pointwise size estimate and regularity, the strategy to show Theorems 1.1 and 1.2 is to divide the radial maximal function into two parts by the time *t* based on the radius of the associated balls of atoms or molecules and then estimate each part via using L^2 offdiagonal estimates (see [16, 20] or Lemma 2.1 below).

This paper is organized as follows. In Sect. 2, we describe some assumptions on the operator L_1 ; then we recall some notion and properties concerning the Hardy space associated to L_1 and the second order divergence form elliptic operator L_2 with complex bounded measurable coefficients. We also recall the definition of weak Hardy spaces and present some technical lemmas which are used later in the next section. Section 3 is devoted to the proof Theorem 1.1, Corollary 1.1, and Theorem 1.2. In Sect. 4, a similar result on the Riesz transforms defined by *higher order divergence form homogeneous elliptic operators with complex bounded measurable coefficients* or *Schrödinger-type operators* is also presented.

Finally, we make some conventions on the notation. Throughout the whole paper, we always let $\mathbb{N} \equiv \{1, 2, ...\}$ and $\mathbb{Z}_+ \equiv \mathbb{N} \cup \{0\}$. We use *C* to denote a *positive constant*, that is independent of the main parameters involved but whose value may differ from line to line. *Constants with subscripts*, such as C_0 , do not change in different occurrences. If $f \leq Cg$, we then write $f \leq g$; and if $f \leq g \leq f$, we then write $f \sim g$. For all $x \in \mathbb{R}^n$ and $r \in (0, \infty)$, let $B(x, r) \equiv \{y \in \mathbb{R}^n : |x - y| < r\}$ and $\alpha B(x, r) \equiv B(x, \alpha r)$ for any $\alpha > 0$. Also, for any set $E \in \mathbb{R}^n$, we use $E^{\mathbb{C}}$ to denote the *set* $\mathbb{R}^n \setminus E$ and χ_E the *characteristic function* of *E*.

2 Preliminaries

We begin with recalling some known results on the Hardy spaces associated to operators and the weak Hardy spaces. Let L_1 be a *linear operator* initially defined in $L^2(\mathbb{R}^n)$ satisfying the following *assumptions*:

- (A₁) L_1 is nonnegative self-adjoint;
- (A₂) The semigroup $\{e^{-tL_1}\}_{t>0}$ generated by L_1 is analytic on $L^2(\mathbb{R}^n)$ and satisfies the *Davies-Gaffney estimates*, namely, there exist positive constants C_1 and C_2 such that for all closed sets $E, F \subset \mathbb{R}^n, t \in (0, \infty)$ and $f \in L^2(\mathbb{R}^n)$ supported in E,

$$\|e^{-tL_1}f\|_{L^2(F)} \le C_1 \exp\left\{-\frac{[\operatorname{dist}(E, F)]^2}{C_2 t}\right\} \|f\|_{L^2(E)},$$
(2.1)

where and in what follows, $dist(E, F) \equiv inf_{x \in E, y \in F} |x - y|$ is the *distance* between *E* and *F*.

Typical examples of operators satisfying assumptions (A₁) and (A₂) include the second order divergence form elliptic operator with real symmetric bounded measurable coefficients and the Schrödinger operator $-\Delta + V$ with $0 \le V \in L^1_{loc}(\mathbb{R}^n)$.

Let $\Gamma(x) \equiv \{(y, t) \in \mathbb{R}^n \times (0, \infty) : |x - y| < t\}$ be the *cone with the vertex* $x \in \mathbb{R}^n$. For all $f \in L^2(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$, the L_1 -adapted square function $S_{L_1}f(x)$ is defined by

$$S_{L_1}f(x) \equiv \left\{ \iint_{\Gamma(x)} \left| t^2 L_1 e^{-t^2 L_1} f(y) \right|^2 \frac{dy \, dt}{t^{n+1}} \right\}^{1/2}$$

As in [19, 23], we define the Hardy space $H_{L_1}^p(\mathbb{R}^n)$ associated to the operator L_1 as follows.

Definition 2.1 [19, 23] Let $p \in (0, 1]$ and L_1 be an operator defined in $L^2(\mathbb{R}^n)$ satisfying the assumptions (A₁) and (A₂). A function $f \in L^2(\mathbb{R}^n)$ is said to be in $\mathbb{H}_{L_1}^p(\mathbb{R}^n)$ if $S_{L_1}f \in L^p(\mathbb{R}^n)$; moreover, define $||f||_{H_{L_1}^p(\mathbb{R}^n)} \equiv ||S_{L_1}f||_{L^p(\mathbb{R}^n)}$. The *Hardy space* $H_{L_1}^p(\mathbb{R}^n)$ is then defined to be the completion of $\mathbb{H}_{L_1}^p(\mathbb{R}^n)$ with respect to the quasinorm $|| \cdot ||_{H_{L_1}^p(\mathbb{R}^n)}$.

For all $p \in (0, 1]$ and $M \in \mathbb{N}$, a function $a \in L^2(\mathbb{R}^n)$ is called a $(p, 2, M)_{L_1}$ -atom if there exists a function $b \in D(L_1^M)$ and a ball $B \equiv B(x_B, r_B) \subset \mathbb{R}^n$ such that

(i) $a = L_1^M b;$

(ii) for each $\ell \in \{0, 1, ..., M\}$, supp $L_1^{\ell} b \subset B$; (iii) for all $\ell \in \{0, 1, ..., M\}$,

$$\left\| \left(r_B^2 L_1 \right)^k b \right\|_{L^2(\mathbb{R}^n)} \le r_B^{2M + n(\frac{1}{2} - \frac{1}{p})}.$$
(2.2)

We then have the following atomic decomposition of $H_{L_1}^p(\mathbb{R}^n)$.

Theorem 2.1 [19, 23] Let $p \in (0, 1]$. Suppose that $M \in \mathbb{N}$ and $M > \frac{n}{2}(\frac{1}{p} - \frac{1}{2})$. Then for all $f \in L^2(\mathbb{R}^n) \cap H^p_{L_1}(\mathbb{R}^n)$, there exist a sequence $\{a_j\}_{j=0}^{\infty}$ of $(p, 2, M)_{L_1}$ -atoms

and a sequence $\{\lambda_j\}_{j=0}^{\infty}$ of numbers such that $f = \sum_{j=0}^{\infty} \lambda_j a_j$ in both $H_{L_1}^p(\mathbb{R}^n)$ and $L^2(\mathbb{R}^n)$, and $\|f\|_{H_{L_1}^p(\mathbb{R}^n)} \sim \{\sum_{j=0}^{\infty} |\lambda_j|^p\}^{1/p}$.

For the second order divergence form operator, the associated Hardy space was studied in [17, 18, 20, 21]. More precisely, let $L_2 \equiv -\text{div}(A\nabla)$ be a *second order divergence form elliptic operator with complex bounded measurable coefficients.* We say that L_2 is *elliptic* if the matrix $A \equiv \{a_{i,j}\}_{i,j=1}^n$ satisfies the *elliptic condition*, namely, there exist positive constants $0 < \lambda \le \Lambda < \infty$ such that $\lambda |\xi|^2 \le \Re(A\xi \cdot \overline{\xi})$ and $|A\xi \cdot \overline{\xi}| \le \Lambda |\xi|^2$, where for any $z \in \mathbb{C}$, $\Re z$ denotes the *real part* of z.

Definition 2.2 [17, 20, 21] Let $p \in (0, 1]$ and L_2 be the second order divergence form elliptic operator with complex bounded measurable coefficients. A function $f \in L^2(\mathbb{R}^n)$ is said to be in $\mathbb{H}_{L_2}^p(\mathbb{R}^n)$ if $S_{L_2}f \in L^p(\mathbb{R}^n)$; moreover, define $||f||_{H_{L_2}^p(\mathbb{R}^n)} \equiv ||S_{L_2}f||_{L^p(\mathbb{R}^n)}$. The *Hardy space* $H_{L_2}^p(\mathbb{R}^n)$ is then defined to be the completion of $\mathbb{H}_{L_2}^p(\mathbb{R}^n)$ with respect to the quasi-norm $||\cdot||_{H_{L_2}^p(\mathbb{R}^n)}$.

Recall that in [20, 21], for all $p \in (0, 1]$, $\epsilon \in (0, \infty)$ and $M \in \mathbb{N}$, a function $A \in L^2(\mathbb{R}^n)$ is called an $(H_{L_2}^p, \epsilon, M)$ -molecule if there exists a ball $B \equiv B(x_B, r_B) \subset \mathbb{R}^n$ such that

(i) for each *l* ∈ {1, ..., *M*}, *A* belongs to the range of *L*^{*l*}₂ in *L*²(ℝⁿ);
(ii) for all *i* ∈ ℤ₊ and *l* ∈ {0, 1, ..., *M*},

$$\left\| \left(r_B^2 L_2 \right)^{-\ell} A \right\|_{L^2(S_i(B))} \le (2^i r_B)^{n(\frac{1}{2} - \frac{1}{p})} 2^{-i\epsilon}, \tag{2.3}$$

where $S_0(B) \equiv B$ and $S_i(B) \equiv 2^i B \setminus 2^{i-1} B$ for all $i \in \mathbb{N}$.

Assume that $\{m_j\}_j$ is a sequence of $(H_{L_2}^p, \epsilon, M)$ -molecules and $\{\lambda_j\}_j$ a sequence of numbers satisfying $\sum_j |\lambda_j|^p < \infty$. For any $f \in L^2(\mathbb{R}^n)$, if $f = \sum_j \lambda_j m_j$ in $L^2(\mathbb{R}^n)$, then $\sum_j \lambda_j m_j$ is called a *molecular* $(H_{L_2}^p, 2, \epsilon, M)$ -representation of f. The *molecular Hardy space* $H_{L_2, \text{mol}, M}^p(\mathbb{R}^n)$ is then defined to be the completion of the space

 $\mathbb{H}^{p}_{L_{2}, \operatorname{mol}, M}(\mathbb{R}^{n}) \equiv \{f : f \text{ has a molecular } (H^{p}_{L_{2}}, 2, \epsilon, M) \text{-representation}\}$

with respect to the quasi-norm

$$\|f\|_{H^p_{L_2, \operatorname{mol}, M}(\mathbb{R}^n)} \equiv \inf \left\{ \left(\sum_{j=0}^{\infty} |\lambda_j|^p \right)^{1/p} \colon f = \sum_{j=0}^{\infty} \lambda_j A_j \text{ is a molecular} \right. \\ \left. \left(H^p_{L_2}, 2, \epsilon, M \right) \text{-representation} \right\},$$

where the infimum is taken over all the molecular $(H_{L_2}^p, 2, \epsilon, M)$ -representations of f as above.

We have the following molecular characterization of $H_{L_2}^p(\mathbb{R}^n)$.

Theorem 2.2 [20, 21] Let $p \in (0, 1]$. Suppose that $M > \frac{n}{2}(\frac{1}{p} - \frac{1}{2})$ and $\epsilon > 0$. Then $H_{L_2}^p(\mathbb{R}^n) = H_{L_2, \text{ mol}, M}^p(\mathbb{R}^n)$. Moreover, $||f||_{H_{L_2}^p(\mathbb{R}^n)} \sim ||f||_{H_{L_2, \text{ mol}, M}^p(\mathbb{R}^n)}$, where the implicit constants depend only on M, n, p, ϵ and the constants appearing in the ellipticity.

We now recall the definition of the weak Hardy space (see, for example, [14, 26, 27]). Let $p \in (0, 1]$ and $\varphi \in S(\mathbb{R}^n)$ with support in the unit ball B(0, 1). The weak Hardy space $WH^p(\mathbb{R}^n)$ is defined to be the space

$$\left\{f \in \mathcal{S}'(\mathbb{R}^n) : \|f\|_{WH^p(\mathbb{R}^n)} \equiv \sup_{\alpha > 0} \left(\alpha^p \left| \left\{x \in \mathbb{R}^n : \sup_{t > 0} |\varphi_t * f(x)| > \alpha\right\} \right| \right)^{1/p} < \infty \right\}.$$

Let L_1 be a nonnegative self-adjoint operator in $L^2(\mathbb{R}^n)$ satisfying the assumptions (A₁) and (A₂). Following [1], let the operator *D* be a *linear operator* defined densely in $L^2(\mathbb{R}^n)$ and satisfy the following assumptions:

- (B₁) $DL_1^{-1/2}$ is bounded on $L^2(\mathbb{R}^n)$;
- (B₂) the family of operators, $\{\sqrt{t}De^{-tL_1}\}_{t>0}$, satisfy the Davies-Gaffney estimates as in (2.1);
- (B₃) for all $(p, 2, M)_{L_1}$ -atoms $a, \int_{\mathbb{R}^n} DL_1^{-1/2} a(x) dx = 0$.

Typical examples of D and L_1 satisfying the assumptions (B₁), (B₂) and (B₃) include that D is the gradient operator ∇ on \mathbb{R}^n , and L_1 is the second order divergence form elliptic operator with real symmetric bounded measurable coefficients or the Schrödinger operator $-\Delta + V$ with $0 \le V \in L^1_{loc}(\mathbb{R}^n)$ as proved below.

Lemma 2.1 Let $0 \le V \in L^1_{loc}(\mathbb{R}^n)$. Then the Schrödinger operator $T \equiv -\Delta + V$ satisfies the assumptions (A₁) and (A₂), and both T and the gradient operator ∇ satisfy the assumptions (B₁), (B₂) and (B₃).

Proof It is easy to see that *T* is nonnegative self-adjoint.

Let $e^{-tT}(\cdot, \cdot)$ be the *integral kernel* of the semigroup e^{-tT} . By Trotter's formula (see, for example, [34]), we know that for all $t \in (0, \infty)$ and $x, y \in \mathbb{R}^n$,

$$0 \le e^{-tT}(x, y) \le e^{t\Delta}(x, y) \sim t^{-\frac{n}{2}} \exp\left\{-\frac{|x-y|^2}{t}\right\},\$$

which implies that the semigroup $\{e^{-tT}\}_{t>0}$ satisfies (2.1). Thus, T satisfies the assumptions (A₁) and (A₂).

Moreover, by [19, Lemma 8.5], we conclude that there exists a positive constant C_2 such that for all closed sets $E, F \subset \mathbb{R}^n, t \in (0, \infty)$ and $f \in L^2(\mathbb{R}^n)$ supported in E,

$$\|t\nabla e^{-t^2T}f\|_{L^2(F)} \lesssim \exp\left\{-\frac{[\operatorname{dist}(E, F)]^2}{C_2t^2}\right\} \|f\|_{L^2(E)}$$

which, combining the $L^2(\mathbb{R}^n)$ -boundedness of the Riesz transform $\nabla(T^{-1/2})$ (see [19, (8.20)]) and the fact that $\int_{\mathbb{R}^n} \nabla(T^{-1/2}) a(y) dy = 0$ (see, for example [19, 23]),

implies that both *T* and the gradient operator satisfy the assumptions (B₁), (B₂) and (B₃). This finishes the proof of Lemma 2.1. \Box

We also need the following technical lemmas.

Lemma 2.2 [27, 31] Let $p \in (0, 1)$ and $\{f_j\}_j$ be a sequence of measurable functions. If $\sum_j |\lambda_j|^p < \infty$ and there exists a positive constant \widetilde{C} such that for all $\{f_j\}_j$ and $\alpha \in (0, \infty)$, $|\{x \in \mathbb{R}^n : |f_j| > \alpha\}| \le \widetilde{C}\alpha^{-p}$. Then, for all $\alpha \in (0, \infty)$,

$$\left|\left\{x \in \mathbb{R}^n : \left|\sum_j \lambda_j f_j(x)\right| > \alpha\right\}\right| \leq \widetilde{C} \frac{2-p}{1-p} \alpha^{-p} \sum_j |\lambda_j|^p.$$

Lemma 2.3 [1, 16] Let L_1 be a nonnegative self-adjoint operator satisfying the assumptions (A₁) and (A₂) and D the operator satisfying the assumptions (B₁), (B₂) and (B₃). Let $M \in \mathbb{N}$. Then there exists a positive constant C, depending on M, such that for all closed sets E, F in \mathbb{R}^n with dist(E, F) > 0, $f \in L^2(\mathbb{R}^n)$ supported in E and $t \in (0, \infty)$,

$$\|DL_1^{-1/2}(I - e^{-tL_1})^M f\|_{L^2(F)} \le C\left(\frac{t}{[\operatorname{dist}(E, F)]^2}\right)^M \|f\|_{L^2(E)}$$
(2.4)

and

$$\|DL_1^{-1/2} (tL_1 e^{-tL_1})^M f\|_{L^2(F)} \le C \left(\frac{t}{[\operatorname{dist}(E, F)]^2}\right)^M \|f\|_{L^2(E)}.$$
 (2.5)

Moreover, if L_2 is a second order divergence form elliptic operator with complex bounded measurable coefficients, then (2.4) and (2.5) still hold when D and L_1 are replaced, respectively, by the gradient operator ∇ and L_2 .

3 Proofs of main results

In this section, we show Theorem 1.1, Corollary 1.1 and Theorem 1.2.

Proof of Theorem 1.1 Let $p \equiv \frac{n}{n+1}$. By the density of $H_{L_1}^p(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ in $H_{L_1}^p(\mathbb{R}^n)$, we only need to consider $f \in H_{L_1}^p(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$. Let $M \in \mathbb{N}$ and $M > \max\{\frac{1}{2} + \frac{n}{4}, 1\}$. By Theorem 2.1, we know that there exist a sequence $\{a_j\}_j$ of $(p, 2, M)_{L_1}$ atoms and a sequence $\{\lambda_j\}_j$ of numbers such that

$$f = \sum_{j} \lambda_j a_j \tag{3.1}$$

in $L^2(\mathbb{R}^n)$ and $||f||_{H^p_{L_1}(\mathbb{R}^n)} \sim \{\sum_j |\lambda_j|^p\}^{1/p}$. To show Theorem 1.1, by (3.1) and the definition of $WH^p(\mathbb{R}^n)$, we see that it suffices to prove that for all $\alpha \in (0, \infty)$,

$$\left\{x \in \mathbb{R}^n : \sup_{0 < t < \infty} \left|\varphi_t * \left(\sum_j \lambda_j DL_1^{-1/2} a_j\right)(x)\right| > \alpha\right\}\right\| \lesssim \frac{1}{\alpha^p} \sum_j |\lambda_j|^p, \quad (3.2)$$

where $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ satisfies $\operatorname{supp} \varphi \subset B(0, 1)$ and, for all $x \in \mathbb{R}^n$ and $t \in (0, \infty)$, $\varphi_t(x) \equiv \frac{1}{t^n}\varphi(\frac{x}{t})$. In order to prove (3.2), by Lemma 2.2, it suffices to show that for any $(p, 2, M)_{L_1}$ -atom *a* associated with the ball $B \equiv B(x_B, r_B)$ and $\alpha \in (0, \infty)$,

$$\left|\left\{x \in \mathbb{R}^n : \sup_{0 < t < \infty} \left|\varphi_t * \left(DL_1^{-1/2}a\right)(x)\right| > \alpha\right\}\right| \lesssim \frac{1}{\alpha^p}$$

Let \mathcal{M} be the Hardy-Littlewood maximal function. It is easy to see that

$$\sup_{0$$

Then by Chebyshev's inequality, Hölder's inequality, the $L^2(\mathbb{R}^n)$ -boundedness of \mathcal{M} , the $L^2(\mathbb{R}^n)$ -boundedness of $DL_1^{-1/2}$ via (B₁), and (2.2), we know that

$$\begin{split} \left| \left\{ x \in 16B : \sup_{0 < t < \infty} \left| \varphi_t * \left(DL_1^{-1/2} a \right)(x) \right| > \alpha \right\} \right| \\ &\lesssim \frac{1}{\alpha^p} \left\| \sup_{0 < t < \infty} \left| \varphi_t * \left(DL_1^{-1/2} a \right) \right| \right\|_{L^p(16B)}^p \lesssim \frac{1}{\alpha^p} \left\| \mathcal{M} \left(DL_1^{-1/2} a \right) \right\|_{L^p(16B)}^p \\ &\lesssim \frac{1}{\alpha^p} \left\| \mathcal{M} \left(DL_1^{-1/2} a \right) \right\|_{L^2(\mathbb{R}^n)}^p |B|^{1-\frac{p}{2}} \lesssim \frac{1}{\alpha^p} \|a\|_{L^2(\mathbb{R}^n)}^p |B|^{1-\frac{p}{2}} \lesssim \frac{1}{\alpha^p}. \end{split}$$

On the other hand, we have

$$\left\{ x \in (16B)^{\complement} : \sup_{0 < t < \infty} \left| \varphi_t * \left(DL_1^{-1/2} a \right)(x) \right| > \alpha \right\}$$
$$\subset \left\{ x \in (16B)^{\complement} : \sup_{0 < t < r_B} \left| \varphi_t * \left(DL_1^{-1/2} a \right)(x) \right| > \alpha/2$$
$$\cup \left\{ x \in (16B)^{\complement} : \sup_{r_B < t < \infty} \left| \cdots \right| > \alpha/2 \right\} \equiv \mathbf{I} \cup \mathbf{J}.$$

To estimate I, let $S_i(B) \equiv 2^i B \setminus 2^{i-1} B$ and $\widetilde{S}_i(B) \equiv 2^{i+1} B \setminus 2^{i-2} B$ with $i \in \mathbb{N}$. For all $i \ge 5$, $x \in S_i(B)$ and $y \in B(x, r_B)$, from $\operatorname{supp} \varphi \subset B(0, 1)$, it follows that $y \in \widetilde{S}_i(B)$. For $i \ge 5$, let

$$\mathbf{I}_{i} \equiv \left\{ x \in S_{i}(B) : \sup_{0 < t < r_{B}} \left| \varphi_{t} * \left(DL_{1}^{-1/2} a \right)(x) \right| > \alpha/2 \right\}.$$

By Chebyshev's inequality, Hölder's inequality, the $L^2(\mathbb{R}^n)$ -boundedness of \mathcal{M} , Lemma 2.3 and (2.2), we conclude that

$$\begin{aligned} |\mathbf{I}_{i}| &\lesssim \alpha^{-p} \int_{S_{i}(B)} \left[\sup_{0 < t < r_{B}} \left| \int_{\widetilde{S}_{i}(B)} t^{-n} \varphi\left(\frac{x - y}{t}\right) \left[\chi_{\widetilde{S}_{i}(B)}(y) D L_{1}^{-1/2} a(y) \right] dy \right| \right]^{p} dx \\ &\lesssim \alpha^{-p} \int_{S_{i}(B)} \left[\mathcal{M} \left(\chi_{\widetilde{S}_{i}(B)} D L_{1}^{-1/2} a \right)(x) \right]^{p} dx \\ &\lesssim \alpha^{-p} |S_{i}(B)|^{1 - p/2} \left\| D L_{1}^{-1/2} a \right\|_{L^{2}(\widetilde{S}_{i}(B))}^{p} \end{aligned}$$

Deringer

$$\lesssim \alpha^{-p} |S_i(B)|^{1-p/2} \left[\|DL_1^{-1/2} (I - e^{-r_B^2 L_1})^M a\|_{L^2(\widetilde{S}_i(B))}^p + \sum_{k=1}^M \|DL_1^{-1/2} (r_B^2 L_1 e^{-\frac{k}{M} r_B^2 L_1})^M r_B^{-2M} b\|_{L^2(\widetilde{S}_i(B))}^p \right]$$

$$\lesssim \alpha^{-p} |S_i(B)|^{1-p/2} \left[\frac{r_B^2}{(2^i r_B)^2} \right]^{Mp} |B|^{p/2-1} \sim 2^{-i[2Mp-n(1-p/2)]} \alpha^{-p}.$$

From this, the definition of I_i , $p = \frac{n}{n+1}$ and $M > \frac{1}{2} + \frac{n}{4}$, we deduce that $|I| \lesssim \sum_{i=1}^{\infty} |I_i| \lesssim \frac{1}{\alpha^p}$, which is a desired estimate for I.

To estimate J, by the assumption that $\int_{\mathbb{R}^n} DL_1^{-\frac{1}{2}} a(y) dy = 0$ via (B₃), we know that

$$|\mathbf{J}| \lesssim \left| \left\{ x \in (16B)^{\complement} : \\ \sum_{i=0}^{\infty} \sup_{r_B < t < \infty} \left| \int_{S_i(B)} \frac{1}{t^n} \left[\varphi\left(\frac{x-y}{t}\right) - \varphi\left(\frac{x-x_B}{t}\right) \right] DL_1^{-\frac{1}{2}} a(y) \, dy \right| > \alpha/2 \right\} \right|.$$

Let $F_i(x) \equiv \sup_{r_B < t < \infty} \left| \int_{S_i(B)} \frac{1}{t^n} [\varphi(\frac{x-y}{t}) - \varphi(\frac{x-x_B}{t})] DL_1^{-\frac{1}{2}} a(y) \, dy \right|$ and
 $\mathbf{J}_i \equiv \left\{ x \in (16B)^{\complement} : F_i(x) > \alpha/2 \right\}.$

To obtain a desired estimate for J, by Lemma 2.2, it suffices to show that there exists a positive constant C_0 such that

$$|\mathbf{J}_i| \lesssim \frac{2^{-C_0 i}}{\alpha^p}.$$
(3.3)

From the mean value theorem, Hölder's inequality, $\sup \varphi \subset B(0, 1)$, Lemma 2.3 and (2.2), we infer that

$$\begin{split} F_{i}(x) &\leq \sup_{j \in \mathbb{Z}_{+} 2^{j} r_{B} \leq t < 2^{j+1} r_{B}} \chi_{(2^{i+1}+2^{j+1})B}(x) \\ &\times \int_{S_{i}(B)} \frac{1}{t^{n}} \| \nabla \varphi \|_{L^{\infty}(\mathbb{R}^{n})} \left| \frac{y - x_{B}}{t} \right| \left| DL_{1}^{-\frac{1}{2}} a(y) \right| dy \\ &\lesssim \sup_{j \in \mathbb{Z}_{+}} \chi_{(2^{i+1}+2^{j+1})B}(x) \sup_{2^{j} r_{B} \leq t < 2^{j+1} r_{B}} 2^{-j(n+1)} |B|^{-1} 2^{i} |S_{i}(B)|^{1/2} \\ &\times \| DL_{1}^{-\frac{1}{2}} a \|_{L^{2}(S_{i}(B))} \\ &\lesssim \sup_{j \in \mathbb{Z}_{+}} \chi_{(2^{i+1}+2^{j+1})B}(x) \sup_{2^{j} r_{B} \leq t < 2^{j+1} r_{B}} 2^{-j(n+1)} 2^{i(n/2+1)} \left[\frac{r_{B}^{2}}{(2^{i} r_{B})^{2}} \right]^{M} |B|^{-1/p} \end{split}$$

Deringer

$$\equiv C_3 \sup_{j \in \mathbb{Z}_+} \chi_{(2^{i+1}+2^{j+1})B}(x) \sup_{2^j r_B \le t < 2^{j+1}r_B} 2^{-j(n+1)} 2^{-i(2M-n/2-1)} |B|^{-1/p}.$$

Let

$$j_0 \equiv \max\{j \in \mathbb{Z}_+: C_3 2^{-j(n+1)} 2^{-i(2M-n/2-1)} |B|^{-1/p} > \alpha/2\}.$$

For all $x \in [(2^{i+1} + 2^{j_0+1})B]^{C}$, we see that

$$F_{i}(x) \leq C_{3} \sup_{j \geq j_{0}} \chi_{(2^{i+1}+2^{j+1})B}(x)$$

$$\times \sup_{2^{j}r_{B} \leq t < 2^{j+1}r_{B}} 2^{-j(n+1)} 2^{-i(2M-n/2-1)} |B|^{-1/p} \leq \alpha/2.$$

which implies that $x \in J_i^{\complement}$. Thus, $J_i \subset (2^{i+1} + 2^{j_0+1})B$. From this and Chebyshev's inequality, we then deduce that

$$\begin{aligned} |\mathbf{J}_{i}| &\lesssim \alpha^{-p} \int_{(2^{i+1}+2^{j_{0}+1})B} 2^{-pj_{0}(n+1)} 2^{-ip(2M-1+n)} |B|^{-1} dx \\ &\lesssim 2^{-i[(2M-1)p-n(1-p)]} \alpha^{-p}, \end{aligned}$$

which implies that (3.3) holds with $C_0 \equiv (2M-1)p - n(1-p)$. Observe that $C_0 > 0$, since M > 1 and $p = \frac{n}{n+1}$. Thus, combining the estimate of I and J, we then complete the proof of Theorem 1.1.

Proof of Corollary 1.1 From Lemma 2.1, we deduce that the Schrödinger operator $-\Delta + V$ with $0 \le V \in L^1_{loc}(\mathbb{R}^n)$ satisfies the assumptions (A₁) and (A₂) as in Sect. 2, and both $-\Delta + V$ and the gradient operator ∇ satisfy the assumptions (B₁), (B₂) and (B₃) as in Sect. 2. Thus, from Theorem 1.1, we deduce that the Riesz transform $\nabla(-\Delta + V)^{-1/2}$ is bounded from $H^p_{-\Delta+V}(\mathbb{R}^n)$ to the classical weak Hardy space $WH^p(\mathbb{R}^n)$ in the critical case that p = n/(n+1), which completes the proof of Corollary 1.1.

Proof of Theorem 1.2 Let $p \equiv \frac{n}{n+1}$ and $M \in \mathbb{N}$ satisfy $M > \frac{n}{4} + \frac{1}{2}$. To prove Theorem 1.2, similar to the proof of Theorem 1.1, by Theorem 2.2 and Lemma 2.2, for each (H_L^p, ϵ, M) -molecule A associated to the ball $B(x_B, r_B)$, $m \in \mathbb{Z}_+$ and $\alpha \in (0, \infty)$, we only need estimate the measure of the following sets:

$$\widetilde{\mathbf{I}} \equiv \left\{ x \in (16B)^{\complement} : \sup_{0 < t < r_B} \left| \varphi_t * \left(\nabla L_2^{-1/2} A \right)(x) \right| > \alpha/2 \right\}$$

and

$$\widetilde{\mathbf{J}} \equiv \Big\{ x \in (16B)^{\complement} : \sup_{r_B \le t < \infty} \big| \varphi_t * \big(\nabla L_2^{-1/2} A \big)(x) \big| > \alpha/2 \Big\}.$$

The estimate of \tilde{I} is similar to that of I in the proof of Theorem 1.1. We omit the details. Now we estimate \tilde{J} . Since

$$\begin{aligned} |\widetilde{\mathsf{J}}| \lesssim \left| \left\{ x \in (16B)^{\complement} : \sum_{i=0}^{\infty} \sup_{r_B \le t < \infty} \left| \int_{S_i(B)} \frac{1}{t^n} \left[\varphi\left(\frac{x-y}{t}\right) - \varphi\left(\frac{x-x_B}{t}\right) \right] \right. \\ & \times \nabla L_2^{-\frac{1}{2}} \left(I - e^{-r_B^2 L_2} \right)^M A(y) \, dy \right| > \alpha/2 \right\} \right| \\ & + \left| \left\{ x \in (16B)^{\complement} : \sum_{i=0}^{\infty} \sum_{k=1}^M \sup_{r_B \le t < \infty} \left| \int_{S_i(B)} \frac{1}{t^n} \left[\varphi\left(\frac{x-y}{t}\right) - \varphi\left(\frac{x-x_B}{t}\right) \right] \right. \\ & \times \nabla L_2^{-\frac{1}{2}} \left(r_B^2 L_2 e^{-\frac{k}{M} r_B^2 L_2} \right)^M \left(r_B^2 L_2 \right)^{-M} A(y) \, dy \right| > \alpha/2 \right\} \right|. \end{aligned}$$

Let $\widetilde{F_{1,i}}(x) \equiv \sup_{r_B \le t < \infty} \left| \int_{S_i(B)} \frac{1}{t^n} [\varphi(\frac{x-y}{t}) - \varphi(\frac{x-x_B}{t})] \nabla L_2^{-\frac{1}{2}} (I - e^{-r_B^2 L_2})^M \times A(y) dy \right|,$

$$\widetilde{F_{2,i}}(x) \equiv \sum_{k=1}^{M} \sup_{r_B \le t < \infty} \left| \int_{S_i(B)} \frac{1}{t^n} \left[\varphi\left(\frac{x-y}{t}\right) - \varphi\left(\frac{x-x_B}{t}\right) \right] \right.$$
$$\times \nabla L_2^{-\frac{1}{2}} \left(r_B^2 L_2 e^{-\frac{k}{M} r_B^2 L_2} \right)^M \left(r_B^2 L_2 \right)^{-M} A(y) \, dy \, \left|,$$

 $\widetilde{J_{1,k}} \equiv \{x \in (16B)^{\complement}: \widetilde{F_{1,i}}(x) > \alpha/2\}$ and $\widetilde{J_{2,k}} \equiv \{x \in (16B)^{\complement}: \widetilde{F_{2,i}}(x) > \alpha/2\}$. By Lemma 2.2, it suffices to show that there exist positive constants C_4 and C_5 such that for all $\alpha \in (0, \infty)$, $|\widetilde{J_{1,k}}| \leq \frac{2^{-C_4i}}{\alpha^p}$ and $|\widetilde{J_{2,k}}| \leq \frac{2^{-C_5i}}{\alpha^p}$. We only prove the first inequality, the proof of the second inequality is similar. Take $\epsilon \in (n + 1 - 1/(n + 1), \infty)$. By the mean value theorem, Hölder's inequality, Lemma 2.3, (2.3) and $\operatorname{supp} \varphi \subset B(0, 1)$, we conclude that

$$\begin{split} \widetilde{F_{1,i}}(x) &\lesssim \sup_{j \in \mathbb{Z}_{+}} \chi_{(2^{i+1}+2^{j+1})B}(x) \sup_{2^{j}r_{B} \leq t < 2^{j+1}r_{B}} \int_{S_{i}(B)} \frac{1}{t^{n}} \|\nabla\varphi\|_{L^{\infty}(\mathbb{R}^{n})} \left| \frac{y - x_{B}}{t} \right| \\ &\times \left| \nabla L_{2}^{-\frac{1}{2}} \left(I - e^{-r_{B}^{2}L_{2}} \right)^{M} A(y) \right| dy \\ &\lesssim \sup_{j \in \mathbb{Z}_{+}} \chi_{(2^{i+1}+2^{j+1})B}(x) \sup_{2^{j}r_{B} \leq t < 2^{j+1}r_{B}} \int_{S_{i}(B)} \frac{1}{t^{n}} \|\nabla\varphi\|_{L^{\infty}(\mathbb{R}^{n})} \left| \frac{y - x_{B}}{t} \right| \\ &\times \left| \nabla L_{2}^{-\frac{1}{2}} \left(I - e^{-r_{B}^{2}L_{2}} \right)^{M} (\chi_{\widetilde{S}_{i}(B)}A)(y) \right| dy \\ &+ \sup_{j \in \mathbb{Z}_{+}} \chi_{(2^{i+1}+2^{j+1})B}(x) \sup_{2^{j}r_{B} \leq t < 2^{j+1}r_{B}} \int_{S_{i}(B)} \frac{1}{t^{n}} \|\nabla\varphi\|_{L^{\infty}(\mathbb{R}^{n})} \left| \frac{y - x_{B}}{t} \right| \\ &\times \left| \nabla L_{2}^{-\frac{1}{2}} \left(I - e^{-r_{B}^{2}L_{2}} \right)^{M} (\chi_{\mathbb{R}^{n} \setminus \widetilde{S}_{i}(B)}A)(y) \right| dy \end{split}$$

Deringer

$$\lesssim \sup_{j \in \mathbb{Z}_{+}} \chi_{(2^{i+1}+2^{j+1})B}(x) \\ \times \sup_{2^{j} r_{B} \le t < 2^{j+1} r_{B}} 2^{-j(n+1)} \left[2^{-i(\epsilon+n/p-n-1)} + 2^{-i(2M-n/2-1)} \right] |B|^{-1/p},$$

where $S_i(B)$ and $\tilde{S}_i(B)$ are as in the proof of Theorem 1.1. The rest of the proof is similar to that of Theorem 1.1; we omit the details. This finishes the proof of Theorem 1.2.

4 Further remarks

In this section, we establish a variant of Theorems 1.1 and 1.2 for the higher order divergence form elliptic operators with complex bounded measurable coefficients and the higher order Schrödinger-type operators.

To this end, we first recall some notions and notation. For $\theta \in [0, \pi)$, the *closed* sector, S_{θ} , of angle θ in the complex plane \mathbb{C} is defined by $S_{\theta} \equiv \{z \in \mathbb{C} \setminus \{0\} : |\arg z| \le \theta\} \cup \{0\}$. Let $\omega \in [0, \pi)$. A closed operator T in $L^2(\mathbb{R}^n)$ is called of type ω (see, for example, [28]), if its spectrum, $\sigma(T)$, is contained in S_{ω} , and for each $\theta \in (\omega, \pi)$, there exists a nonnegative constant C such that for all $z \in \mathbb{C} \setminus S_{\theta}$, $\|(T - zI)^{-1}\|_{\mathcal{L}(L^2(\mathbb{R}^n))} \le C|z|^{-1}$, where and in what follows, $\|S\|_{\mathcal{L}(\mathcal{H})}$ denotes the operator norm of the linear operator S on the normed linear space \mathcal{H} . Let T be a one-to-one operator of type ω , with $\omega \in [0, \pi)$ and $\mu \in (\omega, \pi)$, and $f \in H_{\infty}(S_{\mu}^{0}) \equiv$ $\{f \text{ is holomorphic on } S_{\mu}^{0} : \|f\|_{L^{\infty}(S_{\mu}^{0})} < \infty\}$, where S_{μ}^{0} denotes the *interior* of S_{μ} . By the H_{∞} functional calculus, the function of the operator T, f(T) is well defined. The operator T is said to have a *bounded* H_{∞} functional calculus in the Hilbert space \mathcal{H} , if there exist $\mu \in (0, \pi)$ and positive constant C such that for all $\psi \in H_{\infty}(S_{\mu}^{0})$, $\|\psi(T)\|_{\mathcal{L}(\mathcal{H})} \le C \|\psi\|_{L^{\infty}(S_{\mu}^{0})}$.

As in [5], let T be an operator defined in $L^2(\mathbb{R}^n)$ which satisfies the following *assumptions*:

- (E₁) The operator T is a one-to-one operator of type ω in $L^2(\mathbb{R}^n)$ with $\omega \in [0, \pi/2)$;
- (E₂) The operator T has a bounded H_{∞} functional calculus in $L^{2}(\mathbb{R}^{n})$;
- (E₃) Let $k \in \mathbb{N}$. The operator *T* generates a holomorphic semigroup $\{e^{-tT}\}_{t>0}$ which satisfies the *k*-Davies-Gaffney estimate, namely, there exist positive constants C_6 and C_7 such that for all closed sets *E* and *F* in \mathbb{R}^n , $t \in (0, \infty)$ and $f \in L^2(\mathbb{R}^n)$ supported in *E*,

$$\|e^{-tT}f\|_{L^{2}(F)} \leq C_{6} \exp\left\{-\frac{[\operatorname{dist}(E, F)]^{2k/(2k-1)}}{C_{7}t^{1/(2k-1)}}\right\} \|f\|_{L^{2}(E)}$$

When k = 1, the *k*-Davies-Gaffney estimate is just (2.1).

Let $k \in \mathbb{N}$. Typical examples of operators, satisfying the above assumptions (E₁), (E₂) and (E₃), include the following 2*k*-order divergence form homogeneous elliptic operator

$$T_1 \equiv (-1)^k \sum_{|\alpha| = |\beta| = k} \partial^{\alpha} (a_{\alpha,\beta} \partial^{\beta})$$
(4.1)

🖄 Springer

with complex bounded measurable coefficients $\{a_{\alpha,\beta}\}_{|\alpha|=|\beta|=k}$, and the following 2k-*order Schrödinger-type operator*

$$T_2 \equiv (-\Delta)^k + V^k \tag{4.2}$$

with $0 \leq V \in L^k_{loc}(\mathbb{R}^n)$.

For all $f \in L^2(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$, define the *T*-adapted square function $S_T f(x)$ by

$$S_T f(x) \equiv \left\{ \iint_{\Gamma(x)} \left| t^{2k} T e^{-t^{2k} T} f(y) \right|^2 \frac{dy \, dt}{t^{n+1}} \right\}^{1/2}$$

Using the *T*-adapted square function $S_T f$, Cao and Yang [5] introduced the following Hardy space $H_T^p(\mathbb{R}^n)$ associated to *T*.

Definition 4.1 [5] Let $p \in (0, 1]$ and T satisfy the assumptions (E₁), (E₂) and (E₃). A function $f \in L^2(\mathbb{R}^n)$ is said to be in $\mathbb{H}_T^p(\mathbb{R}^n)$ if $S_T f \in L^p(\mathbb{R}^n)$; moreover, define $||f||_{H_T^p(\mathbb{R}^n)} \equiv ||S_T f||_{L^p(\mathbb{R}^n)}$. The *Hardy space* $H_T^p(\mathbb{R}^n)$ is then defined to be the completion of $\mathbb{H}_T^p(\mathbb{R}^n)$ with respect to the quasi-norm $|| \cdot ||_{H_T^p(\mathbb{R}^n)}$.

Let $i \in \{1, 2\}$. By first establishing the molecular characterization of $H_{T_i}^p(\mathbb{R}^n)$, Cao and Yang [5] then obtained the following boundedness of the Riesz transform $\nabla^k(T_i^{-1/2})$ from $H_{T_i}^p(\mathbb{R}^n)$ to $H^p(\mathbb{R}^n)$ when $p \in (n/(n+k), 1]$.

Theorem 4.1 [5] Let $k \in \mathbb{N}$, $p \in (n/(n+k), 1]$, T_1 be the 2k-order divergence form homogeneous elliptic operator with complex bounded measurable coefficients as in (4.1), and T_2 the 2k-order Schrödinger-type operator as in (4.2). Then, for $i \in \{1, 2\}$, the Riesz transform $\nabla^k(T_i^{-1/2})$ is bounded from $H_{T_i}^p(\mathbb{R}^n)$ to $H^p(\mathbb{R}^n)$.

Again, for $i \in \{1, 2\}$, applying the molecular characterization of $H_{T_i}^p(\mathbb{R}^n)$ from [5], by an argument similar to that used in the proof of Theorem 1.2, we obtain the endpoint boundedness of $\nabla^k(T_i^{-1/2})$ in the critical case that p = n/(n+k). We omit the details by similarity.

Theorem 4.2 Let $k \in \mathbb{N}$, $p \equiv n/(n+k)$, T_1 be the 2k-order divergence form homogeneous elliptic operator with complex bounded measurable coefficients as in (4.1), and T_2 the 2k-order Schrödinger-type operator as in (4.2). Then, for $i \in \{1, 2\}$, the Riesz transform $\nabla^k(T_i^{-1/2})$ is bounded from $H_{T_i}^p(\mathbb{R}^n)$ to $WH^p(\mathbb{R}^n)$.

Acknowledgements The second author is supported by National Natural Science Foundation (Grant No. 11171027) of China and Program for Changjiang Scholars and Innovative Research Team in University of China.

References

1. Ahn, B., Li, J.: Orlicz-Hardy spaces associated to operators satisfying bounded H_{∞} functional calculus and Davies-Gaffney estimates. J. Math. Anal. Appl. **373**, 485–501 (2011)

- Auscher, P., Russ, E.: Hardy spaces and divergence operators on strongly Lipschitz domains of ℝⁿ. J. Funct. Anal. 201, 148–184 (2003)
- Auscher, P., Duong, X.T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces. Unpublished preprint (2005)
- Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18, 192–248 (2008)
- Cao, J., Yang, D.: Hardy spaces H^p_L(Rⁿ) associated to operators satisfying k-Davies-Gaffney estimates (submitted). arXiv:1107.5365
- 6. Cao, J., Liu, L., Yang, D.: Hardy spaces $H^1_{\mathcal{L}}(\mathbb{R}^n)$ associated to Schrödinger type operators $(-\Delta)^2 + V^2$. Houst, J. Math. **36**, 1067–1095 (2010)
- Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)
- 8. Duong, X.T., Li, J.: Hardy spaces associated to operators satisfying bounded H_{∞} functional calculus and Davies-Gaffney estimates. Preprint
- Duong, X.T., Yan, L.: New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications. Commun. Pure Appl. Math. 58, 1375–1420 (2005)
- Duong, X.T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18, 943–973 (2005)
- Duong, X.T., Xiao, J., Yan, L.: Old and new Morrey spaces with heat kernel bounds. J. Fourier Anal. Appl. 13, 87–111 (2007)
- Dziubański, J., Zienkiewicz, J.: Hardy space H¹ associated to Schrödinger operator with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoam. 15, 279–296 (1999)
- Dziubański, J., Zienkiewicz, J.: H^p spaces for Schrödinger operators. In: Fourier Analysis and Related Topics, Bpolhk Edlewo, 2000. Banach Center Publ., vol. 56, pp. 45–53. Polish Acad. Sci., Warsaw (2002)
- 14. Fefferman, R., Soria, F.: The space weak H^1 . Studia Math. 85, 1–16 (1986)
- 15. Fefferman, C., Stein, E.M.: H^p spaces of several variables. Acta Math. **129**, 137–193 (1972)
- Hofmann, S., Martell, J.: L^p bounds for Riesz transforms and square roots associated to second order elliptic operators. Publ. Mat. 47, 497–515 (2003)
- Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344, 37–116 (2009)
- Hofmann, S., Mayboroda, S.: Correction to "Hardy and BMO spaces associated to divergence form elliptic operators". arXiv:0907.0129
- Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Am. Math. Soc. 214(1007), vi+78 (2011)
- Hofmann, S., Mayboroda, S., McIntosh, A.: Second order elliptic operators with complex bounded measurable coefficients in L^p, Sobolev and Hardy spaces. Ann. Sci. École Norm. Sup. (4) 44, 723– 800 (2011)
- Jiang, R., Yang, D.: New Orlicz-Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258, 1167–1224 (2010)
- 22. Jiang, R., Yang, D.: Generalized vanishing mean oscillation spaces associated with divergence form elliptic operators. Integral Equ. Oper. Theory **67**, 123–149 (2010)
- Jiang, R., Yang, D.: Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates. Commun. Contemp. Math. 13, 331–373 (2011)
- Jiang, R., Yang, D.: Predual spaces of Banach completions of Orlicz-Hardy spaces associated with operators. J. Fourier Anal. Appl. 17, 1–35 (2011)
- Jiang, R., Yang, D., Zhou, Y.: Orlicz-Hardy spaces associated with operators. Sci. China Ser. A 52, 1042–1080 (2009)
- Liu, H.: The weak H^p spaces on homogenous groups. In: Harmonic Analysis, Tianjin, 1988. Lecture Notes in Math., vol. 1984, pp. 113–118. Springer, Berlin (1991)
- 27. Lu, S.: Four Lectures on Real H^p Spaces. World Scientific, River Edge (1995)
- 28. McIntosh, A.: Operators which have an H_{∞} functional calculus. In: Miniconference on Operator Theory and Partial Differential Equations, North Ryde, 1986. Proc. Centre Math. Anal., Austral. Nat. Univ., vol. 14, pp. 210–231. Austral. Nat. Univ., Canberra (1986)
- 29. Quek, T., Yang, D.: Calderón-Zygmund-type operators on weighted weak Hardy spaces over \mathbb{R}^n . Acta Math. Sin. Engl. Ser. **16**, 141–160 (2000)
- Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

- Stein, E.M., Taibleson, M.H., Weiss, G.: Weak type estimates for maximal operators on certain H^p classes. In: Proceedings of the Seminar on Harmonic Analysis, Pisa, 1980. Rend. Circ. Mat. Palermo, vol. 2, pp. 81–97 (1981)
- 32. Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables. I. The theory of H^p -spaces. Acta Math. **103**, 25–62 (1960)
- Taibleson, M.H., Weiss, G.: The molecular characterization of certain Hardy spaces. In: Representation Theorems for Hardy Spaces. Astérisque, vol. 77, pp. 67–149. Soc. Math. France, Paris (1980)
- 34. Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)
- Yan, L.: Classes of Hardy spaces associated with operators, duality theorem and applications. Trans. Am. Math. Soc. 360, 4383–4408 (2008)
- Yang, D., Zhou, Y.: Localized Hardy spaces H¹ related to admissible functions on RD-spaces and applications to Schrödinger operators. Trans. Am. Math. Soc. 363, 1197–1239 (2011)
- 37. Yang, Da., Yang, Do., Zhou, Y.: Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators. Potential Anal. **30**, 271–300 (2009)