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Abstract We consider different notions of non-degeneracy, as introduced by Kouch-
nirenko (NND), Wall (INND) and Beelen-Pellikaan (WNND) for plane curve sin-
gularities {f (x, y) = 0} and introduce the new notion of weighted homogeneous
Newton non-degeneracy (WHNND). It is known that the Milnor number μ resp. the
delta-invariant δ can be computed by explicit formulas μN resp. δN from the New-
ton diagram of f if f is NND resp. WNND. It was however unknown whether the
equalities μ = μN resp. δ = δN can be characterized by a certain non-degeneracy
condition on f and, if so, by which one. We show that μ = μN resp. δ = δN is equiv-
alent to INND resp. WHNND and give some applications and interesting examples
related to the existence of “wild vanishing cycles”. Although the results are new in
any characteristic, the main difficulties arise in positive characteristic.
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1 Introduction

Let K be an algebraically closed field, K[[x]] = K[[x1, . . . , xn]] the formal power
series ring and m its maximal ideal. Let us recall the definition of the Newton diagram
and Wall’s notion of a C-polytope (see [13]). To each power series f = ∑

α cαxα ∈
K[[x]] we can associate its Newton polyhedron �+(f ) as the convex hull of the set

⋃

α∈supp(f )

(α + R
n
≥0),

where supp(f ) = {α|cα �= 0} denotes the support of f . This is an unbounded poly-
tope in R

n. We call the union �(f ) of its compact faces the Newton diagram of f .
By �−(f ) we denote the union of all line segments joining the origin to a point on
�(f ). We always assume that f ∈ m if not explicitly stated otherwise.

If the Newton diagram of a singularity f meets all coordinate axes we call f

convenient. However, not every isolated singularity is convenient, and one then has
to enlarge the Newton diagram. A compact rational polytope P of dimension n − 1
in the positive orthant R

n
≥0 is called a C-polytope if the region above P is convex and

if every ray in the positive orthant emanating from the origin meets P in exactly one
point. The Newton diagram of f is a C-polytope iff f is convenient.

We first introduce the different notions of non-degeneracy. For this let f =∑
α cαxα ∈ m be a power series, let P be a C-polytope and let � be a face of P .

By f� := in�(f ) := ∑
α∈� cαxα we denote the initial form or principal part of f

along �. Following Kouchnirenko we call f non-degenerate ND along � if the Ja-
cobian ideal1 j (f�) has no zero in the torus (K∗)n. f is then said to be Newton
non-degenerate NND if f is non-degenerate along each face (of any dimension) of
the Newton diagram �(f ). We do not require f to be convenient.

To define inner non-degeneracy we need to fix two more notions. The face � is
an inner face of P if it is not contained in any coordinate hyperplane. Each point
q ∈ Kn determines a coordinate hyperspace Hq = ⋂

qi=0{xi = 0} ⊂ R
n in R

n. We
call f inner non-degenerate IND along � if for each zero q of the Jacobian ideal
j (in�(f )) the polytope � contains no point on Hq . f is called inner Newton non-
degenerate INND w.r.t. a C-polytope P if no point of supp(f ) lies below P and f

is IND along each inner face of P . We call f simply inner Newton non-degenerate
INND if it is INND w.r.t. some C-polytope.

Finally, we call f weakly non-degenerate WND along � if the Tjurina ideal2

tj(in�(f )) has no zero in the torus (K∗)n, and f is called weakly Newton non-
degenerate WNND if f is weakly non-degenerate along each top-dimensional face
of �(f ). Note that NND implies WNND while NND does not imply INND and vice
versa. See [3, Remark 3.1] for facts on and relations between the different types of
non-degeneracy.

For any compact polytope Q in R
n
≥0 we denote by Vk(Q) the sum of the k-

dimensional Euclidean volumes of the intersections of Q with the k-dimensional

1The Jacobian ideal j (f ) denotes the ideal generated by all partials of f ∈ K[[x]].
2For f ∈ K[[x]] we call tj(f ) = 〈f 〉 + j (f ) the Tjurina ideal of f .
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coordinate subspaces of R
n and, following Kouchnirenko, we then call

μN(Q) =
n∑

k=0

(−1)n−kk!Vk(Q)

the Newton number of Q. For a power series f ∈ K[[x]] we define the Newton num-
ber of f to be

μN(f ) = sup{μN(�−(fm))|fm := f + xm
1 + · · · + xm

n ,m ≥ 1}.
If f is convenient then

μN(f ) = μN(�−(f )).

The following theorem was proved by Kouchnirenko in arbitrary characteristic. We
recall that μ(f ) := dimK[[x, y]]/j (f ) is the Milnor number of f .

Theorem 1.1 [10] For f ∈ K[[x]] we have μN(f ) ≤ μ(f ), and if f is NND and
convenient then μN(f ) = μ(f ) < ∞.

Since Theorem 1.1 does not cover all semi-quasihomogeneous singularities, Wall
introduced the condition INND (denoted by NPND* in [13]). Using Theorem 1.1,
Wall proved the following theorem for K = C which was extended to arbitrary K

in [3].

Theorem 1.2 [3, 13] If f ∈ K[[x]] is INND, then

μ(f ) = μN(f ) = μN(�−(f )) < ∞.

Kouchnirenko proved that the condition “convenient” is not necessary in The-
orem 1.1 if char(K) = 0. The authors in [3] show that in the planar case Kouch-
nirenko’s result holds in arbitrary characteristic without the assumption that f is con-
venient (allowing μ(f ) = ∞):

Proposition 1.3 [3, Proposition 4.5] Suppose that f ∈ K[[x, y]] is NND, then
μN(f ) = μ(f ).

2 Milnor number

In the following we consider only the case of plane curve singularities. The main
result of this section says that for f ∈ K[[x, y]], the condition μ(f ) = μN(f ) < ∞
is equivalent to f being INND (Theorem 2.13). In characteristic zero this is also
equivalent to f being NND and μN(f ) < ∞ (Corollary 2.17). However, in positive
characteristic, this is in general not true as the following example shows.

Example 2.1 f = x3 + xy + y3 in characteristic 3 satisfies μ(f ) = μN(f ) = 1 but
f is not NND.
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Fig. 1

Remark 2.2 Let f ∈ K[[x, y]] be convenient and Ai = (ci, ei), i = 0, . . . , k the ver-
tices of �(f ) with c0 = ek = 0, ci < ci+1 and ei > ei+1. Then

μN(f ) = 2V2(�−(f )) − ck − e0 + 1.

Lemma 2.3 Let f,g ∈ K[[x, y]] be convenient such that �−(f ) ⊂ �−(g). Then

(a) μN(f ) ≤ μN(g).
(b) The equality holds if and only if �−(f ) ∩ R

2≥1 = �−(g) ∩ R
2≥1, where

R
2≥1 = {(x, y) ∈ R

2|x ≥ 1, y ≥ 1}.

Part (a) of the lemma was also shown in [2, Corollary 5.6]. Let us denote by �1(f )

the cone joining the origin with �(f ) ∩ R
2≥1 (cf. Fig. 1).

Proof First, we prove that

μN(f ) = V2(�1(f )) + 1.

It is easy to see that �1(f ) divides �−(f ) into three parts whose volumes are
ck/2,V2(�1(f )) and e0/2. Therefore

μN(f ) = 2V2(�−(f )) − ck − e0 + 1 = 2V2(�1(f )) + 1.

(a) Clearly, if �−(f ) ⊂ �−(g) then �1(f ) ⊂ �1(g) and hence

μN(f ) = V2(�1(f )) + 1 ≤ 2V2(�1(g)) + 1 = μN(g).

(b) follows easily from the formula μN(f ) = 2V2(�1(f )) + 1. �

We recall some classical notions. Let f ∈ K[[x, y]] be irreducible. A couple
(x(t), y(t)) ∈ K[[t]]2 is called a (primitive) parametrization of f , if f (x(t), y(t)) =
0 and if the following universal factorization property holds: for each (u(t), v(t)) ∈
K[[t]]2 with f (u(t), v(t)) = 0, there exists a unique series h(t) ∈ K[[t]] such that
u(t) = x(h(t)) and v(t) = y(h(t)).

If g ∈ K[[x, y]] is irreducible and (x(t), y(t)) its parametrization, then the inter-
section multiplicity of any f ∈ K[[x, y]] with g is given by i(f, g) = ordf (x(t), y(t)),
and if u is a unit then i(f,u) = 0. The intersection multiplicity of f with a reducible
power series g = g1 · · ·gs is defined to be the sum i(f, g) = i(f, g1) + · · ·+ i(f, gs).
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Proposition 2.4 [7, Proposition 3.12] Let f,g ∈ K[[x, y]]. Then

i(f, g) = i(g, f ) = dimK[[x, y]]/〈f,g〉.
The proof in [7] was given for K = C but works in any characteristic.
Let f = ∑

i,j cij x
iyj ∈ K[[x, y]] and �(f ) be its Newton diagram. We call

fin :=
∑

(i,j)∈�(f )

cij x
iyj

the initial part of f .

Proposition 2.5 Let f ∈ m ⊂ K[[x, y]] be irreducible, x-general of order m and
y-general of order n. Let (x(t), y(t)) be parametrization of f . Then

(a) ord(x(t)) = n and ord(y(t)) = m.
(b) The Newton diagram of f is the straight line segment.
(c) There exist ξ,λ ∈ K∗ such that

fin(x, y) = ξ · (xm/q − λyn/q)q,

where q = (m,n).

Proof cf. [5, Lemma 3.4.3, 3.4.4, 3.4.5]. �

Proposition 2.6 [4, Lemma 3] Let f ∈ K[[x, y]] and let Ei, i = 1, . . . , k be the edges
of its Newton diagram. Then there is a factorization of f :

f = monomial · f̄1 · · · · · f̄k

such that f̄i is convenient, fEi
= monomial × (f̄i)in. In particular, if f is convenient

then f = f̄1 · · · · · f̄k .

A polynomial f = ∑
i,j cij x

iyj ∈ K[x, y] is called weighted homogeneous or
quasihomogeneous of type (n,m;d) if m,n,d are positive integers satisfying ni +
mj = d , for each (i, j) ∈ supp(f ).

Let f ∈ K[[x, y]] be a formal power series and n,m positive integers. We can
decompose f into a sum

f = f w
d + f w

d+1 + · · · ,

where f w
d �= 0 and f w

l is weighted homogeneous of type (n,m; l) for l ≥ d . We call
f w

d the first term of the decomposition.
For each series ϕ(t) = c1t

α1 + c2t
α2 + · · · with c1 �= 0, α1 < α2 < · · · , we set

LT(ϕ(t)) := c1t
α1 and LC(ϕ(t)) := c1.

Lemma 2.7 Let m,n be two positive integers. Let x(t), y(t) ∈ K[[t]] with LT(x(t)) =
atα and LT(y(t)) = btβ such that α : β = n : m. Let f = f w

d + f w
d+1 + · · · , be a

(n,m)-weighted homogeneous decomposition of f ∈ K[[x, y]]. Then ordf (x(t), y(t))

≥ dα
n

. Equality holds if and only if fd(a, b) �= 0.
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Proof We can write x(t) = tα(a + u(t)) and y(t) = tβ(b + v(t)), where ordu(t) > 0
and ordv(t) > 0. Then

f w
l (x(t), y(t)) =

∑

ni+mj=l

cij (t
α(a + u(t)))i(tβ(b + v(t)))j

= t
lα
n f w

l (a + u(t), b + v(t)).

Thus ordf w
l (x(t), y(t)) ≥ lα

n
and hence ordf (x(t), y(t)) ≥ dα

n
.

Since f w
d (a + u(t), b + v(t)) = f w

d (a, b) + th(t) for some power series h,

ordf (x(t), y(t)) = ordf w
d (x(t), y(t)) = dα

n

iff f w
d (a, b) �= 0. �

Lemma 2.8 Let f ∈ K[[x, y]] be convenient such that �(f ) has only one edge. Let
m = ordf (x,0), n = ordf (0, y) and f = f1 · · · · · fr a factorization of f into its
branches (irreducible factors).

(a) Let (xj (t), yj (t)) be a parametrization of fj , j = 1, . . . , r with LT(xj (t)) =
aj t

αj and LT(yj (t)) = bj t
βj . Then fin(aj , bj ) = 0, αj : βj = n : m and α1 +

· · · + αr = n.
(b) Let a, b ∈ K∗ such that fin(a, b) = 0. Then there is a parametrization (x(t), y(t))

of a branch of f satisfying LC(x(t)) = a and LC(y(t)) = b.

Proof Let f = f w
d + f w

d+1 + · · · with f w
d �= 0 be the (n,m)-weighted homogeneous

decomposition of f . Then f w
d = fin.

(a) It is easily verified that fin = ∏
(fj )in then (fj )in is also a (n,m)-weighted

homogeneous polynomial of order some dj . By Proposition 2.5, ordfj (x,0) = βj

and ordfj (0, y) = αj , i.e. xβj and yαj are monomials of (fj )in. Thus nβj = dj =
mαj and hence αj : βj = n : m.

Since f (xj (t), yj (t)) = 0, i.e. ordf (xj (t), yj (t)) = +∞ >
dαj

n
, Lemma 2.7

yields that f w
d (aj , bj ) = 0, i.e. fin(aj , bj ) = 0.

Now, by the definition of intersection multiplicity we have

n = i(f, x) =
r∑

j=1

ordxj (t) =
r∑

j=1

αj .

(b) Since f = g · h implies fin = gin · hin, it suffices to prove part (b) for the
irreducible case. Then by Proposition 2.5(c), there exist ξ,λ ∈ K∗ such that

fin(x, y) = ρ · (xm′ − λyn′
)q,

where q = (m,n);m′ = m/q and n′ = n/q . It is impossible that the characteristic p

of K divides both m′ and n′ since (n′,m′) = 1. We may assume that p does not
divide n′.
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Let (x̄(t), ȳ(t)) be a parametrization of f . It follows from Proposition 2.5 that
LT(x̄(t)) = ātn and LT(ȳ(t)) = b̄tm for some ā, b̄ ∈ K∗ satisfying fin(ā, b̄) = 0. Set

g(y) := am′ − λyn′
and n′√

a/ā := {ξi |i = 1, . . . , n′}.

Then

g(b̄ξm′
i ) = fin(a, b̄ξm′

i ) = fin(āξn
i , b̄ξm′

i ) = ξd
i fin(ā, b̄) = 0.

Since (m′, n′) = 1, it is easy to see that ξm′
i �= ξm′

j for all i �= j . Thus the set

{b̄ξm′
i |i = 1, . . . , n′}

contains all of roots of g. Since 0 = fin(a, b) = ρ · g(b)q , g(b) = 0. Then there is an
index i0 such that b = b̄ξm′

i0
. Choose a ε in q

√
ξi0 and put

x(t) = x̄(εt) and y(t) = ȳ(εt),

we get LC(x(t)) = a and LC(y(t)) = b. �

Definition 2.9 Let f = ∑
cij x

iyj ∈ K[[x, y]] be such that (0, n) is the vertex on the
y-axis of �(f ). Let (1, j1) be the intersection point of �(f ) and the line x = 1. We
define f to be ND1 along (0, n) if either char(K) = p = 0 or if p �= 0 then p � |n or
j1 ∈ N and the coefficient c1j1 of xyj1 in f is different from zero. ND1 along (m,0),
with (m,0) the vertex on the x-axis of �(f ), is defined analogously.

f is called NND1 if f is convenient, ND along each inner face and ND1 along
each vertex on the axes of �(f ).

Proposition 2.10 Let f = ∑
cij x

iyj ∈ K[[x, y]] be convenient and let (0, n) (resp.
(m,0)) be the vertex on the y-axis (resp. on the x-axis) of �(f ). Assume that f is not
ND1 along the point (0, n) or (m,0) then μ(f ) > μN(f ).

Proof We consider only (0, n) since (m,0) is analogous. Let (1, j1) be the intersec-
tion point of �(f ) and the line x = 1. The assumption that f is not ND1 along the
point (0, n) implies that p|n and c1j1 = 0. Putting g(x, y) = f (x, y) − c0ny

n one
then has μ(f ) = μ(g) and �−(f ) ⊂ �−(g). On the other hand, it is easy to see that
(1, j1) ∈ �+(f ) \�+(g). This means �−(f )∩R

2≥1 � �−(g)∩R
2≥1. It hence follows

from Lemma 2.3 that μN(g) > μN(f ). Thus

μ(f ) = μ(g) ≥ μN(g) > μN(f ). �

Proposition 2.11 Let f ∈ K[[x, y]] be convenient. If f is degenerate along some
inner vertex of �(f ) then μ(f ) > μN(f ).

Proof Assume that f is degenerate along some vertex (i0, j0) of �(f ) with i0 > 0
and j0 > 0. Then p �= 0 and i0 and j0 are divisible by p. Put g(x, y) = f (x, y) −
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ci0j0x
i0yj0 , then j (f ) = j (g) and hence μ(f ) = μ(g). Clearly, �+(g) does not con-

tain the point (i0, j0). Thus

�−(f ) ∩ R
2≥1 � �−(g) ∩ R

2≥1.

Lemma 2.3 hence implies that μN(g) > μN(f ). We then have

μ(f ) = μ(g) ≥ μN(g) > μN(f ). �

Proposition 2.12 Let f ∈ K[[x, y]] be convenient. If f is degenerate along some
edge of �(f ) then μ(f ) > μN(f ).

Proof Let f (x, y) = ∑
cαβxαyβ . Let fx,fy be the partials of f and put h(x, y) :=

xfx(x, y) + λyfy(x, y), where λ ∈ K is generic. Then

h(x, y) =
∑

(α + λβ)cαβxαyβ.

Thus supp(h) = supp(f ) \ (pN)2 and if p = 0 then supp(h) = supp(f ). Hence
�+(h) ⊂ �+(f ).

Case 1: f is ND along each vertex of �(f ).
Assume now that (i, j) is a vertex of �(f ). Since f is ND along (i, j), p = 0

or p �= 0 and one of i, j is not divisible by p. Therefore (i, j) ∈ supp(f ) \ (pN)2 =
supp(h) and then �+(f ) ⊂ �+(h). Hence �(h) = �(f ).

Let Ei, i = 1, . . . , k be edges of �(h). By Proposition 2.6, we can write h =
h̄1 . . . h̄k , where h̄i are convenient and hEi

(x, y) = monomial × (h̄i )in. We denote
by mi and ni the lengths of the projections of Ei on the horizontal and vertical axes.

Let h = hw
di

+ hw
di+1 + · · · with hw

di
�= 0 be the (ni,mi)-weighted homogeneous

decomposition of h. Then hw
di

= hEi
. Since Ei is also an edge of �(f ), f = f w

di
+

f w
di+1 + · · · is the (ni,mi)-weighted homogeneous decomposition of f with f w

di
=

fEi
and then

hw
di

=
∑

niα+miβ=di

(α + λβ)cαβxαyβ = x
∂f w

di

∂x
+ λy

∂f w
di

∂y
.

Let yfy = gw
di

′ + gw
di

′+1
+ · · · be the (ni,mi)-weighted homogeneous decomposition

of yfy . It is easy to see that di
′ ≥ di and di

′ = di iff y
∂f w

di

∂y
�= 0.

Claim 1 Let Ai−1,Ai be the vertices of the edge Ei and let V2(OAi−1Ai) be the
volume of triangle OAi−1Ai . Then di = 2V2(OAi−1Ai).

Proof Let (ci, ei) be the coordinates of Ai, i = 0, . . . , k. Then mi = ci − ci−1 and
ni = ei−1 − ei . (cf. Fig. 2).

Considering the rectangle (0,0); (ci,0); (ci, ei−1); (0, ei−1) we have

2V2(OAi−1Ai) = 2ciei−1 − ciei − ci−1ei−1 − mini

= (ci−1 + mi)ei−1 + ci(ei + ni) − ciei − ci−1ei−1 − mini
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Fig. 2

= miei−1 + cini − mini = mi(ei + ni) + cini − mini

= miei + nici = di .

This proves Claim 1.

Claim 2 i(h̄i , yfy) ≥ di , and if f is degenerate along Ei then i(h̄i , yfy) > di .

Proof Let (xj (t), yj (t)), j = 1, . . . , r be parametrizations of the branches h̄i,j of
h̄i . Then by Lemma 2.8, we have LT(xj (t)) = aj t

αj and LT(yj (t)) = bj t
βj , where

aj , bj ∈ K∗, h̄i(aj , bj ) = 0, αj : βj = ni : mi for all j = 1, . . . , r and α1 +· · ·+αr =
ni . It follows from Lemma 2.7 that ord(yfy)(xj (t), yj (t)) ≥ di

′
αj

ni
for all j = 1, . . . , r .

Thus

i(h̄i , yfy) =
r∑

j=1

ord(yfy)(xj (t), yj (t)) ≥
r∑

j=1

di
′αj

ni

= di
′ ≥ di.

Assume that f is degenerate along Ei then there exist a, b �= 0 such that

x
∂f w

di

∂x
(a, b) = y

∂f w
di

∂y
(a, b) = 0.

Therefore hdi
(a, b) = 0. Lemma 2.8 implies that there is a parametrization of a

branch of h̄i such that LT(x̄(t)) = atα and LT(ȳ(t)) = btβ . We may assume that
(x̄(t), ȳ(t)) is a parametrization of the branch h̄i,1. Then α = α1 and β = β1.

To show i(h̄i , yfy) > di , we may restrict to the case that di
′ = di , because of

the inequality i(h̄i , yfy) ≥ di
′ ≥ di . As di

′ = di then gw
di

′ (a, b) = y
∂f w

di

∂y
(a, b) = 0.

Lemma 2.7 yields

ord(yfy)(x̄(t), ȳ(t)) >
diα1

ni

.

Thus

i(h̄i , yfy) = ord(yfy)(x̄(t), ȳ(t)) +
r∑

j=2

ord(yfy)(xj (t), yj (t))

>
diα1

ni

+
r∑

j=2

di
′
αj

ni

= di.



566 G.-M. Greuel, N.H. Duc

This proves Claim 2.

It now follows from Claim 1 and Claim 2 that

i(h, yfy) ≥
k∑

i=1

2V2(OAi−1Ai) = 2V2(�−(f )).

Hence

μ(f ) = i(fx, fy) = i(h, yfy) − i(x, fy) − i(fx, y) − 1

≥ 2V2(�−(f )) − (e0 − 1) − (ck − 1) − 1

= μN(f ).

Moreover, if f is degenerate along some edge of �(f ) then μ(f ) > μN(f ) by
Claim 1 and 2. This proves of Case 1.

Case 2: In the general case, by Propositions 2.10, 2.11 we may assume that f is
ND along each inner vertex and ND1 along the two vertice on the axes of �(f ). For
m sufficiently large and p � |m, we put

f̄m(x, y) =
∑

(α,β) �∈(pN)2

cαβxαyβ + xm + ym.

Then

μ(f̄m) = μ(fm) = μ(f ) and μN(f̄m) ≥ μN(fm) = μN(f ),

where the inequality follows from Lemma 2.3.

Claim 3 f̄m is degenerate along some edge of �(f̄ ).

Proof By the assumption f is degenerate along some edge E of �(f ). If E is also
an edge of �(f̄m) then j (inE(f̄m)) = j (inE(f )) and hence f̄m is degenerate along
E. If E is not an edge of �(f̄m), then E must meet the axes since f is ND along each
inner vertex of �(f ). We may assume that (0, n) is a vertex of E. We will show that

(supp(f̄m) ∩ E) ≥ 2.

Let (1, j1) be the intersection point of E and the line x = 1. Since f is ND1 along
(0, n), either (0, n) ∈ supp(f̄m)∩E or (1, j1) ∈ supp(f̄m)∩E, i.e. supp(f̄m)∩E �= ∅
On the other hand, it is easy to see that (supp(f̄m) ∩ E) �= 1 since f is degenerate
along the edge E. Hence (supp(f̄m) ∩ E) ≥ 2. Let us denote by Ē the convex hull
of the set supp(f̄m) ∩ E. Then Ē is an edge of �(f̄m) and j (inĒ(f̄m)) = j (inE(f )).
Thus f̄m is degenerate along Ē since f is degenerate along the edge E, which proves
Claim 3.

Now, by definition, f̄m is ND along each vertex of �(f̄m). Since f̄m is degenerate
along some edge of �(f̄m), applying the first case to f̄m, we get μ(f̄m) > μN(f̄m).
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Hence

μ(f ) = μ(f̄m) > μN(f̄m) ≥ μN(f ).

This proves Proposition 2.12. �

Theorem 2.13 Let f ∈ m ⊂ K[[x, y]] and let fm = f +xm +ym. Then the following
are equivalent

(i) μ(f ) = μN(f ) < ∞.
(ii) μ(f ) < ∞ and fm is NND1 for some large integer number m.

(iii) f is INND.

Proof (i) ⇒ (ii): Since μ(f ) = μN(f ) < ∞ we have by definition of μN(f )

μ(fm) = μ(f ) = μN(f ) = μN(fm) < ∞.

Combining Propositions 2.10, 2.11 and 2.12 we get the claim.
(ii) ⇒ (iii): Assume that μ(f ) < ∞ and fm is NND1. Firstly, it is easy to see

that there is an M ∈ N such that �(f ) ⊂ �(fM). It suffices to show f is INND w.r.t.
�(fm) for all m > M . We argue by contradiction. Suppose that it is not true. Then f

is not IND along some edge � of �(fm) which meets the axes, since fm is NND1.
We may assume that � meets the axes at (0, n). Let (k, l) be the second vertex of �.
We consider two cases:

• If l = 0, i.e. �(fm) has only one edge �. Then � is also a unique edge of �(f )

and in�(f ) = in�(fm). Since f is not IND along �, there exists (a, b) ∈ K \ {(0,0)}
which is a zero point of j (in�(f )). Beside, since fm is ND along �, either a = 0 or
b = 0. Assume that a = 0 and b �= 0. We will show that fm is not ND1 along (0, n).
Firstly, we write in�(fm) = c0ny

n +x ·g(x, y), then ∂in�(fm)
∂y

= nyn−1 +x · ∂g
∂y

. Thus

∂in�(fm)

∂y
(0, b) = nyn−1 = 0 ⇒ p �= 0 and p|n.

We now write in�(fm) = c0ny
n + c1j xyj + x2 · h(x, y), then

∂in�(fm)

∂x
= c1j y

j + 2x · h(x, y) + x2 · ∂h

∂x
.

Since ∂in�(fm)
∂x

(0, b) = 0, c1j = 0. Hence fm is not ND1 along (0, n), a contradiction.
• Assume that l > 0. If � is also an edge of �(f ) then in�(f ) = in�(fm). Since f

is not IND along �, there exists (a, b) ∈ K ×K∗ being a zero of j (in�(f )). Since fm

is ND along �, a = 0. Analogously as above fm is not ND1 along (0, n) and we get a
contradiction. Assume now that � is not an edge of �(f ), i.e. m = n and x|f (x, y).
Let P be the end point of �(f ) closest to y-axis. It follows from �(f ) ⊂ �(fM) and
m > M that P must be a vertex of �, i.e. P = (k, l). This implies f = xk · h(x, y).
Since μ(f ) < ∞, k = 1. Then in�(f ) = c0ny

n + c1lxyl and clearly f is always IND
along �, a contradiction. Hence f is INND w.r.t. �(fm) and then it is INND.

(iii) ⇒ (i): See Theorem 1.2. �
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Corollary 2.14 Let f ∈ K[[x, y]] and let M ∈ N such that �(f ) ⊂ �(fM). Then f

is INND if and only if it is INND w.r.t. �(fm) for some (equivalently for all) m > M .

Proof One direction is obvious, it remains to show f is INND ⇒ f is INND w.r.t.
�(fm) for all m > M . We take m1 > M satisfying Theorem 2.13 and then

f is INND ⇒ μ(f ) < ∞ and fm1 is NND1 ⇒ f is INND w.r.t. �(fm1).

For each inner face �m of �(fm), since m,m1 > M , there is an inner face �m1 of
�(fm1) such that in�m(f ) = in�m1

(f ). Thus f is IND along �m since it is IND
along �m1 . Hence f is INND w.r.t. �(fm). �

Corollary 2.15 Let M ∈ N be such that �(f ) ⊂ �(fM). Then Theorem 2.13 holds
for each m > M .

Remark 2.16 Let μ(f ) < ∞. Then M can be chosen as the maximum of n1 and m1,
where n1 = n if �(f ) ∩ {x = 0} = {(0, n)} and n1 = 2i1 if �(f ) ∩ {x = 0} = ∅ and
�(f )∩{x = 1} = {(1, i1)}. Similarly we define m1 with x replaced by y. This remark
and the previous corollaries are important for concrete computation.

Proof of Corollary 2.15 Clearly, the equivalence (i) ⇔ (iii) does not depend on m

and as in the proof of Theorem 2.13 the implication (ii) ⇒ (iii) holds for all m > M .
It remains to show that f is INND ⇒ fm is NND1. By Corollary 2.14, it suffices to
show that f is INND w.r.t. �(fm) ⇒ fm is NND1. By contradiction, suppose that f

is INND w.r.t. �(fm) and fm is not NND1. Then f is not ND1 along some vertex of
�(fm) in the axes. Assume that f is not ND1 along (0, n) ∈ �(fm). Then

p �= 0,p|n and �(fm) ∩ {x = 1} ∩ supp(fm) = ∅,

i.e. (fm)in = c0ny
n + x2 · h(x, y). This implies μ((fm)in) = ∞. By Theorem 1.2,

(fm)in is not INND and then fm is also not INND, a contradiction. �

Corollary 2.17 Let K is a field of characteristic zero and f ∈ m ⊂ K[[x, y]]. Then
the following are equivalent

(i) μ(f ) = μN(f ) < ∞.
(ii) f is INND.

(iii) f is NND and μN(f ) < ∞.

In particular, if f is convenient then (i)–(iii) are equivalent to

(iv) f is NND.

Proof The implications (i) ⇒ (ii) and (iii) ⇒ (i) follow from Theorem 2.13 and
Proposition 1.3. It remains to prove (ii) ⇒ (iii).

Assume that f is INND. Then by Theorem 2.13, μN(f ) < ∞. We will show that
f is ND along each vertex and each edge of �(f ). Since char(K) = 0, f is ND along
each vertex of �(f ). Let � be an edge of �(f ). Clearly, it is an inner edge of �(fm),
where m sufficiently large. Since f is INND, by Corollary 2.14 f is INND w.r.t.
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�(fm). Then f is IND along �, and hence it is also ND along �. This implies f is
NND. �

Corollary 2.18 If f is NND and μN(f ) < ∞ then f is INND.

Proof This follows from Proposition 1.3 and Theorem 2.13. �

Note that char(K) = 0 is only used to assure that f is ND along each vertex of
�(f ) ∩ ({0} × N ∪ N × {0}). Hence, the last corollary holds also if p > 0 and p � |n if
(0, n) = �(f ) ∩ {0} × N and p � |m if (m,0) = �(f ) ∩ N × {0}. Example 2.1 shows
that this condition is necessary.

3 δ-Invariant

We consider now another important invariant of plane curve singularities, the invari-
ant δ and its combinatorial counterpart, the Newton invariant δN . We show that both
coincide iff f is weighted homogeneous Newton non-degenerate (WHNND), a new
non-degenerate condition introduced below.

Let f ∈ m ⊂ K[[x, y]] be a power series. We define the multiplicity of f , denoted
by mt(f ), to be the minimal degree of the homogeneous part of f . So

f =
∑

k≥m:=mt(f )

fk(x, y),

where fk is homogeneous of degree k and fm �= 0. Then fm decomposes into linear
factors,

fm =
s∏

i=1

(αix − βiy)ri ,

with (βi : αi) ∈ P
1 pairwise distinct. We call fm the tangent cone and the points

(βi : αi), i = 1, . . . , s, the tangent directions of f .
We fix a minimal resolution of the singularity computed via successively blowing

up points, denote by Q → 0 that Q is an infinitely near point of the origin on f . If
Q is an infinitely near point in the n-th neighbourhood of 0, we denote by mQ the
multiplicity of the n-th strict transform of f at Q. If P is an infinitely near point in
the l-th neighbourhood of 0, we denote by Q → P that Q is also an infinitely near
point of P on the l-th strict transform f̃l of f at P . Note that if Q → P then n ≥ l

and we set n(f̃l,Q) := n − l. In particular, we have n(f,Q) = n.
Let E1, . . . ,Ek be the edges of the Newton diagram of f . We denote by l(Ei) the

lattice length of Ei , i.e. the number of lattice points on Ei minus one and by s(fEi
)

the number of non-monomial irreducible (reduced) factors of fEi
. We set

(a) δ(f ) := ∑
Q→0

mQ(mQ−1)

2 the delta invariant of f . The delta invariant δ(f )

equals also dimK(R̄/R) where R = K[[x, y]]/〈f 〉 and R̄ is the integral closure of R

in its total ring of fractions.
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(b) ν(f ) := ∑
Q special

mQ(mQ−1)

2 , where an infinitely near point Q is special if it
is the origin or the origin of the corresponding chart of the blowing up.

(c) r(f ) the number of branches of f counted with multiplicity.
(d) If f is convenient, we define

δN(f ) := V2(�−(f )) − V1(�−(f ))

2
+

∑k
i=1 l(Ei)

2
,

and otherwise we set δN(f ) := sup{δN(f (m))|f (m) := f +xm +ym,m ∈ N} and call
it the Newton δ-invariant of f .

(e) rN(f ) := ∑k
i=1 l(Ei) + max{j |xj divides f } + max{l|yl divides f }.

(f) sN(f ) := ∑k
i=1 s(fEi

) + max{j |xj divides f } + max{l|yl divides f }.
Note that δ(f ) and r(f ) are coordinate-independent while all the other ones de-

pend (only) on the Newton diagram of f and hence are coordinate-dependent (for
ν(f ) see Proposition 3.9).

Proposition 3.1 For 0 �= f ∈ 〈x, y〉 we have r(f ) ≤ rN(f ), and if f is WNND then
r(f ) = rN(f ).

Proof cf. [3, Lemma 4.10] �

Let E be an edge of the Newton diagram of f . Then we can write fE as follows,

fE = monomial ×
s∏

i=1

(aix
m0 − biy

n0)ri ,

where ai, bi ∈ K∗, (ai : bi) pairwise distinct; m0, n0, ri ∈ N>0, gcd(m0, n0) = 1. It
easy to see that

s = s(fE) and l(E) =
s∑

i=1

ri .

This implies s(fE) ≤ l(E) and hence sN(f ) ≤ rN(f ).
Let f = f w

d + f w
d+1 + · · · with f w

d �= 0 be the (n0,m0)-weighted homogeneous
decomposition of f .

Definition 3.2 We say that f is weighted homogeneous non-degenerate (WHND)
along E if either ri = 1 for all i = 1, . . . , s or (aix

m0 − biy
n0) does not divide f w

d+1
for each ri > 1.

f is called weighted homogeneous Newton non-degenerate (WHNND) if its New-
ton diagram has no edge or if it is WHND along each edge of its Newton diagram.

Lemma 3.3 Let f ∈ K[[x, y]]. Then f is not WHNND if and only if there exist
a, b ∈ K∗,m,n ∈ N>0 with (m,n) = 1 such that f w

d is divisible by (axm −byn)2 and
f w

d+1 is divisible by (axm −byn), where f w
d (resp. f w

d+1) is the first (resp. the second)
term of the (n,m)-weighted decomposition of f .
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Proof Straightforward from the above definition. �

Remark 3.4 (a) In [11] the author introduced superisolated singularities to study
the μ-constant stratum. We recall that f ∈ K[[x, y]] is superisolated if it be-
comes regular after only one blowing up. By ([11, Lemma 1]), this is equivalent
to: fm+1(βi, αi) �= 0 for all tangent directions (βi : αi) of f with ri > 1, where
f = fm + fm+1 + · · · is the homogeneous decomposition of f and

fm =
s∏

i=1

(αix − βiy)ri .

Note that this condition concerns all factors of fm including monomials. For
WHNND singularities we require a similar condition, but for “all weights” and with-
out any condition on the monomial factors of the first term of the weighted homoge-
neous decomposition of f .

(b) Since a plane curve singularity is superisolated iff it becomes regular after only
one blowing up, we have δ(f ) = ν(f ) = m(m − 1)/2 and hence δ(f ) = δN(f ) =
m(m − 1)/2, by Proposition 3.9. It follows from Theorem 3.12 that

(c) A superisolated plane curve singularity is WHNND.
(d) The plane curve singularity x2 + y5 is WHNND but not superisolated.

Proposition 3.5 With notations as above, f is WND along E if and only if s(fE) =
l(E) or, equivalently, iff ri = 1 for all i = 1, . . . , s. In particular, WNND implies
WHNND.

Proof Firstly we can see that the equation s(fE) = l(E) is equivalent to ri = 1 for
all i = 1, . . . , s since s(fE) = s and l(E) = r1 +· · ·+ rs . It remains to prove that f is
WND along E iff ri = 1 for all i = 1, . . . , s. Assume that there is an i0 s.t. ri0 > 1. It
is easy to see that fE,

∂fE

∂x
,

∂fE

∂y
are divisible by (ai0x

m0
0 − bi0y

n0
0 ). Hence f is weakly

degenerate (WD) along E.
We now assume that f is weakly degenerate (WD) along E. Then there exist

x0, y0 ∈ K∗ such that

fE(x0, y0) = ∂fE

∂x
(x0, y0) = fE

∂y
(x0, y0) = 0,

and hence there exists an index i0 such that ai0x
m0
0 − bi0y

n0
0 = 0. We will show that

ri0 > 1. In fact, if this is not true then fE(x, y) = (ai0x
m0 − bi0y

n0) · h(x, y) with
h(x0, y0) �= 0. Since

∂fE

∂x
(x0, y0) = fE

∂y
(x0, y0) = 0,

this is impossible if p = 0 and implies that p divides m0 and n0 if p > 0. This
contradicts the assumption gcd(m0, n0) = 1. �
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Let f ∈ K[[x, y]] and let Ei, i = 1, . . . , k be the edges of its Newton diagram.
Then by Proposition 2.6 there is a factorization of f ,

f = monomial · f̄1 · · · · · f̄k,

such that f̄i is convenient and fEi
= monomial × (f̄i)in. Note that f̄i is in general

not irreducible. On the other hand, f can be factorized into its irreducible factors as
f = m1 · · · · · ml · f1 · · · · · fr , where mj are monomials, and fj are convenient.

Proposition 3.6

(a) Let g,h ∈ K[[x, y]] such that f = g · h. If f is WHNND then g and h are also
WHNND.

(b) With the above notations, the following are equivalent:
(i) f is WHNND.

(ii) f̄1, . . . , f̄k are WHNND.
(iii) f1, . . . , fr are WHNND and (fi)in are pairwise coprime.

Proof (a) It suffice to show that if g is not WHNND then neither is f . In fact, since
g is not WHNND, by Lemma 3.3, there exist a, b ∈ K∗,m,n ∈ N>0 with (m,n) = 1
such that gw

c is divisible by (axm − byn)2 and gw
c+1 is divisible by (axm − byn),

where gw
c (resp. gw

c+1) is the first (resp. the second) term of the (n,m)-weighted
decomposition of g. Let f = f w

d + f w
d+1 + · · · (resp. h = hw

e + hw
e+1 + · · · ) be the

(n,m)-weighted homogeneous decomposition of f (resp. h). Then

f w
d = gw

c · hw
e and f w

d+1 = gw
c · hw

e+1 + gw
c+1 · hw

e .

This implies that f w
d is divisible by (axm − byn)2 and f w

d+1 is divisible by (axm −
byn). Again by Lemma 3.3, f is not WHNND.

(b) It is easily verified that we may restrict to the case that f is convenient. The
implication (i) ⇒ (ii) follows from part (a).

(ii) ⇒ (iii): Assume that f̄1, . . . , f̄k are WHNND. By part (a) we can deduce
that f1, . . . , fr are WHNND since for each i, fi is an irreducible factor of some f̄j .
We now show that the (fi)in are pairwise coprime. By contradiction, suppose that
(f1)in and (f2)in are not coprime. It follows from Proposition 2.5 that there exist
a, b ∈ K∗,m,n ∈ N>0 with (m,n) = 1 such that (axm − byn) is the unique irre-
ducible factor of (f1)in and (f2)in. Consequently, (f1)in and (f2)in are both (n,m)-
weighted homogeneous. Assume that f1 resp. f2 is an irreducible factor of f̄j1 resp.
f̄j2 for some j1 and j2. Since (f̄j1)in and (f̄j2)in are weighted homogeneous, (f1)in
resp. (f2)in is a factor of (f̄j1)in resp. (f̄j2)in. This implies that (f̄j1)in and (f̄j2)in
and therefore fEj1

and fEj2
are all (n,m)-weighted homogeneous. Then the edge Ej1

must coincide the edge Ej2 and hence f̄j1 = f̄j2 . It yields that the product g := f1 ·f2
is a factor of f̄j1 . Now, we decompose g,f1, f2 into their (n,m)-weighted homoge-
neous terms as follows:

g = gw
c + gw

c+1 + · · · , f1 = (f1)
w
d1

+ (f1)
w
d1+1 + · · · ,

f2 = (f2)
w
d2

+ (f2)
w
d2+1 + · · · .
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Then c = d1 + d2, (f1)
w
d1

= (f1)in, (f2)
w
d2

= (f2)in, gw
c = (f1)

w
d1

· (f2)
w
d2

and gw
c+1 =

(f1)
w
d1

· (f2)
w
d2+1 + (f1)

w
d1+1 · (f2)

w
d2

. This implies that gw
c is divisible by (axm −

byn)2 and gw
c+1 is divisible by (axm − byn). It follows from Lemma 3.3 that g is not

WHNND and hence f̄j1 is also not WHNND by part (a) with g a factor of f̄j1 , which
is a contradiction.

(iii) ⇒ (i): Suppose that f is not WHNND and that the (fi)in are pairwise co-
prime. We will show that fi is not WHNND for some i. Indeed, since f is not
WHNND, by Lemma 3.3, there exist a, b ∈ K∗,m,n ∈ N>0 with (m,n) = 1 such
that f w

d is divisible by (axm − byn)2 and f w
d+1 is divisible by (axm − byn), where

f w
d (resp. f w

d+1) is the first (resp. the second) term of the (n,m)-weighted decompo-
sition of f . Let (fi) = (fi)

w
di

+ (fi)
w
di+1 + · · · be the (n,m)-weighted homogeneous

decomposition of fi, i = 1, . . . , r . Then we have

d =
r∑

i=1

di; (fi)
w
di

= (fi)in; f w
d =

r∏

i=1

(fi)
w
di

;

f w
d+1 =

r∑

i=1

(
(fi)

w
di+1 ·

∏

l �=i

(fl)
w
dl

)
.

Since f w
d = ∏r

i=1(fi)
w
di

and since the (fi)
w
di

are pairwise coprime, there exists an i0

such that (fi0)
w
di0

is divisible by (axm − byn)2 and (fl)
w
dl

is not divisible by (axm −
byn) for all l �= i0. This implies that (fi0)

w
di0 +1 is divisible by (axm − byn) since

f w
d+1 = (fi0)

w
di0 +1 ·

∏

l �=i0

(fl)
w
dl

+
∑

i �=i0

(
(fi)

w
di+1 ·

∏

l �=i

(fl)
w
dl

)
.

Then fi0 is not WHNND by Lemma 3.3. �

Proposition 3.7 For 0 �= f ∈ 〈x, y〉 we have sN(f ) ≤ r(f ) and if f is WHNND then
sN(f ) = r(f ).

Proof If f = xjyl · g(x, y) with g convenient, then

sN(f ) = sN(g) + j + l and r(f ) = r(g) + j + l,

so we may assume that f is convenient.
Step 1. Assume first that the Newton diagram �(f ) has only one edge E. Then we

can see that fin = ∏r
i=1(fi)in. It follows from Proposition 2.5 that for each i, (fi)in

has only one irreducible factor and therefore fin has at most r irreducible factors.
This means that r ≥ sN(f ).

If r(f ) > sN(f ), then there exist i �= j such that (fi)in and (fj )in have the same
factor. This means that (fi)in and (fj )in are not coprime. Then by Proposition 3.6, f

is not WHNND.
Step 2. Assume now that the Newton diagram �(f ) has k edges E1, . . . ,Ek . By

Proposition 2.6, f can be factorized as f = f̄1 · · · · · f̄k , where f̄j is convenient,
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its Newton diagram has only one edge and fEj
= monomial · (f̄j )in for each j =

1, . . . , k. This implies that sN(f̄j ) = s(fEj
). Then we obtain

r(f ) =
k∑

j=1

r(f̄j ) ≥
k∑

j=1

sN(f̄j ) =
k∑

j=1

s(fEj
) = sN(f ).

Now we assume that r(f ) > sN(f ). Then there exists a j = 1, . . . , k such that
r(f̄j ) > s(fEj

) = sN(f̄j ). It follows from Step 1 that f̄j is not WHNND. Hence f is
not WHNND by Proposition 3.6, which proves the proposition. �

Proposition 3.8 For 0 �= f ∈ 〈x, y〉 we have sN(f ) ≤ r(f ) ≤ rN(f ), and both equal-
ities hold if and only if f is WNND.

Proof The inequalities follow from Proposition 3.1 and Proposition 3.7. For each
edge E of �(f ), by Proposition 3.5, f is WND along E iff s(fE) = l(E). This
implies that f is WNND if and only if sN(f ) = rN(f ) since s(fE) ≤ l(E) and both
sides are additive with respect to edges of �(f ). �

We investigate now the relations between ν(f ), δN(f ) and δ(f ), which were stud-
ied in [1] and [3].

Proposition 3.9 [3, Lemma 4.8] If f ∈ K[[x, y]] then δN(f ) = ν(f ).

Proposition 3.10 [3, Proposition 4.9] For 0 �= f ∈ 〈x, y〉 we have δN(f ) ≤ δ(f ),
and if f is WNND then δN(f ) = δ(f ).

Hence WNND is sufficient but, by the following example, not necessary for
δN(f ) = δ(f ).

Example 3.11 Let f (x, y) = (x + y)2 + y3 ∈ K[[x, y]]. Then f is not WNND but
δN(f ) = δ(f ) = 1. This easy example shows also that WNND depends on the coor-
dinates since x2 + y3 is WNND. Note that f is WHNND.

Now we prove that WHNND is necessary and sufficient for δN(f ) = δ(f ).

Theorem 3.12 Let f ∈ K[[x, y]] be reduced. Then δ(f ) = δN(f ) if and only if f is
WHNND.

We will prove the theorem after three technical lemmas.
Let E be an edge of the Newton diagram of f . We write

fE = monomial ×
s∏

i=1

(aix
m0 − biy

n0)ri ,

where ai, bi ∈ K∗, (ai : bi) pairwise distinct; m0, n0, ri ∈ N>0, (m0, n0) = 1.
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Lemma 3.13 With the above notations, there exist an integer n and an infinitely near
point Pn in the n-th neighbourhood of 0, such that

(f̃n)En(u, v) = monomial ×
s∏

i=1

(aiu − biv)ri ,

where f̃n is a local equation of the strict transform of f̃ at Pn and En is some edge
of its Newton diagram �(f̃n). Moreover, f is WHND along E if and only if f̃n is
WHND along En.

Proof We prove the lemma by induction on m0 + n0. If m0 + n0 = 2, i.e. m0 = n0 =
1, then the claim is trivial.

Suppose m0 + n0 > 2. Now we show the induction step. Since m0 + n0 > 2 and
gcd(m0, n0) = 1, m0 �= n0. We may then assume that m0 < n0. Then P1 := (1,0) is
a special infinitely near point of 0 and the local equation of f̃1 at P1 in chart 2, is:

f̃1(x1, y1) = f (x1y1, y1)

ym
1

, where m = mt(f ).

Let f = f w
d0

+ f w
d0+1 + · · · with f w

d0
�= 0 be the (n0,m0)-weighted homogeneous

decomposition of f . It is easy to see that f̃1 = (f̃1)
w
e0

+ (f̃1)
w
e0+1 + · · · is the (n0 −

m0,m0)-weighted homogeneous decomposition of f̃1 with

e0 = d0 − m · m0 and (f̃1)
w
e0+ν = f w

d0+ν(x1y1, y1)

ym
1

, ∀ν ≥ 0.

In particular,

(f̃1)
w
e0

= monomial ×
s∏

i=1

(aix
m0 − biy

n0−m0)ri .

We denote by E1 the convex hull of the support of (f̃1)
w
e0

. Clearly, E1 is an edge of

�(f̃1). Since

(f̃1)E1 = (f̃1)
w
e0

= monomial ×
s∏

i=1

(aix
m0 − biy

n0−m0)ri

and since (f̃1)
w
e0+1 = f w

d0+1(x1y1,y1)

ym
1

, it follows that f is WHND along E iff f̃1 is

also WHND along E1. Hence the induction step is proven by applying the induction
hypothesis to f̃1. �

The above lemma yields that QE,i := (bi : ai), i = 1, . . . , s, are determined by fE

and they are tangent directions of f̃n. Then they are infinitely near points in the first
neighbourhood of Pn. Consequently, they are infinitely near points in the (n + 1)-
th neighbourhood of 0. To compute the multiplicity mQE,i

, we consider the local
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equation of the strict transform f̃n+1 of f̃n at QE,i = (bi : ai) in chart 2:

f̃n+1(u1, v1) = f̃n((u1 + bi

ai
)v1, v1)

v
e0
1

= (f̃n)
w
e0

((u1 + bi

ai
)v1, v1)

v
e0
1

+ (f̃n)
w
e0+1((u1 + bi

ai
)v1, v1)

v
e0
1

+ · · ·

= (f̃n)
w
e0

(

u1 + bi

ai

,1

)

+ v1 · (f̃n)
w
e0+1

(

u1 + bi

ai

,1

)

+ · · · ,

where f̃n = (f̃n)
w
e0

+ (f̃n)
w
e0+1 + · · · with (f̃n)

w
e0

�= 0, is the ((1,1)-weighted) homo-
geneous decomposition of f . Since

(f̃n)En(u, v) = (f̃n)
w
e0

(u, v) = (aiu − biv)ri · g(u, v) with g(bi, ai) �= 0,

we get

f̃n+1(u1, v1) = (aiu1)
ri · g

(

u1 + bi

ai

,1

)

+ v1 · (f̃n)
w
e0+1

(

u1 + bi

ai

,1

)

+ · · · ,

with g(u1 + bi

ai
,1) a unit. In the following, this equality will be used to compare the

multiplicity mt(f̃n+1) with 1.

Lemma 3.14 With the above notations,

(a) if f is WHND along E, then mQE,i
= 1 for all i;

(b) if f is not WHND along E, then mQE,i
> 1 for some i.

Proof (a) Since f is WHND along E, it follows from Lemma 3.13 that fn is WHND
along En, i.e. either ri = 1 for all i or (aiu − biv) is not a factor of (f̃n)

w
e0+1 for each

ri > 1. If ri = 1, it is easy to see that mQE,i
= mt(f̃n+1(u1, v1)) = 1 for all i. If ri > 1

and (aiu − biv) is not a factor of (f̃n)
w
e0+1. Then (f̃n)

w
e0+1(bi, ai) �= 0. This implies

that (f̃n)
w
e0+1(u1 + bi

ai
,1) is a unit. Hence

mQE,i
= mt(f̃n+1(u1, v1)) = 1.

(b) Assume that f is not WHND along E. By Lemma 3.13, f̃n is not WHND
along En, i.e. there exists an i such that ri > 1 and (aiu−biv) is a factor of (f̃n)

w
e0+1.

Therefore (f̃n)
w
e0+1(u, v) = (aiu − biv) · h(u, v) and then

(f̃n)
w
e0+1

(

u1 + bi

ai

,1

)

= (aiu1) · h
(

u1 + bi

ai

,1

)

.

Hence mQE,i
= mt(f̃n+1(u1, v1)) > 1. �
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Lemma 3.15 With the above notations, if Q is not special, then there exists an edge
E of �(f ) such that Q → QE,i for some i.

Proof We will prove the lemma by induction on n(f,Q). First, since Q is not special,
n(f,Q) ≥ 1. If n(f,Q) = 1, then Q is a tangent direction of f and we can write
Q = (b : a), where (ax − by) is a factor of the tangent cone fm of f . Since Q is not
special, fm is not monomial. This implies that there exists an edge E of �(f ) such
that fE = fm. We can write

fE = fm = monomial ×
s∏

i=1

(aix − biy)ri

with (b : a) = (b1 : a1), consequently Q = QE,1.
Now we prove the induction step. Suppose that n(f,Q) > 1. Then Q → P for

some infinitely near point P in the first neighbourhood of 0. If P is not special, then
as above, P = QE,1 for some edge E of �(f ) and hence Q → QE,1. If P is special,
we may assume that P = (0 : 1). Then the local equation of the strict transform f̃ of
f at P in chart 2, is:

f̃ (u, v) = f (uv, v)

vm
.

Since n(f̃ ,Q) = n(f,Q) − 1 and by induction hypothesis, there is an edge E′ of
�(f̃ ) such that

f̃E′ = monomial ×
s∏

i=1

(aiu
m′

0 − biv
n′

0)ri ,

where ai, bi ∈ K∗, (ai : bi) pairwise distinct; m′
0, n

′
0, ri ∈ N>0, gcd(m′

0, n
′
0) = 1 and

Q → QE′,i for some i. Let m0 = m′
0, n0 = m′

0 + n′
0 and let f = f w

d + f w
d+1 + · · · be

the (n0,m0)-weighted homogeneous decomposition of f . Then for each l > d , we
have

f w
l (uv, v)

vm
=

∑

n0α+m0β=l

cαβ(uv)αvβ−m

=
∑

n′
0α+m′

0(α+β−m)=l−mm′
0

cαβuαvα+β−m.

This implies that f̃ = f̃ w
e + f̃ w

e+1 + · · · is the (n′
0,m

′
0)-weighted homogeneous de-

composition of f̃ , where e = d − mm′
0 and f̃ w

l−mm′
0
= fl(uv,v)

vm . Note that f̃ w
e = f̃E′ .

It is easy to see that

f w
d (x, y) = ymf̃ w

e

(
x

y
, y

)

= monomial ×
s∏

i=1

(aix
m0 − biy

n0)ri .
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Since E′ is an edge of �(f̃E′), f̃E′ and then f w
d (x, y) are not monomials. By E we

denote the convex hull of the support of f w
d . Then E is an edge of �(f ) and fE = f w

d .
Therefore QE,i = QE′,i and hence Q → QE,i . �

Proof of Theorem 3.12 (=⇒): Assume f is not WHNND, then f is not WHND along
some edge E of �(f ). By Lemma 3.13, there is an infinitely near point QE,i of 0,
such that mQE,i

> 1. Clearly, QE,i is not special. It then follows from Proposition 3.9
that

δ(f ) > ν(f ) = δN(f ).

(⇐=): Assume now that f is WHNND. To show δ(f ) = δN(f ), it suffices to
show that there is no infinitely near point Q of 0 such that Q is not special and
mQ > 1. We argue by contradiction. Suppose that there is such an infinitely near
point Q. By Lemma 3.15, there is an edge E of �(f ) such that Q → QE,i for some
i, and then mQ ≤ mQE,i

. Since f is WHND along E, it follows from Lemma 3.14
that mQE,i

= 1. Hence mQ ≤ mQE,i
= 1, which is a contradiction. �

If char(K) = 0 we have Milnor’s famous formula μ(f ) = 2δ(f ) − r(f ) + 1,
where r(f ) is the number of branches of f . The formula is wrong in general if
char(K) > 0 but still holds if f is NND by [3, Theorem 4.13]. Using the general
inequality

μN(f ) = 2δN(f ) − rN(f ) + 1 ≤ 2δ(f ) − r(f ) + 1 ≤ μ(f )

from [3], then Theorem 2.13, Proposition 3.1 and Proposition 3.10 imply

Corollary 3.16 Let f ∈ K[[x, y]] be reduced. Then f is INND if and only if f is
WNND and μ(f ) = 2δ(f ) − r(f ) + 1.

Remark 3.17

(1) The difference wvc(f ) := μ(f ) − 2δ(f ) + r(f ) − 1 counts the number of wild
vanishing cycles of (the Milnor fiber) of f (cf. [3, 6, 12]), which vanishes if
char(K) = 0 or if f is INND.

(2) wvc(f ) is computable for any given f . This follows since μ(f ) is computable by
a standard basis computation w.r.t. a local ordering (cf. [8]) and δ(f ) and r(f )

are computable by computing a Hamburger-Noether expansion (cf. [5]). Both
algorithms are implemented in SINGULAR (cf. [9]).

Example 3.18 Consider f = x(x − y)2 + y7 and g = x(x − y)2 + y7 + x6 and
char(K) = 3. Using SINGULAR we compute μ(f ) = 8, δ(f ) = 5, r(f ) = 3 and
μ(g) = 8, δ(f ) = 4, r(g) = 2. We have wvc(f ) = 0,wvc(g) = 1,�(f ) = �(g) and
f is not INND. This shows

• INND is sufficient but not necessary for the absence of wild vanishing cycles,
• the Newton diagram can not distinguish between singularities which have wild

vanishing cycles and those which have not.



Some remarks on the planar Kouchnirenko’s theorem 579

Although we can compute the number of wild vanishing cycles, it seems hard to
understand them. We like to pose the following

Problem Is there any “geometric” way to understand the wild vanishing cycles, dis-
tinguishing them from the ordinary vanishing cycles counted by 2δ − r + 1? Is there
at least a “reasonable” characterization of those singularities without wild vanishing
cycles?
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