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Abstract In this paper we deal with some optimal control problems for a solidi-
fication phase field model of metallic alloys. The model allows crystallizations of
two kinds, each one described by its own phase field. Accordingly, the state is the
triplet (z, u, v), where 7 is the temperature and u and v are phase field functions. The
optimality conditions for the optimal control problems considered in this work are
obtained by using the Dubovitskii-Milyutin formalism.
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1 Introduction

Among the possibilities to model phase changes, phase field models are perhaps the
most successful in the sense that for them it is rather natural to incorporate several
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physical phenomena influencing phase changes. They also allow for the occurrence
of transition layers (mushy zones). For such models, numerical simulation is possi-
ble even in the case of formation of rather complex geometries, like dendrities, as
interfaces separating different phases.

One of the first authors to use a phase field to model solidification and melting
of simple materials was Fix [10]; after him, many other researchers have applied this
approach in several important and more general situations. The mathematical analysis
of models of this kind can be found for instance in the articles by Caginalp et al. [5-8]
(see also the references therein).

In this paper we will deal with the following nonlinear partial differential model
for the solidification of an alloy:

—bAt=lLu;+bv,+ f inQ,

ur —kiAu=—aju(l—u—v)(1 —2u —v+cit+d;) inQ,

v —koAv=—av(l—v—u)(1—-2v—u-+cyt+dy) inQ, (D)
ot/dn=0du/on=0v/on=0 ondQ x (0,T),

T=1y, uUu=ug, v=vy inQ x {r=0}.

Here,  C R3 is a bounded C? domain, T > 0 and 0 = Q x (0, T); the function
7 is the temperature and the phase field functions # and v are used to identify two
different levels of solid crystallization; f is a density of heat sources and sinks; the
constants /1 and /; have the same sign and are related to the latent heats associated to
each kind of crystallization; b, k1, k2, a; and a; are given positive constants; cy, ¢z,
dy and d; are given constants; n = n(x) denotes the outwards unit normal to 9€2; the
initial data 1o, ug and vg are suitable given functions.

We remark that the previous system involves two phase fields and can be seen as
a generalization of the model treated by Hoffman and Jiang in [12]; it is also related
to the model presented in Steinbach et al. [17] and [16], since it has similar iteration
potentials. Some basic existence, uniqueness and regularity results for this model
have been obtained in [3].

We will analyze several optimal control problems for (1). The control will be f
and the cost function will be given by

J(T,M,U’f)=%//Q|T—Td|k+%//g|u—ud|m
N
+@// |v—vd|'"+—[f F1, @)
m 0 q 0

where o1, op, @3 > 0 and N > 0 are constants, the exponents k, m and g are > 1,
T4 € Lk(Q) and ug, vg € L™ (Q). Several different constraints on the state and con-
trol variables will be considered; see Sects. 5 and 6 below.

In this paper, one of our main aims is to show that the Dubovitskii-Milyutin for-
malism can be used to obtain the associated first-order optimality systems. The same
results can be obtained using other related but different techniques; for instance, see
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the results in [4] and [9]. However, we would like to emphasize two features of the
strategy we have chosen:

e It provides a unified framework for many different control problems.
e It allows to identify and determine the admissible directions in each case.

Remark 1.1 An interesting question is the following: for instance, let us take o) =
oy = a3 = 1 in (2); assume that, for each N > 0, we are able to solve the optimal
control problem

Minimize J(t,u,v, f),

subjectto f € L9(Q) and (, u, v, f) satisfies (2)
and let us denote by (rN JuN, oV, f N ) the associated solutions. Then, what happens
as N — 00? Do we have (zV, u, v) = (14, ug, vg) in L™ (Q) x L™ (Q) x LF(0)?

The characterization of (¥, u™, vV, f¥) (furnished by the Dubovitskii-
Milyutin formalism) serves to provide an answer to this question. This will be shown
in a forthcoming paper.

The paper is organized as follows. In Sect. 2, we fix the notations and we recall
certain results that will be used along the paper. In Sect. 3, we recall the Dubovitskii-
Milyutin formalism.

Section 4 deals with a relatively simple (unconstrained) optimal control problem
for (1)-(2). We will prove an existence result and then we will apply the Dubovitskii-
Milyutin formalism to deduce the associated optimality system.

In Sects. 5 and 6 we consider some constrained optimal control problems for
which we obtain similar results. In particular, Sect. 6 deals with constraints asso-
ciated to the temperature T and/or the temperature gradient Vz.!

2 Preliminaries and hypotheses

‘We will use standard notations; for convenience, we will recall in this section several
spaces and properties that will be needed below.

For any given p € [1, 400] and any r € R, we will denote the usual associated
Sobolev space by WI’;(Q). The main properties of W;(Q) can be found for instance
in [1]; here, we will only mention the following result, that is a consequence of the
well known Sobolev Embedding Theorem (see Theorem 5.4, p. 97 in [1]):

Lemma 2.1 Assume that Q C R> satisfies the cone property and 2 < 3p/5 <
+00. Then ng/S(Q) — qu_z/p(Q) (with a continuous embedding) for any q €
[3p/5, p).

lof course, this is the most realistic, interesting and difficult situation. It is concerned with controlling
and, simultaneously, taking care of the heating process.

@ Springer



52 J.L. Boldrini et al.

The nonlinear system (1) will be studied in the functional spaces qu o1 (Q), where

Wl Q) ={f eLi(Q): D* f e LI(Q) for 1 <|a| <2, f; € LI(Q)}.

For the main results concerning these spaces, we refer for instance to [13] and [15].
Let us however recall some results concerning the embedding of qu ’I(Q) in LP
spaces (see [14], p. 15; see also Lemma 3.3, p. 80, in [13]):

Lemma 2.2 Let Q@ C R? be a bounded C?* domain and let us set Q = Q x (0,T),
where T > 0. Then the embedding qu’l(Q) — L9(0,T; qu (R2)) is continuous and

compact. Furthermore, Wq2 o1 (Q) — LP(Q) with a continuous embedding, where

G- if2<q<5/2,
P =\ any finite exponent if g =5/2,
400 ifg>>5/2.

For2 < p < p, the embedding qu’l(Q) < LP(Q) is compact. For any g > 5/2, one
has

qu’l(Q) — L®(Q), 3

with a continuous and compact embedding. Finally, one also has
w21(Q) < €0, T1; Wy~ (%)), )
for all finite g > 1, again with a continuous and compact embedding.
Lemma 2.3 In the conditions of Lemma 2.2, one has
Wal(Q) = LP(0.T; Wy ()
with a continuous embedding, where

(é—%)_l if2<q <35,
D =\ any finite exponent if g =35,
400 ifqg > 5.

For2 < p < p, the embedding qu’] (Q) — Lﬁ(O, T; W;,l(SZ)) is compact. Further-
more, for any q > 5, one has

W (Q) = L®0, T; W (), )

with a continuous and compact embedding.
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Proposition 2.1 Assume that g > 1, f € L1(Q) and vy € qu—z/ 1(Q) satisfies
ovg/onlyq = 0. Then the linear system

v—Av=f inQ,
dv/on=0 ondQ2 x (0,T), (6)
v=uvy inQ x{t=0}

possesses exactly one strong solution v € qu o1 (Q). Furthermore, the linear mapping
(f, vo) > v is continuous, i.e. there exists C > 0 such that

1l 219y = Cvolly2-2a + 11 fllaco))-

Next, for easy reference, we collect some hypotheses that will be assumed in the
remainder of this work:

i QcC R? is a bounded C%-domain, 0 < T < 400, 0=Qx(0,7T),
(i1) 7o, ug, vo € L°°(R) and ug, vg > 0;

N
(i) b, L, Db, k1, ky, a1, a0, cy,c2,dy, dy are real constants;
b, k1, ko, a1, as are positive.

Let us recall several results concerning the existence, uniqueness, regularity and
stability and regularity of the solutions of (1). These results are proved in [3].

Theorem 2.1 Let us assume that hypotheses (7) hold, f € L1(Q) with q > 5/2 and
T, UQ, Vg € WZZ(Q) with 0tg/on|yq = dug/onlagq = dvg/dn|ye = 0. There exists
ko > 0, depending on 2, T, the constants in (1) and these data such that, if

max(|ci, [e2], |d1l, |d2]) < Ko, ®)

then (1) possesses exactly one solution (t,u,v) € W;’I(Q) X le(’)}3(Q) X le(’)}3(Q)
with ¢ = min{10/3, q} satisfying:

1. The estimates

IIIIIWZZJ(Q) + IIullwzz,l(Q) + IIUIIWZZJ(Q)
= Cliwollyz + lluollyz + llvollywz + £ 1lL2(0)) 9

and

T , =+ ||u , =+ ||v ,
l IIW; 1ot ||W120}3(Q) l ”leo}s(Q)
= Clltollyz + lluollyz + llvollyz + I flliLaco)

3 3 3 3
+ IITOIIWZz + ||140||W22 + ||U0||W22 172000 (10)
where C depends on 2, T and the constants of the problem.
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2. The estimates

0<u,v =K :=max(fluoll . [voll . max|di| +1). an
1
3. Whenever 1g, ug, vy € W32p/5 () with2 <3p/5 < +00, the estimate

Ielly21g) + lully210) + I0ly21 g,
= C(Irollyz +luollyz +lwlyy +1fls).  (12)
where C only depends on 2, T, K and the constants of the problem.

Theorem 2.2 Let the assumptions of Theorem 2.1 hold and let us set Koy =
max; |d;| + 1. For i = 1, 2, consider initial conditions 1’6, uf), vf) € WZZ(Q) such that
07y/0n|ye = dug/dnlaq = dvy/on|se = 0 and 0 < ug, vy < Ko. Also, fori = 1,2,
let f; € L9(Q) be given with q > 5/2 and let (t;,u;, v;) € Wy (Q) x W5 (Q) x
W22’1(Q) be a solution of (1) associated to (f,-,ré,uf),vf)). Then (tj,u;,v;) €
W2'(Q) x Wi5)5(Q) x Wiy 5(Q), where q is given by g = min{10/3, g} and the

following estimate holds:
”Tl - T2||W721(Q) + ||M1 - MZHWIZ(’)}%(Q) + ”Ul - U2||W12(’)}3(Q)
1 2 1 2 1 2
< C[”To — T ||W22 + ||’4() - ”0”W22 + ||Uo - v0||W22
+ /1 = flla)]-

Here, C depends on Q, T, Ko and the constants in (1). Moreover, if ‘L’é, uf), vé IS
W3, 5(Q) with2 < 3p/5 < 400, then (ti, u;, v;) € qu’l(Q) x Wal(0) x W' (0)
with ¢ = min{p, q} and we also have:

1 — 7T 2.1 +|lur —u 2.1 + |[vy — v 2.1
o1 = 22lly21 gy + it = w2llyz1 gy + 01 = 22lly21 )
1 2 1 2 1 2
<C|lty — 7 Uy — U vy — v
= [” 0 0||W32p/5 + || 0 0||W32p/5 + || 0 0”W32p/5

+1fi = PllLao)]. (13)

where C is as before.

3 The Dubovitskii-Milyutin formalism

In this section, we will recall the formalism of Dubovitskii and Milyutin as applied to
a general constrained optimization problem. The details of this theory can be found
for instance in references [11] and [18].
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Our framework will be the following. Let X be a Banach space and let J : X = R
be a given function. We will consider the following problem:

Minimize J (&),

. n+m (14)
Subjectto &€ Q=(,2] Qe
where the Q; (£ =1, ..., n 4 m) are by definition the restriction sets.
It will be assumed that
intQ; A0 Vi=1,...,n (15)
and
intQ; =9 Vj=n+1,...,n+m. (16)

In particular, this is the situation if
e Foranyi=1,...,n, Q; is an inequality restriction set of the form
Qi={§e€X:pi§) <ai},

where p; : X — R is a continuous seminorm and @; > 0 and
e Foreach j=n+1,...,n4+m, Q; is the equality restriction set

Qj=1{6eX:M;¢) =0},

where M; : X + Y; is a differentiable mapping (Y; is another Banach space).

However, there can be other situations where (15) and (16) still hold.
Let us recall the following

Definition 1 Let {K;}!" | be a family of cones in a normed space Z. It will be said that
they form a system of cones with the same sense if, for any R > 0, there exist positive

numbers Ry, ..., R, with the following property: whenever ¢ € Z, |||z < R and
¢ =374 for some & € K; (i =1,...,m), we necessarily have ||{;||z < R; for
alli.

We will need the following generalized version of the Dubovitskii-Milyutin prin-
ciple:

Theorem 3.1 Let & € (\;21" Qi be a local minimum of problem (14). Let DCy be
the decreasing cone of the cost functional J at &, let F C; be the feasible (or admis-
sible) cone of Q; at & fori =1, ...,n and let T C; be the tangent cone to Q; at &
for j=n+1,...,n+m. Suppose that

1. The cones DCy and FC; (i =1,...,n) are open and convex.

2. The cones TCj (j=n+1,...,n+m) are closed and convex.

3. ﬂ;’:ﬁi_l TC;C K, where K is the tangent cone to ﬂ;’:an Q; at &.

4. The [TCj]*, j=n+1,...,n+m, form a system of cones with the same sense.
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Then
n n—+m
DCyN (ﬂ FC,-) N ( N Tc,») #0.
i=1 j=n+1

Consequently, there exist Gy € [DCol*, G; € [FC{]* fori=1,...,n and G; €
[TCj]*forj =n+1,...,n+m,notall zero, such that

n n+m
Go+ Y Gi+ Y G;=0.
i=1 j=n+1

Recall that, for any set B C X, the associated dual cone is the set
B*={heX :(h,& >0VE e B};
in particular, if B is a subspace, one has:
B*=Bt:={he X :(h &) =0VE € B).

In order to identify the previous decreasing, feasible and tangent cones, we will
use the following well known results:

e Assume that J : X — R is Fréchet-differentiable. Then, for any £ € X, the de-
creasing cone of J at & is open and convex and is given by

DC={neX:(J'(),n <0},

where (-, -) stands for the usual duality product associated to X and X’.
e Suppose that the set Q is given by

Q={§eX:p@)=a},

where p: X — R and a € R. Assume that £ € Q, p is Fréchet-differentiable at &
and p’(¢) # 0. Then the feasible cone of Q at & is also open and convex and is
given by

FC={neX:(p'(€),n) <0}
e Now, suppose that the set Q is given by

Q={eX:ME) =0}

where M : X > Y is given. Assume that & € Q, M is strictly differentiable at &
and R(M'(£)) =Y. Then M maps a neighborhood of & onto a neighborhood of
M (&) and the tangent cone to Q at & is the following closed subspace:

TC=NM'¢)={neX: M &n=0}

This is the well known Lyusternik Theorem; see for instance [2].
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4 An unconstrained optimal control problem

In this section, we will consider a first (simple) optimal control problem for (1). We
will prove the existence of optimal solutions and we will use the Dubovitskii-Milyutin
formalism to obtain the associated optimality system.

Let the finite exponent g be given, with g > 5/2. The following function spaces
will be considered:

E = (W7'(Q) x Wi5(Q)* x LI(Q))

N{(t,u,v, f):9t/0n =0u/dn = dv/dn = 0} a7
and
E = L17(Q) x L'P(0) x W2 /T(Q) x W%, (18)
where
g = max{q, 10/3}. (19)

Our cost functional J : E — R will be given (2), with o; >0, N >0, k,m > 1,
T4 € Lk(Q) and ug, vg € L™ (Q). In the sequel, we use (-, -) to denote various duality
products; we will denote by C a generic positive constant.

Let 79, ug, vo be given in WZZ(Q). In our first optimal control problem, the state and
control variables are only constrained to satisfy the state equation (1). The problem
is the following:

Minimize J(t,u,v, f),

(20)
subjectto  (7,u, v, f) € Q.
Here, Q is the equality constraint set
Q={(t,u,v, f)e E:M(t,u,v, f)=0} 21
and M : E — E is defined by
M(z,u,v, f)=(¢1, 92, 93, P4, ¢5, P6), (22)
with
T —bAT —lhu—bv,— f=¢1 inQ,
ur —kiAu+au(l—u—v)(1 —2u—v+cit+dy) =¢> inQ,
(23)

vy — ko Av+av(l —v—u)(1 —2v—u+crt+dy) =¢3 in Q,

T—T0=¢4, U—U=¢5, V—V9=¢e inQx {t=0}

In view of (17)-(18), the embeddings qu’l(Q) < L®(Q) and Wfd}3(Q) N
L*°(Q) and Lemma 2.2, the mapping M : E — E is well defined. Observe that one
has M (t,u, v, f) =0if and only if (7, u, v, f) solves (1).
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58 J.L. Boldrini et al.

Let us introduce the admissible set for (20):
E.a={0,w,z,h) € Q:J(O,w,z,h) <+00}. (24)

Then we have:

Lemma 4.1 Assume that (7) holds. Also, assume that g > 5/2,
70, 10, vo € W3 () (25)

and 0ty/on|yq = dug/dn|yq = dvg/dn|yq = 0. Finally, assume that one has (8),
where K is the (possibly small) constant associated to Q2, T, the constants in (1), the
previous initial data and f =0. Then E q # (.

Proof We have to prove that there exists (z, u, v, f) € E satisfying
M(t,u,v, f)=0 and J(r,u,v, ) <-+o0,

where M and J are respectively given by (23) and (2).
In view of Theorem 2.1, there exists a unique solution (z, u, v) of (1) with f =0

that belongs to the space qu’l (0Q) x leé}3(Q) X le(‘)}3(Q).

Then, obviously (z,u,v,0) € E and M(z,u,v,0) =0, ie. (r,u,v,0) € Q. Since
10/3 > 5/2, we have t,u, v € L>°(Q). Therefore, (t,u, v,0) € Lk(Q) X L’"(Q)2 X
L1(Q) and J(7,u, v,0) < +oo. This proves that (7, u,v,0) € E,q. O

Next, we prove the existence of an optimal solution of the control problem (20):

Theorem 4.1 Under the assumptions of Lemma 4.1, the optimal control problem
(20), (21) possesses at least one solution.

Proof The proof is standard. For completeness and further reference, we present the
whole argument.

First of all, observe that we have E,; # ¢ by Lemma 4.1.

Let us consider a minimizing sequence {(t,, 4, vy, fu)}. Then one has J(t,, uy,
Un, fn) < C and, consequently,

I fullLaoy < C.
From Theorem 2.1 we deduce that

Ienlly2 g, + lunllyzt o) +lunllyz o) < C.

Therefore, we can find subsequences (indexed again by n) such that
fn— f weaklyin LY(Q),

7, >t weakly in qu’l(Q),
u, > u weakly in le(’)}3(Q),

v, —> v weakly in le(’)}3(Q).
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We have W2''(Q) < L®(Q) and W)5(Q) < L®(Q) with compact em-
beddings. Therefore, (1, u,,v,) converges strongly in the L° norm. This im-
plies M(t,u, v, f) =0, i.e. (t,u, v, f) solves (1). Obviously, J(t,u, v, f) < 400,
whence (T, u, v, f) € Eqq.

Since {(ty, U, vu, fr)} is a minimizing sequence, if we check that

liminf‘](l—nv ul‘la vﬂa fl‘l) Z J(ta M, va f)’
n—oo

we will have proved that (z,u, v, f) is an optimal solution. But the cost function
J is obviously convex and continuous in Lk(Q) X L’"(Q)2 x L"(Q), whence it is
sequentially weakly lower semi-continuous in the same space.

This ends the proof. g

Assume that (7, u, v, f) € E,q. It will be said that (t, u, v, f) is a local optimal
solution of the control problem (20), (21) if there exists ¢ > 0 such that

J(t,u,v, ) < J(p,w,z, h) (26)
for all (¢, w, z, h) € E4q satisfying

We are now going to deduce the first-order optimality conditions for (20), (21), that
is, the necessary conditions that have to be satisfied by any local optimal solution.

Thus, let (t,u,v, f) € E be a local optimal solution. Since J is convex and
Fréchet-differentiable at any point, from the results recalled in Sect. 3 we obtain the
following:

Lemma 4.2 The decreasing cone of J at (t,u, v, f) € E is the set
DC(J, (v, u,v, /) ={(p, w,z, ) : (J'(r,u, v, f), (9, w,z,h)) <O}
Consequently, the associated dual cone is

[DC(J, (t,u,v, NI ={-AJ"(z,u,v, f): LR, 1 >0}.

For later use, we observe that the derivative of J at (t, u, v, f) in the direction
(@, w, z, h) is given by

(J'( u v, ), (9w, 2, b))

—ay // It — w2 — )
0
+an // lu — g™ — ug)w
0
+062/f v —vg|" (v — va)z
0

+N//Q |f1972 f h. (28)
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In order to compute the tangent cone to Q at a point (t,u, v, f), we need the
following result:

Lemma 4.3 The mapping M : E +— E is continuously differentiable and its Fréchet
derivative is given by

M'(t,u,v, )@, w,z,h) =1, Y2, V3, Y4, s, ¥e), (29)
where

ot —bAp —lwy —lhzs —h=vY1 inQ,

wy —kiAw —Fy ¢ — F1,,w—Fiyz=vY> inQ,

(30)
2t —koAz—=Fr 9 —Fyw—Fyz=vy3 inQ,
p=v4, w=1ys, z=1ve nQx{t=0}
Here, we have used the notation
Fi(t,u,v) = —aiu(l —u—v)(1 —2u—v+cit +dp), (31
Ft,u,v)=—av(l—v—u)(1 —2v—u+ct +do) (32)

and F; ¢, F; , and F; ,, denote the partial derivatives of F;. _
Furthermore, for any (t,u,v, f) € E, M'(t,u, v, f) maps E onto E.

Proof Let us denote by M'(t,u, v, f) the linear mapping defined by (29)—(30).
First, it can be shown that M is Gateaux-differentiable and its Gateaux-derivative
at (t,u, v, f) is given by M'(z, u, v, f).

Indeed, it suffices to check that

1
lim —(M(t +«0,u+xkw,v+«z, f +xkh) —M(t,u,v, f))

k—0 K

= M/('L', u,v, f)(Q, w, Z, h)r

where the limit must be understood in the E-sense. In fact, this is an almost im-
mediate consequence of (22)—(23). In particular, we see that the Gateaux derivative
M'(z,u,v, f) is a bounded linear mapping for any (z, u, v, f).

To conclude that M is continuously differentiable, it is enough to prove that the
mapping (t, u, v, )+ M’'(t,u, v, f) is continuous.

To this end, let us choose (z1, u1, v1, f1) and (72, uz, vz, f2) in E. Then, we have
for any (¢, w, z, h) € E the following:

||M/('L'27 uz, vz, f2)(¢7 w, z, h) - M/(Tlv ur, vy, fl)(¢7 w, z, h)”E
< C(”(F]/(TZs uz, U2) - F]/(Tlv ui, vl))((ps w, Z)||L10/3(Q)
+ ||(F2/(T27 uz, v2) - FZ/(.’:], up, vl))((p7 w, Z)||L10/3(Q))

= C”(fZa uz, v2) — (11, Uy, vl)”Wzl(Q)XWIZO}3(Q)2 ”((pa w,Z, h)||E,
q
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where C depends on the norms of (t1,u1, v1, f1) and (12, u2, v2, f2) in E. Thus,
(t,u,v, f) = M'(t,u,v, f) is certainly continuous and M is continuously differen-
tiable.

From Proposition 2.1, the Leray-Schauder Principle and a simple bootstrapping
argument, it is easy to see that, for all (Y1, V2, W3, Ya, Vs, ¥g) € E, the linear sys-
tem (30) possesses exactly one solution in E. Therefore, M'(t,u, v, /) maps E
onto E .

This ends the proof. O

As a consequence of Lemma 4.3 and the results in Sect. 3, we get the following:

Lemma 4.4 Let Q be given by (21). The tangent cone to Q at (t,u, v, f) is the
space

TC(Q, (t,u,v, ) ={(p,w,z,h) € E:M'(t,u,v, f)(p,w,z,h)=0}.
In the next result, we deduce the first-order optimality conditions for (20), (21):

Theorem 4.2 Let the assumptions of Theorem 4.1 be satisfied. Let us assume that
(t,u, v, f) is a local optimal solution of the control problem (20), (21). Then, there
exist functions (0, p, q) € sz,’l(Q) X Wi’,l(Q) X Wi’,l(Q) solving the so called ad-
Jjoint problem
—0, —bAO =Fip+ Frrq+ai|t —tg|* 2t —10) inQ,
—pi —kiAp =—06; + Fiup + Fauq + @2lu —ug|" > —uq) in Q,
—qr —kaAg =—h0, + F1yp+ Favg + azlv —vg|" (v —vg) inQ, 33
d0/on=0p/on=09q/on=0 ondQ2 x (0,7),
O=p=q=0 inQx{t=T}

(where F1 and F» are respectively given by (31) and (32) and F; ., F;, and F;
denote the partial derivatives of F;), such that

NIfI92f4+6=0 ae.inQ. (34)

Proof Since J attains a local minimum at (t,u, v, ) € Q, by Theorem 3.1 there
exist Gop € [DC(J, (t,u, v, f))]* and G| € [TC(Q, (T, u, v, f))]*, not vanishing si-
multaneously, such that

Go+ G =0. (35

@ Springer



62 J.L. Boldrini et al.

Let h € L9(Q) be given and let (¢, w, z,h) € E be the unique solution of the
associated linear system

ot —bAp=lLw,+bz;+h inQ,
w; —k1Aw=F1 ¢+ F1,w+ F1,z inQ,
u—kAz=F 9+ Fyw+ Fyz in Q, (36)
dp/on=0w/on=0dz/on=0 ondQ x (0,7),
p=w=z=0 1in Q2 x {t =0}.

Then M'(zt,u,v, f)(¢,w,z,h) = 0 and consequently (¢, w, z,h) belongs to
TC(Q, (t,u,v, f)). Thus, (G, (¢, w, z, h)) = 0, which also implies

(Go, (¢, w,z,h)) =0.

Since Gog € [DC(J, (t,u, v, f))]*, by Lemma 4.2 there exists A > 0 such that
Go=—AJ'(t,u,v, f). Hence,

0= —(Go, (¢, w, 2, h))

= Mxlk// It — wa|* 72 (r — wa)g
0
+ Aop // lu — ud|m_2(u —ug)w
0
+ Ao // v —val™ (v — va)z
0

+AN//Q|f|‘12fh. (37)

Observe that A # 0; otherwise, we would have Gy = 0 and, by (35), we would also
have G| = 0, in contradiction with Theorem 3.1. Then, by multiplying (37) by 1/,

we easily get
v [[ 1 n
0

=—a // It — "2 (r — a)g
0
—az// e — "2 — ug)w
0

—o // v — 14" 2 (v = va)z. (38)
0

Let (8, p, q) be the solution of the adjoint system (33) and let (¢, w, z, k) solve the
linear problem (36). Then, by multiplying the first equation of (33) by ¢, the second
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one by w, the third one by z, integrating each equality on Q2 x (0, T') and performing
the usual integrations by parts, after addition, we find that the right hand side of (38)
is equal to

/f (—@r +bAp + Lyw; +1z4) 0
0]
+/:/ (—w, +k1Aw+F1,1¢+F1,uw+Fl,vZ)p
o

+ // (=2t + Az + F o+ Fyw+ F2,2)q
0o

=—//Qh9.

Finally, taking into account (38), we see that

N//Q|f|q2fh=—//Q@h.

Since 4 is arbitrary in L (Q), we obtain (34).
This ends the proof. O

Remark 4.1 Notice that (34) is equivalent to

1/(g—1)
f= _<ﬁ|9|) Signf a.e.in Q.

5 Problems with constraints on the control
5.1 L4 constraints on the control

Let J and M be as before and let us consider the control problem (20), where we
have now

Q=01NQy, (39)
Q1 ={(zt,u,v, /)€ E: | fllLeo) < A1} (40)

and
Qo ={(t,u,v, f)e E:M(z,u,v, f)=0}. 41

Arguing exactly as in the proof of Lemma 4.1, we can prove again that the associ-
ated admissible set E,4, given by (24), is nonempty:

Lemma 5.1 Under the assumptions of Lemma 4.1, for the control problem (20), (39),
(40), (41), one has Eqq # 9.
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Furthermore, it is also easy to prove that optimal solutions exist:

Theorem 5.1 Under the assumptions of Theorem 4.1, the control problem (20), (39),
(40), (41) possesses at least one optimal solution.

The proof of this result is very similar to the proof of Theorem 4.1. We just need to
observe that, in this case, the elements of the minimizing sequence {(t,, un, vy, fn)}
satisfy || fullLao) < A1, for all n and f, — f weakly in L9(Q). But these two
facts imply that || | Ls(0) < A1. Then the limit of the minimizing sequence belongs
to Egq.

We will now find first-order optimality conditions for (20), (39), (40), (41). We
will use again the Dubovitskii-Milyutin formalism.

Thus, let (7, u, v, f) € E,q be alocal optimal solution. Of course, this means that,
for some & > 0, one has (26) whenever (6, w, z, h) € E,q and (27) holds.

Recall that the decreasing cone of J at (t,u,v, f) has been given before,
in Lemma 4.2; the tangent cone of Q; at (t, u, v, f) was obtained in Lemma 4.4.

Lemma 5.2 Let (t,u,v, f) € E be given, with || f||La(g) < A1. The feasible cone to
Q1 at (t,u, v, f) and its dual cone are respectively given by

FC(Qla (T,M, v, f)) = {(907 w,z,k(h - f)) A > Oa
(p,w,z,h) € E, ||hlLa) < A1} (42)

and

[FC(Q1, (t,u,v, NI*

= {(0,0,0,g):gELq/(Q),

// ghz// gf Vh € L1(Q) satisfying ||h||Lq(Q)sA1}. 43)
o 0]

Proof Let us first assume that f 7% 0. Then, from the results in Sect. 3, we know that
the feasible cone to Q at (t, u, v, f) is given by

FC(Ql,(r,u,v,f))z{((p,w,z,k)eE:// |f|q2fk<0}.
)

It is not difficult to check that this is just the set in (42). On the other hand, (43) is

a direct consequence of (42).
If f =0, (42) and (43) are immediate. O

Next, we establish the optimality conditions for the control problem (20), (39),
(40), (41):

Theorem 5.2 Let the assumptions of Theorem 4.1 be satisfied. Let us assume that
(t,u, v, f) is a local optimal solution of the control problem (20), (39), (40), (41).

@ Springer



Some optimal control problems for a two-phase field model 65

Then, there exist functions (0, p, q) € W, (Q) W ) (Q) st (Q) satisfying (33)
and
JoWNIfI972f +6)(h = f) =0 )
VYh e L1(Q) with ||hllLa0) < Ai.
Proof From the Dubovitskii-Milyutin Theorem (Theorem 3.1), there exist
Go € [DCJ, (z,u,v, f)]I, G| €[FC(Qy, (t,u,v, f))I* and
G2 € [TC(Q2, (r,u, v, fNIY,
not simultaneously zero, such that
Go+G1+G2=0. (45)

Let & € L9(Q) be an arbitrary control and let (¢, w, z, h) € E be the associated
unique solution of (36). Then M'(z,u, v, f)(¢, w, z,h) =0, whence (¢, w, z,h) €
TC(Q2, (t,u,v, f)) and

(G2, (9, w, z,h)) =0. (46)

Since Gy € [DC(J, (z,u,v, f))]*, by Lemma 4.2 there exists A > 0 such that
Go=—AJ'(t,u,v, f). Therefore, from (28), (45) and (46) we have

(G1,(p,w, z, h)) = —(Go, (¢, w, z, h))
= A f/ I — 2l 2t — 1)y

1 Aoz / e — g™ — ugyw
0

1 Aotz f v — vl 2 — va)z
0

+AN// |f1972 fh. (47)
0

Let us prove that A # 0.
Indeed, let us assume that A = 0. Then, by (45), we have G| + G> = 0. Since
G, €[FC(Qq, (t,u,v, f))I*, we also have

(G2, (p,w, z,h)) = //gh Y(p,w,z,h) € E

for some g € L‘f/(Q) On the other hand, for each 4 € L(Q) there exists a unique

(p,w,z) € Wg (Q) S W10 g(Q) 1()/3(Q) satisfying (36). Then (¢, w,z,h) €
TC(Q, (t,u,v, f)) and G2 (¢, w, z, h)) = 0. Consequently,

// gh=0 Vheli(Q)
Q

and g = 0, which is in contradiction with the Dubovitskii-Milyutin Theorem.
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Since A # 0, it can be assumed that A = 1 and then

o f/ It — 2l (7 — 1a)o

o

b // = g™ — ug)w
0

+a2f/ v = vl (0 = va)z
0

+fo 2 fh
0

=(G1,(<p,w,z,h))=f/ gh (48)
0]
for some g € Lq/(Q) satisfying

// gUi—)=0 VheL(Q) suchthat [h]lig) < A 49)
]

Let h € L1(Q) be given. Let (6, p, g) be the solution of the adjoint problem (33)
and let (¢, w, z, h) be the solution of (36). Multiplying the first equation of (33) by
@, the second one by w, the third one by z, integrating on  x (0, T') and performing
the usual integrations by parts, in view of (48) the following is found:

fo gh— foQ £1972 1

_ // (01— bA —Lywy — 1h2)6
0

+// (wr —k1Aw — Fi ¢ — Fiyw — F1,2)p
o

+ // (zt —kp Az — PBro—F,w— FZ,UZ)q
0

=//th.

Since & is arbitrary in LY(Q), this shows that g = N| f 972 f + 0. Consequently,
we get (44) and the proof is achieved. O

Remark 5.1 Let us introduce the set Uyg = {f € L"(Q) : | fllLr(¢) < A1}. Then
Theorem 5.2 can also be stated as follows:
Let the assumptions of Theorem 4.1 be satisfied. Let (t,u,v, f) be a local
optimal solution of the control problem (20), (39), (40), (41) and let (0, p, q)
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satisfy (33). Then the unique global minimum in U,q of the function

mg//QWu//th

is attained at f.
5.2 Pointwise constraints on the control

In this section, we will deal with the control problem (20), where

Q=091NQ, (50)

Q1 ={(r,u,v, f)e E:|f| <Bjae.in Q} (51
and again

O ={(r,u,v, f) e E:M(t,u,v, f) =0}. (52)

As before, the associated admissible set will be denoted by E,4. It is given by (24).
The following results hold:

Lemma 5.3 Under the assumptions of Lemma 4.1, for the control problem (20), (50),
(51), (52), one has E q # 0.

Theorem 5.3 Under the assumptions of Theorem 4.1, the control problem (20), (50),
(81), (52) possesses at least one optimal solution.

Proof It suffices to argue as in the proof of Theorem 4.1 using Lemma 5.3 instead of
Lemma 4.1 and noticing that the function f obtained in this proof satisfies | f| < Bj
a.e.in Q. O

We will now establish first-order optimality conditions. Notice that, in this case,
int @1 = @. Consequently, we have to identify the tangent cone to Q; at a local opti-
mal solution.

For any (7, u, v, f) € Qp, we will denote by N4 (f) any set of points (x,t) € Q
such that

f(x,t)=B; ae.inN4L(f) and f(x,t)<B; ae.outside Np(f).
Similarly, we will denote by N_(f) any set of points such that
f(x,t)=—B; ae.in N_(f) and f(x,t)>—B; ae.outside N_(f).
Finally, N (f) will stand for any subset of Q with the following property:

|f(x,t)]< By ae. in N(f) and |f(x,t)]=B; a.e.outside N(f).
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Then we have the following

Lemma 5.4 Let us assume that (t,u,v, f) € Q1. The tangent cone to Qp at
(t,u,v, f) is given by
TC(Q1, (t,u,v, f))
={(p,w,z,h)e E:h<0ae.in Ny(f)andh >0a.e.in N_(f)}. (53)

Consequently, we have

[TC(Qla (T9 u,v, f))]*
={(0,0,0,8):g€L"(Q), g <0a.e.in N.(f),g>0ae.in N_(f),
g=0a.e. in N(f)}. 54)

Proof By definition we have (p,w,z,h) € TC(Qy, (t,u,v, f)) if and only if
(¢, w, z, h) € E and there exists gg such that, for each 0 < ¢ < g, we can find points
a(e) € E with |la(e) || = o(e) satisfying

(T7u7 v’ f) +8((p7 w7Z7 h) +a(€) e Ql!

that is to say,
| f +¢eh+as(e)| < By,

where a4(¢) denotes the fourth component of a(¢).
In view of the definitions of the sets Ny (f) and N_(f), it is clear from this that
(53) holds. On the other hand, it is immediate to deduce (54) from (53). O

Theorem 5.4 Let the assumptions of Theorem 4.1 be satisfied. Let us assume that
(t,u, v, f) is a local optimal solution of the control problem (20), (50), (51), (52).
Then, there exist functions (0, p,q) € Wz,’l(Q) X W’i’/l(Q) X Wri}l(Q) satisfying
(33) and

<0 ae inNi(f),
NIfI92f+6{ =0 ae.in N(f), (55)
>0 a.einN_(f).

Proof Recall that the tangent cone to Qg at (z, u, v, f) and its associated dual cone
are respectively given by (53) and (54). Obviously, the cone TC(Qj, (t, u, v, f)) is
closed and convex.

In view of the results in Sects. 4 and 5.1, in order to apply Theorem 3.1 in this
context, we have to check the following:

o TC(Q1, (t,u,v, )NTC(Q2, (t,u,v, f)) CTC(Q1 N2, (z,u,v, [)).
e [TC(Qy, (t,u,v, f))]* and [TC(Qy, (t,u, v, ))]* form a system of cones with
the same sense.
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Let us first prove that any
(p,w,z, ) eTC(Qy, (t,u, v, H)NTC(L2, (z,u,v, [)) (56)

must necessarily belong to TC(Q N Oy, (t,u, v, f)).
Let ¢ > 0 be given. We have to find c(¢) € E with ||c(¢)||g = o(¢) such that

(t,u,v, f)+e(p,w,z,h)+c(e) € Q1 N Qy.

In view of (56), there exist a(¢), b(e) € E, with ||a(e)| g, ||b(e)||g = o(e) fori =
1, 2, such that
(@e, We, 26, he) = (T, u, v, f) +e(p,w,z,h) +a(e) € Q  and
(6587 wé"zé‘? E&‘) = (Tv M’ U, f) +8((pa w7 Z’ h) +b(8) € Q2
Let (¢}, w,,z.) be the unique solution in WqE’I(Q) X le(’)}3(Q) X le(’)}3(Q)
of (36) with h = h,. Then M'(t,u, v, f) (¢}, wi, 2., he) =0 and (¢., w,, z., he) €
Q1N Q.

Let us introduce

C(E) = ((0:;’ w;;: Z;.;v hé‘) - (Tv u,v, f) - 8((p’ w, Z, h)

We have to show that |la(e)||[g = o(g). But, taking into account that for the linear
system (36) the mapping & > (¢, w, z) is continuous, the following is found:

le@llE < (9L, why zhs he) — (Fe, We, Ze, he)llE
+ 1(@e. We, Zen he) — (Tou, v, f) —e(@,w, 2, W)
< Clihe = hellLaco) + 1b(e) | £
< Cll(@s, e, Zes he) — @e. We Ze, he) | + 16() | £
S C“(‘pé‘v wEv ZEa hs) - (Ta u7 va f) - 8(§07 wa Z7 h)”E
+(C+ Db IE
=Clla(e)llg + (C + Db(e)llg = o(e).
Consequently, (¢, w,z,h) € TC(Q1 N Qy, (T, u, v, f)).

Let us now prove that the [T C(Q;, (t,u, v, f))]*,i =1, 2, form a system of cones
with the same sense.

Let R > 0 and G; € [TC(Q;, (t,u,v, f))]* (i =1,2) be given and assume that
IG1 4+ Ga|lgr < R. We have to show that there exist Ry, R, > 0 such that ||G;||g <
R;,fori=1,2.

Since G| € [TC(Qy, (t,u, v, f))I*, we have G| = (0,0,0, g1), for some g; €

L‘/(Q). On the other hand, we must have G2 = (¢1, ¢2, ¢3, ¢4) for some ¢; satisfy-
ing

$reW'(Q),  ¢r.dyeWigs(0), ¢l (Q).
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Consequently,
R>|Gi+ Gzl

and we get

R
<.
||¢1||(W§.1(Q))/, I|¢2|I(W126}3(Q)),, ”¢3”(W126}3(Q))’ =

Let h € L1(Q) be given. As before, there exists (¢, w, z) such that (¢, w, z,h) €
E and M'(z,u,v, f)(¢,w,z,h) =0.Then (G,, (¢, w, z, h)) =0 and

Jf
0]

IA

(@1, @) + [{¢2, w)| + [{¢3, 2)]

A

R
< Gllely2i g +lwlyar o F eyt o] < CRIRIL o).

Since h is arbitrary in L7 (Q), this implies ”¢4”Lq’(Q) <CR.

It is now immediate to check that |G| g7 < Ry and ||G3||gr < Ry for some con-
stants R; of the form R; = CR.

Therefore, in view of Theorem 3.1, there exist

Go e [DC, (z,u,v, fNIF, G €[TC(Qy, (z,u,v, f)]* and
G2 € [TC(Q2, (v, u, v, fNIY,
not simultaneously zero, such that
Go+G1+G2=0.

Proceeding as we did in the proof of Theorem 5.2, we can now deduce the stated
result. O

Remark 5.2 Let us introduce the set

Usa ={f € L9(Q):|f| < By ae.in O}.

Then (55) is equivalent to
// (NIfI972f +0)(h— f) >0 VheUy.
0

Consequently, Theorem 5.4 can also be stated as follows:

Let the assumptions of Lemma 4.1 be satisfied. Let (t,u, v, f) be a local opti-
mal solution of the control problem (20), (50), (51), (52) and let (0, p, q) satisfy
(33). Then the unique global minimum in U,y of the function

hﬁffgew +9h>

is attained at f.
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6 Problems with constraints on the state
6.1 Pointwise constraints on the temperature
We will now deal with the control problem (20), where
Q=0,Ny, (57)
Q9 is given by
Q1={(t,u,v, f)e E:C; <t <(Cpae.in O} (58)
for some C; with 0 < C; < C; and Q; is given by
Qo ={(t,u,v, f)e E:M(t,u,v, f)=0}. (59)
We will denote again by E,4 the corresponding admissible set.
We must consider the auxiliary problem
Uy —kiAu=—-aju(l —u—v)(1 —2u —v—2my) inQ,
vy —koAv=—awv(l—v—u)(1—2v—u—2my) in Q,
du/on=0v/on=0 ondQ2 x (0,7), (€0
U =uo, v=1vg inQ x {r=0},
where k1, k, a and a, are positive constants and my, my € L*(Q).
Let us set
K' =1 +miax lmi |l (@) (61)

Then, arguing as in [3], the following can be proved:

Theorem 6.1 Ler Q C R3 be a bounded C* domain. Let us assume that ki, ka,
ay and ap are positive constants, mi, my € L*(Q) and ug, vg € WZZ(SZ) satisfy
dug/on|yq = 0vg/dn|yq = 0 and 0 < ug, vo < K'. Then (60) possesses exactly one

solution (u,v) € leé}3(Q) X leé}3(Q) satisfying
|IM||W|26}3(Q) + IIUIIW]26;3(Q) < C(Iluollwzz(g) + I|v0||W22(Q)),
O<u,v<K’
Here, C depends on 2, T, k1, ky, a1, ap, my and m;.

As a consequence, we have:

Lemma 6.1 Assume that the hypotheses of Lemma 4.1 hold and, moreover,

Ci<1p<Cy ae.inS.

@ Springer



72 J.L. Boldrini et al.

Then the admissible set E,q associated to the control problem (20), (57), (58), (59)
satisfies Eqq # 0.

Proof Lett € qu o1 (Q) be the unique solution of
; —bAT=0 1inQ,
at/oan=0 onadQ2 x (0,T),
T=1 inQ x {t=0}.

By the maximum principle for the heat equation, we have C; <t < (Cj a.e.in Q.
Now, let us introduce m and m,, with m; = —%(ci T+d;) fori =1, 2. Obviously,
m; € L*(Q).
Let (u, v) be the unique solution in leé}3(Q) X leé}3(Q) of the corresponding

problem (60) (furnished by Theorem 6.1) and let us set f =1, — bAT — lju; — lhv;.
Then, it is easy to check that (t,u, v, f) € E, M(t,u,v, f) =0and J(z,u,v, ) <
~+o00. Consequently, (t, u, v, f) € Eqq.

This ends the proof. g

Theorem 6.2 Under the assumptions of Lemma 6.1, the control problem (20), (57),
(58), (59) possesses at least one optimal solution.

For the proof, once more, it suffices to argue as in the proof of Theorem 4.1. This
time, we have to use Lemma 6.1 instead of Lemma 4.1. The key point is that the
temperature t obtained in this proof satisfies C; <t < C; a.e.in Q.

In order to establish first-order optimality conditions in this case, we must identify
the feasible cone to Q; at a local optimal solution. Notice that, since E is given by
(17) and Wg" (Q) < L*®(Q) by Lemma 2.2, one has:

intQ; = {(go, w,z,h)e E:Cy < eszinfgo <esssupy < Cz}. (62)
0

A direct consequence is the following

Lemma 6.2 Assume that (t,u,v, f) € Q1. Then
FC(Q1, (t,u,v, f))

={(x(<p—z),w,z,h):x>o, (¢, w, 2, h) € E,

Ci < essQinf<p <esssupy < Cz} (63)
o

and

[FC(Q1, (x,u, v, I
={(£,0,0,0): £ € (W'(Q)), (¢, 9) = (¢, 7) Vo € W' (Q) with
Ci<p<Crae.l. (64)
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Arguing as in the proof of Theorem 5.2 (but using Lemma 6.2 instead of
Lemma 5.2), we get now:

Theorem 6.3 Let the assumptions of Theorem 6.2 be satisfied. Let us assume that
(t,u, v, f) is a local optimal solution of the control problem (20), (57), (58), (59).
Then there exist (6, p,q) € Wi (Q) x W21 (Q) x W2'(Q) and ¢ € (W' (Q))
satisfying (33) and

(L.o—1)20 Vpe W Q) withCi<¢<Crae. (65)

such that
JloWNIFIT2f +0)h = (£, )
Y(p, w, z, h) € E satisfying (36).

6.2 Pointwise constraints on the temperature gradient

We will finally consider the optimal control problem (20), where
Q=91N (66)
and Q; and Q; are respectively given by
Q1 ={(t,u,v, f)e E:|Vt| < Djae.in Q}, 67)

and
O ={(t,u,v, f)e E:M(t,u,v, f)=0}. (68)

Once more, the associated admissible set will be denoted by E, .

Lemma 6.3 Assume that the hypotheses of Lemma 4.1 hold and, furthermore,
1€ W2 (Q), |Vrl<Di aeinQ.
Then, for the control problem (20), (66), (67), (68), one has E q # 0.
Proof Let us introduce the function 7, with 7(x,#) = 79(x) a.e. in Q. Then 7 €
Wq%l (Q) and
|[Vt| <Dy ae.in Q.

Let us set m; = —%(Cit + d;) for i =1,2. Let (u,v) be the unique solution in
Wfé%(Q) X Wfd%(Q) of the corresponding problem (60) (furnished by Theorem 6.1)
and, finally, let us set f = —bAtT — lju; — lov, € LY(Q).

It is then clear that (z,u, v, f) € Q1, M(t,u,v, f)=0and J(z,u, v, f) < +4o0.
In other words, (7, u, v, f) € Eaq. O

From this lemma, we can deduce easily the existence of optimal solutions:
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Theorem 6.4 Under the assumptions of Lemma 6.3, the control problem (20), (66),
(67), (68) possesses at least one optimal solution.

Next, we will present first-order optimality conditions for this control problem.
Here, for technical reasons, we will assume that ¢ > 5.

We have to identify the feasible cone to Q; at a point (t, u, v, f). To this end,
we first notice that, since E is given by (17) and WqZ’l(Q) — L0, T; WC}O(Q)) by
Lemma 2.3, one has

intQ1 ={(¢,w,z,h) € E:||Vol|lLo) < D1}.
Lemma 6.4 Assume that (t,u,v, f) € Q1 and g > 5. Then
FC(Q1, (t,u,v, f))

={()"((p_r)5w’zah):)">07 ((p’w’zah)eEa
IVellLeg) < D1} (69)

and

[FC(Q1, (z,u, v, )T
={(£,0,0,0): £ € (W' (Q)), (¢, ¢) = (£, 1) YO e W' (Q) with  (70)
VollLe) < D1} (71)

Arguing as before, we can now deduce the optimality system for (20), (66),
(67), (68):

Theorem 6.5 Let the assumptions of Theorem 6.4 be satisfied and suppose that
q > 5. Let (t,u,v, f) be a local optimal solution of the control problem (20),
(66), (67), (68). Then there exist (6, p.q) € Wi (Q) x W' (Q) x W2'(Q) and

¢ € (W' (Q)) satisfying (33) and

(C.9—1)=0 Ype W' (Q)with |VellLx0) < D (72)
such that
JlogWNIfI92 f +0)h = (¢, ¢)
Y(p,w, z, h) € E satisfying (36).
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