
Japan Journal of Industrial and Applied Mathematics (2024) 41:1137–1148
https://doi.org/10.1007/s13160-023-00641-3

ORIG INAL PAPER

An inexact fixed point iteration method for solving
absolute value equation

Xin-Mei Lv1 · Shu-Xin Miao1

Received: 6 August 2023 / Revised: 22 November 2023 / Accepted: 6 December 2023 /
Published online: 3 January 2024
© The JJIAM Publishing Committee and Springer Nature Japan KK, part of Springer Nature 2024

Abstract
The fixed point iteration method is an effective method for solving absolute value
equation via equivalent two-by-two block form. To further improve the computa-
tional efficiency of the fixed point iteration method, by using the preconditioned
shift-splitting strategy, we propose an inexact fixed point iteration method for solving
absolute value equation in this paper. We obtain some convergence conditions for
the proposed method. The effectiveness of the proposed method are shown by three
examples.

Keywords Absolute value equation · Matrix-splitting · Fixed point iteration ·
Convergence
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1 Introduction

Considering the absolute value equation(AVE)

Ax − |x | = b, (1)

where A ∈ R
n×n and b ∈ R

n , and x ∈ R
n is an unknown vector to be determined,

|x | denotes the vector with absolute values of each component of x . System (1) is a
special case of the generalized absolute value equation (GAVE) [16]:

Ax − B|x | = b, (2)
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where B ∈ R
n×n , which was firstly introduced by Rohn [16] and studied in a

more general background in [12, 14, 15]. AVE (1) arises in a variety of scien-
tific computing and engineering applications such as linear programming [10, 12],
the quasi-complementarity problems [18], quadratic programming, the general linear
complementarity problem [3], and so on.

Recently, many scholars have studied the unique solvability of AVE (1) and GAVE
(2), for example, Wu and Li presented two necessary and sufficient conditions and
some sufficient conditions for the unique solvability of AVE (1) in [19]. More solv-
ability conditions of AVE (1) can be found in [7] and references therein. In order to
approximate its numerical solution, a large number of methods have been proposed
to solve AVE (1) or GAVE (2), including modified or generalized Newton method
[15, 20], matrix splitting iterative method [1], Picard-type method [17], the neural
network model methods [4, 13], and the methods based on the equivalent two-by-two
block form, such as the SOR-like method [6, 8], the fixed point iteration (FPI) method
[9], the modified fixed point iteration (MFPI) method [21] and the shift-splitting fixed
point iteration method [11].

By reformulating the AVE (1) to an equivalent two-by-two block form, Ke [9]
proposed the FPI method for solving the AVE (1), which can be described as

Method 1 (FPIMethod [9])Let A ∈ R
n×n be a nonsingularmatrix and b ∈ R

n. Given
the initial vectors x (0) ∈ R

n and y(0) ∈ R
n, for k = 0, 1, 2, · · · until the iteration

sequence {x (k), y(k)}+∞
k=0 is convergent, compute

{
x (k+1) = A−1(y(k) + b),
y(k+1) = (1 − ω)y(k) + ω|x (k+1)|, (3)

where the relaxation parameter ω > 0.

Note that there is a linear systemwith coefficient matrix A need to be solved at each
step of the FPI method, we prefer to use iterative method to approximate its solution
since matrix A is always large and sparse. If we split A as

A = 1

2
(α I + A) − 1

2
(α I − A),

where α is a positive parameter, and approximate x (k+1) in the FPI method by the
shift-splitting method [2], then we have the following shift-splitting FPI method
(abbreviated as FPI-SS method) for solving AVE (1)

Method 2 (FPI-SS Method for AVE (1)) Let A ∈ R
n×n be a nonsingular matrix and

b ∈ R
n. Letα be a positive constant such thatα I+A ∈ Rn×n is nonsingular. Given the

initial vectors x (0) ∈ R
n and y(0) ∈ R

n, compute (x (k+1), y(k+1)) for k = 0, 1, 2, · · ·
until the iteration sequence {x (k), y(k)}+∞

k=0 is convergent, compute

{
x (k+1) = (α I + A)−1(α I − A)x (k) + 2(α I + A)−1(y(k) + b),
y(k+1) = (1 − ω)y(k) + ω|x (k+1)|, (4)

where the parameter ω is a positive constant.
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An inexact fixed point iteration method 1139

The FPI-SS method is an inexact FPI method, and is firstly proposed for solving
the GAVE (2) in [11]. When B = I , the GAVE (2) is the AVE (1), and Algorithm 3
in [11] reduces to Method 2. In this paper, based on the preconditioned shift-splitting
technique, we propose another inexact FPI method for solving the AVE (1). This paper
is organized as follows. In Sect. 2, new inexact FPI method for solving the AVE (1) is
established. The convergence analysis of the proposed method is studied in Sect. 3. In
Sect. 4, numerical experiments are present to illustrate the effectiveness and feasibility
of the proposed method. Finally, a brief conclusion is given in Sect. 5.

2 The FPI-PSSmethod

Similar to [5], assume that A is splitted as

A = 1

2
(αP + A) − 1

2
(αP − A)

with positive parameter α and symmetric positive definite matrix P , then the x (k+1)

in the FPI method (3) can be solved by the following preconditioned shift-splitting
(PSS) method

x (k+1) = (αP + A)−1(αP − A)x (k) + 2(αP + A)−1(y(k) + b).

Hence, we have the following inexact FPI method, termed as the FPI-PSS method, for
solving the AVE (1)

Method 3 (FPI-PSS Method for AVE (1)) Let A ∈ R
n×n, b ∈ R

n. Given the initial
vectors x (0)∈Rn and y(0) ∈ R

n, compute {x (k+1), y(k+1)} for k = 0, 1, 2, . . . using
the following iteration scheme until {x (k), y(k)}+∞

k=0 satisfies the stopping criterion:

{
x (k+1) = (αP + A)−1(αP − A)x (k) + 2(αP + A)−1(y(k) + b),
y(k+1) = (1 − ω)y(k) + ω|x (k+1)|, (5)

where α is a positive iteration parameter and P is symmetric positive definite matrix.

Clearly, the iteration matrix of the FPI-PSS method is

M =
[

αP + A 0
−ωD(x) I

]−1 [
αP − A 2I

0 (1 − ω)I

]
,

where D(x) is a diagonal matrix of the form D(x) = diag(sign(x)) wherein sign(x)
denotes a vector with components equal to 1, 0 or −1 depending on whether the
corresponding component of x is positive, zero or negative, respectively.

Especially, when P = I , the FPI-PSS method becomes the FPI-SS method. There-
fore, the proposed FPI-PSS method is a generalization of Method 2. Moreover, we
can see that the FPI-PSS method has the same computational processes as the shift-
splitting fixed point iteration method in [11], so the FPI-PSS method can also be used
to solve the GAVE (2).
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3 Convergence of the FPI-PSSmethod

In this section, the convergence of the FPI-PSS method for solving the AVE (1) is
studied. Let ρ(M) denotes the spectral radius of the iteration matrix M , then the FPI-
PSS method is convergent if and only if ρ(M) < 1. Assume that λ is an eigenvalue
of matrix M and [u, v]T is the corresponding eigenvector, we have

M

[
u
v

]
= λ

[
u
v

]
,

where is equivalent to

{
(αP − A)u + 2v = λ(αP + A)u,

(1 − ω)v = λ(−ωD(x)u + v).
(6)

Next, we will study the convergence of the FPI-PSS method. For this purpose,
several helpful lemmas are presented as follows.

Lemma 1 [6] Let A ∈ R
n×n, if the smallest singular value of the A exceed 1 and η is

an eigenvalue of the matrix D(x)A−1, then |η| < 1.

Lemma 2 [22] Consider the real quadratic equation x2 + bx + d = 0, where b and d
are real numbers. Both roots of the equation are less than one in modulus if and only
if |d| < 1 and |b| < 1 + d.

Lemma 3 Let A ∈ R
n×n, if the smallest singular value of the A exceed 1 and λ is an

eigenvalue of the matrix M, then λ �= 1.

Proof If λ = 1 is an eigenvalue of matrix M , then (6) is equivalent to

{
(αP − A)u + 2v = (αP + A)u,

(1 − ω)v = −ωD(x)u + v.
(7)

From (7), we can get that

(I − D(x)A−1)u = 0.

It follows from Lemma 1 that I − D(x)A−1 is nonsingular, so we have u = 0. Then,
from (7) we can get that v = 0. We have the contradictory conclusion with properties
of eigenvector. Hence λ �= 1. ��
Lemma 4 Let A ∈ R

n×n be a nonsingular matrix and ω > 0, if λ satisfies

(λ − 1)(λ + ω − 1)αPu + (λ + 1)(λ + ω − 1)Au = 2λωD(x)u, (8)

then λ is an eigenvalue of the matrix M. Conversely, if λ is an eigenvalue of the matrix
M such that λ �= 1 − ω, then λ satisfies (8).
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Proof Let [u, v]T be the eigenvector of M corresponding to the eigenvalue λ. Then it
follows from (6) that

{
(λ − 1)αPu + (λ + 1)Au = 2v
(λ + ω − 1)v = λωD(x)u.

(9)

Combining the two equality in (9), we get (8). ��

We can prove the other assertion by reversing the process.

Theorem 1 Let A be a symmetric positive definite matrix. Assume that λ is an eigen-
value of iteration matrix M and [u, v]T ∈ C

n×n is the corresponding eigenvector.

Denote a = u∗Au
u∗Pu

, c = u∗D(x)u

u∗Pu
. Then the FPI-PSS method is convergence if and

only if the following conditions are satisfied

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < ω <
2α

α − c
, α > a > c,

0 < ω <
2a

a − α
, c < α <

√
ac < a,

0 < ω <
2α

α − c
, c <

√
ac < α < a,

0 < ω <
2a

a − α
, α < c < a.

Proof From Lemma 4 we know that λ satisfies (8). Multiplying
u∗

u∗Pu
on both sides

of (8), we get

(λ − 1)(λ + ω − 1)α
u∗Pu
u∗Pu

+ (1 + λ)(λ + ω − 1)
u∗Au
u∗Pu

− 2λω
u∗D(x)u

u∗Pu
= 0,

that is

(λ − 1)(λ + ω − 1)α + (1 + λ)(λ + ω − 1)a − 2λωc = 0,

or equivalently,

λ2 + (ω − 2)α + ωa − 2ωc

a + α
λ + (1 − ω)(α − a)

a + α
= 0.

From Lemma 2 and Lemma 3, we know that the FPI-PSS method is convergent if and
only if

∣∣∣∣ (1 − ω)(α − a)

a + α

∣∣∣∣ < 1
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and

∣∣∣∣ (ω − 2)α + ωa − 2ωc

a + α

∣∣∣∣ < 1 + (1 − ω)(α − a)

a + α
.

In what follows, we divide our discussion into three cases for solving above inequali-
ties.

Case 1: c = 0

In this case, we have λ = α − a

α + a
, obviously, |λ|< 1.

Case 2: c > 0
Now, when α > a > c, we get that

0 < ω <
2α

α − c
,

while when a > α > c, we obtain that

⎧⎪⎨
⎪⎩
0 < ω <

2a

a − α
, c < α <

√
ac < a

0 < ω <
2α

α − c
, c <

√
ac < α ≤ a.

and when α < c < a, we have

0 < ω <
2a

a − α
.

Case 3: c < 0
In this case, we have the same results as in the Case 2.
According to Case 1, 2 and 3, the proof is completed. ��

4 Numerical experiments

In this section, three example are given to illustrate the feasibility and efficiency of
the FPI-PSS method proposed in this work. To this end, we compare the FPI-PSS
method with the FPI method [9], the FPI-SS method (4) and two new fixed point
iteration method [1] from aspects of the numbers of iteration steps (denoted as “IT”),
elapsed CPU time in seconds (denoted as “CPU”), and relative residual error (denoted
as “RES”) which is defined by

RES := ‖Ax (k) − |x (k)| − b‖2.

In our implementation, we choose P = I + H with H = A+AT

2 , all initial guess
vectors x (0) and y(0) are selected to zero vectors and all iterations are terminated if RES
≤ 10−6 or the maximum number of iteration step kmax exceeds 500. All computations
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Table 1 Numerical results for Example 1 with μ = 1

Method n 502 1002 1502 2002

FPI ωopt 0.6 0.6 0.6 0.6

IT 15 15 15 15

CPU 0.0355 0.2741 0.6384 1.3510

RES 3.0053e−07 5.7495e−07 8.4868e−07 3.1642e−07

FPI-SS ωopt 0.9 0.9 0.9 0.9

αopt 5.5 5.5 5.3 5.3

IT 14 14 15 15

CPU 0.0337 0.2500 0.6002 1.2043

RES 5.5162e−07 8.2088e−07 6.8092e−07 8.7699e−07

FPI-PSS ωopt 1.0 1.0 1.0 1.0

αopt 1.4 1.3 1.3 1.3

IT 9 9 9 9

CPU 0.0285 0.1639 0.3763 0.7114

RES 1.2348e−07 3.4811e−07 5.4170e−07 7.3529e−07

are performed in MATLAB R2022b on a personal computer with 1.80GHZ central
processing unit (Intel(R) Core(TM) i7-8550U) and 8GB memory.

Example 1 Let the coefficient matrix A ∈ R
n×n of AVE (1) be defined by A =

Â + μI ∈ R
n×n , where

Â = Tridiag(−I , S, −I ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S −I 0 · · · 0 0
−I S −I · · · 0 0
0 −I S · · · 0 0
...

...
. . .

...
...

0 0 · · · · · · S −I
0 0 · · · · · · −I S

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n

is a block-tridiagonal matrix,

S = tridiag(−1, 4,−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
. . .

...
...

0 0 · · · · · · 4 −1
0 0 · · · · · · −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
m×m

is a tridiagonal matrix, n = m2. Let x∗ = (−0.5,−1,−0.5, . . . ,−0.5,−1, . . .)T ∈
R
n be the exact solution of the AVE (1).

For different problem scales n = m2, the optimal experimental parameters, IT, CPU
and RES of the FPI, FPI-SS and FPI-PSS methods for Example 1 are listed in Table 1
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Table 2 Numerical results for Example 1 with μ = 4

Method n 502 1002 1502 2002

FPI ωopt 0.8 0.8 0.8 0.8

IT 9 9 9 9

CPU 0.0216 0.1743 0.3791 0.7390

RES 1.5153e−07 2.9252e−07 4.3328e−07 5.7397e−07

FPI-SS ωopt 0.9 0.9 0.9 0.9

αopt 9.1 8.2 8.3 8.0

IT 11 12 12 12

CPU 0.0293 0.2141 0.5045 0.9736

RES 6.0431e−07 2.8137e−07 6.5055e−07 4.6551e−07

FPI-PSS ωopt 1.0 1.0 1.0 1.0

αopt 1.2 1.2 1.1 1.1

IT 7 7 7 7

CPU 0.0136 0.1233 0.2837 0.5623

RES 7.1382e−07 5.9957e−07 6.1103e−07 8.2080e−07

and Table 2 for μ = 1 and μ = 4, respectively. The optimal parameters are obtained
through the numerical experiments, which result in the least number of iteration steps
of each methods.

FromTable 1 andTable 2,we can see that eachof the testedmethods can successfully
converge to the exact solution of AVE (1), and the number of iteration steps decreases
with μ. Among all tested iteration methods, the FPI-PSS method is the most efficient
one as it is requires the least iterative steps and the least computation time to achieve
the terminated criterion.

Example 2 Let the coefficient matrix A ∈ R
n×n of AVE (1) be defined by A =

Â + μI ∈ R
n×n , where

Â = Tridiag(−1.5I , S,−0.5I ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S −0.5I 0 · · · 0 0
−1.5I S −0.5I · · · 0 0

0 −1.5I S · · · 0 0
...

...
. . .

...
...

0 0 · · · · · · S −0.5I
0 0 · · · · · · −1.5I S

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n
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Table 3 Numerical results for Example 2 with μ = 1

Method n 502 1002 1502 2002

FPI ωopt 0.6 0.6 0.6 0.6

IT 15 15 15 16

CPU 0.3389 1.7421 4.7607 8.2571

RES 3.0285e−07 5.7750e−07 8.5132e−07 3.1771e−07

FPI-SS ωopt 0.9 0.9 0.9 0.9

αopt 5.6 5.4 5.5 5.6

IT 15 15 16 16

CPU 0.2508 1.5804 1.6736 2.9403

RES 9.6119e−07 9.7779e−07 4.2584e−07 7.9709e−07

FPI-PSS ωopt 1.0 1.0 1.0 1.0

αopt 1.4 1.4 1.3 1.4

IT 9 9 9 9

CPU 0.0716 0.3788 0.9415 1.5442

RES 5.2439e−07 6.1553e−07 8.8475e−07 8.1297e−07

is a block-tridiagonal matrix,

S = tridiag(−1.5, 4,−0.5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 −0.5 0 · · · 0 0
−1.5 4 −0.5 · · · 0 0
0 −1.5 4 · · · 0 0
...

...
. . .

...
...

0 0 · · · · · · 4 −0.5
0 0 · · · · · · −1.5 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
m×m

is a tridiagonal matrix, n = m2. Let x∗ = (−0.5,−1,−0.5, . . . ,−0.5,−1, . . .)T ∈
R
n be the exact solution of the AVE (1).

In Table 3 and Table 4, we report the numerical results for Example 2 with μ = 1
andμ = 4, respectively. Notably, the FPI-PSSmethod requires the least iteration steps
and costs the least computing time than the FPI method and the FPI-SS method.

Example 3 [1] Let the coefficient matrix A ∈ R
n×n of AVE (1) be defined by A =

Â + μI ∈ R
n×n , where

Â = Tridiag(−1.5I , S,−0.5I ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S −0.5I 0 · · · 0 0
−1.5I S −0.5I · · · 0 0

0 −1.5I S · · · 0 0
...

...
. . .

...
...

0 0 · · · · · · S −0.5I
0 0 · · · · · · −1.5I S

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n

123



1146 X.-M. Lv, S.-X. Miao

Table 4 Numerical results for Example 2 with μ = 4

Method n 502 1002 1502 2002

FPI ωopt 0.8 0.8 0.8 0.8

IT 9 9 9 9

CPU 0.1645 1.3121 2.7513 3.6440

RES 1.5219e−07 2.9329e−07 4.3409e−07 5.7480e−07

FPI-SS ωopt 0.9 0.9 0.9 0.9

αopt 9.2 8.6 9.1 8.1

IT 12 12 12 12

CPU 0.1958 0.9624 1.3512 2.2624

RES 4.1893e−07 9.4763e−07 9.5725e−07 5.9258e−07

FPI-PSS ωopt 1.0 1.0 1.0 1.0

αopt 1.1 1.2 1.1 1.2

IT 7 7 7 7

CPU 0.0590 0.2978 0.7214 1.2295

RES 4.0899e−07 3.2193e−07 8.0123e−07 4.0477e−07

is a block-tridiagonal matrix,

S = tridiag(−1.5, 8,−0.5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

8 −0.5 0 · · · 0 0
−1.5 8 −0.5 · · · 0 0
0 −1.5 8 · · · 0 0
...

...
. . .

...
...

0 0 · · · · · · 8 −0.5
0 0 · · · · · · −1.5 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
m×m

is a tridiagonal matrix, n = m2. Let x∗ = (−1, 1,−1, . . . ,−1, 1, . . .)T ∈ R
n be the

exact solution of the AVE (1).

Table 5 presents the numerical results of the FPI-PSS method and two methods in
[1], where Method I with parameter 1 and Method II with parameter 0.97, see [1] for
more details. From Table 5, we can see that the number of iteration steps for Method
I is the same as the FPI-PSS method, but the FPI-PSS method requires less time than
other two methods to achieve the terminated criterion. Thus, the proposed FPI-PSS
method is more effective and feasible for solving the AVE (1).

At the end of this section, we give the following remark. From the numerical results
of this section, we can see that the numerical optimal parameter ω of the FPI-PSS
method is ωopt = 1 in three tested examples with different problem scales. If ω = 1,
the iterative scheme of the FPI-PSS method becomes

x (k+1) = (αP + A)−1(αP − A)x (k) + (αP + A)−1(|x (k)| + b),

which is an inexact Picard method for solving the AVE (1).
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Table 5 Numerical results for Example 3 with μ = 4

Method n 202 302 402 502

Method I IT 9 9 9 9

CPU 0.0637 0.1975 0.7459 2.0811

RES 2.3228e−07 3.5240e−07 4.7177e−07 5.9086e−07

Method II IT 10 10 10 10

CPU 0.0761 0.4914 2.0010 6.3861

RES 2.3109e−07 3.5759e−07 4.8409e−07 6.1059e−07

FPI-PSS ωopt 1.0 1.0 1.0 1.0

αopt 0.9 0.9 0.9 0.9

IT 9 9 9 9

CPU 0.0092 0.0196 0.0432 0.0693

RES 2.8805e−07 4.4070e−07 5.9347e−07 7.4628e−07

5 Conclusions

In this paper, we propose an inexact fixed point iteration method, termed as FPI-PSS
method, to solve the absolute value equation. The FPI-PSS method is constructed
by combining the preconditioned shift-splitting iteration method with the fixed point
iteration method. Some convergence conditions of FPI-PSS method are given. In
addition, three examples show that the FPI-PSSmethod is superior to other comparison
methods from the aspects of iteration steps and computing times. However, how to
choose the optimal involved parameters in the FPI-PSS method need further study.
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