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Abstract
In this paper, we present a polynomial primal-dual interior-point algorithm for linear
optimization based on a modified logarithmic barrier kernel function. Iteration bounds
for the large-update interior-point method and the small-update interior-point method
are derived. It is shown that the large-update interior-point method has the same poly-
nomial complexity as the small-update interior-point method, which is the best known
iteration bounds. Our result closes a long-existing gap in the theoretical complexity
bounds for large-update interior-pointmethod and small-update interior-pointmethod.

Keywords Linear programming · Interior-point methods · Kernel function ·
Polynomial complexity

Mathematics Subject Classification 90C05 · 90C33 · 90C51

1 Introduction

The field of interior-pointmethods (IPMs) for linear optimization (LO) originatedwith
the Karmarkar’s paper [1] that was proved to have much better polynomial complexity
than theKhacian’s ellipsoidalmethod, the firstmethodwith polynomial complexity for
LO. Motivated by the success of Karmarkar’s method for LO, many researchers have
proposed and analyzed various IPMs for LO [2–6], second-order cone optimization
(SOCO) [7], semidefinite optimization (SDO) [8], and linear complementarity prob-
lem (LCP) [9–11]. Other relevant references are [12–18]. In this paper, we restrict
ourselves to the primal-dual IPMs for the class of LOs.
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The primal-dual IPMs use the Newton direction as a search direction, which
is derived from the well-known primal-dual logarithmic barrier function. There is a
gap between the practical behavior and the theoretical performance results of these
algorithm [19], especially for the so-called large-update methods. In practice, large-
update methods are much more efficient than the so-called small-update methods
[12–18]. However, small-update methods have better iteration bound in theory than
large-update methods.

Several strategies have been proposed to improve the theoretical complexity
of large-update IPMs. Hung and Ye [20], Jansen et al. [21] and Monteiro et al. [22]
use higher order methods to improve the complexity of large-update IPMs. However,
there is a price to pay for the reduced complexity; higher order methods are computa-
tionally more expensive per iteration than first order methods, since some additional
equation systems need to be solved with the same coefficient matrix at each iteration.
Subsequently Peng et al. [2, 3] improved the theoretical complexity for large-update
IPMs using a class of self-regular kernel functions to determine the proximity mea-
sure and search direction, which are the crucial factors for the analysis of IPMs. Bai
et al. [5], [23–26] consider several specific kernel functions and analyzed complexity
of corresponding IPMs. In [6] Bai et al. proposed a new class of kernel functions,
called eligible kernel functions that are neither logarithmic nor self-regular, and they
presented a unified framework to analyze the complexity of the corresponding IPMs.

Motivated by the above-mentioned papers, in this paper we introduce a new kernel
function ψ(t) as follows:

ψ(t) = t2 − 1

2
+ 2 ln

(
1 + 1

t

)
− 2 ln 2, t > 0. (1)

The new kernel function leads to the best known complexity bound of O(
√
n log n

ε
)

for the large-update primal-dual IPM, which is as good as iteration bound for small-
update primal-dual IPM, hence, improving the theoretical complexity of large-update
IPMs.

The paper is organized as follows. In Sect. 2, the generic primal-dual IPM based
on the kernel function is described. In Sect. 3, we give the properties of the new kernel
function which plays a crucial role in the complexity analysis of algorithm. In Sect. 4,
the estimation of the step-size is discussed. The iteration bounds of the algorithm with
large-updates and small-updates, are derived in Sect. 5. Finally, Sect. 6 contains some
concluding remarks.

Some notation used throughout the paper is as follows. First, �n , �n+ and �n++
denote the set of vectors with n components, the set of nonnegative vectors and the
set of positive vectors, respectively. The 2-norm and the infinity norm are denoted by
‖ · ‖ and ‖ · ‖∞, respectively. If x, s ∈ �n , then xs denotes the componentwise (or
Hadamard) product of the vectors x and s. Furthermore, e denotes the all-one vector
of length n. If z ∈ �n+ and f : �+ → �+, then f (z) denotes the vector in �n+ whose
i th component is f (zi ), with 1 ≤ i ≤ n. We write f (x) = O(g(x)) if f (x) ≤ cg(x)
for some positive constant c and f (x) = �(g(x)) if c1g(x) ≤ f (x) ≤ c2g(x) for
positive constants c1 and c2.
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Polynomial interior-point algorithm for linear optimization 741

2 The generic interior-point algorithm

In this paper, we consider the LO problem, which takes the following standard form

(P) min{cT x : Ax = b, x ≥ 0},

where A ∈ Rm×n , rank(A) = m, b ∈ Rm , c ∈ Rn , and its dual problem

(D) max{bT y : AT y + s = c, s ≥ 0}.

Without loss of generality, we assume that both (P) and (D) satisfy the interior point
condition (IPC), i.e., there exists (x0, s0, y0) such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0.

If the IPC holds, finding an optimal solution of (P) and (D) is equivalent to solving
the system of optimality conditions

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = 0, (2)

where xs denotes the coordinatewise product of the vectors x and s. The basic idea
of primal-dual IPMs is to replace the third equation in (2), the so-called comple-
mentarity condition for (P) and (D), by the parameterized equation xs = μe, with
e = (1, ..., 1)T , μ > 0. This leads to the following system

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = μe. (3)

If the IPC holds, then for each μ > 0, system (3) has a unique solution
(x(μ), y(μ), s(μ)), which is called the μ-center of the primal-dual pair (P) and (D).
The set of all μ-center (μ > 0) is the central path of (P) and (D). The limit of the
central path (asμ goes to zero) exists, and since the limit point satisfies (2), it naturally
yields optimal solutions for both (P) and (D) [12].

Now we describe how classical primal-dual IPMs work. We start with a current
iterate (x, y, s) that satisfies the IPC. Without loss of generality (Roos et al. [12]), we
may assume this for μ = 1, with x(1) = s(1) = e. We then decrease parameter μ to
μ := (1 − θ)μ, for some θ ∈ (0, 1), and we solve the following Newton system

A�x = 0,

AT�y + �s = 0,

s�x + x�s = μe − xs. (4)
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742 L. Liu, T. Hua

to obtain the search direction. Since matrix A has a full row rank, the Newton system
(4) has a unique solution for all μ > 0. Then we take a step along the search direction
with a step size α ∈ (0, 1] which is defined by some line search rule. The search
direction and line search rule ensure that the new triple (x+α�x, y+α�y, s+α�s)
is closer to the μ-center (x(μ), y(μ), s(μ)). This step is repeated as long as the actual
iterate is sufficiently close to theμ-center. Thenμ is reduced again by the factor (1−θ)

and the process is repeated until an approximate solution to the problem is obtained,
e.g., until nμ is smaller than some prescribed accuracy ε.

To describe the ideas underlying this paper, we introduce a scaled version of the
system (4). Let

v :=
√
xs

μ
, dx := v�x

x
, ds := v�s

s
. (5)

Using the above notation, we can rewrite the Newton system (4) as

Ādx = 0,

ĀT dy + ds = 0,

dx + ds = v−1 − v, (6)

where Ā = 1
μ
AV−1X , V = diag (v), X = diag (x), S = diag (s).

When analyzing the algorithm, we need to measure the closeness of a primal-dual pair
(x, s) to theμ-center (x(μ), s(μ)). Themost popular tool for measuring this closeness
is the so-called primal-dual logarithmic barrier function [12], which is given by

	c(x, s;μ) = xT s

μ
−

n∑
i=1

log
xi si
μ

− n. (7)

The logarithmic kernel function is defined as

ψc(t) = t2 − 1

2
− log t, t > 0, (8)

which is a strictly convex function on �n++ with ψc(1) = ψ ′
c(t) = 0, and attains its

minimal at t = 1. Substituting (8) in (7) we obtain

	c(x, s;μ) = 2
c(v) = 2
n∑

i=1

ψc(vi ). (9)

Note that the right side of the third equation in (6) equals the negative gradient of the
logarithmic barrier function 
c(v), i.e.

dx + ds = −∇
c(v). (10)

This shows that the negative gradient of the logarithmic barrier function determines
the classical Newton search direction for primal-dual IPMs. Hence, a point on the
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Polynomial interior-point algorithm for linear optimization 743

central path can be characterized by the property of vi = 1, for any i . In IPMs the
iterates usually are not on the central path, but in some neighborhood of it. A natural
way to measure the deviation of the i-th coordinate vi from 1 is to use the value at vi
of a smooth strictly convex function ψ(t) : �++ → �+ that is nonnegative, assumes
its minimal value (zero) at 1 and that goes to infinity when the argument goes to zero
or infinity. These requirements can be formalized as follows:

ψ ′(1) = ψ(1) = 0,

ψ ′′(vi ) > 0, vi > 0,

lim
vi→0+ ψ(vi ) = lim

vi→∞ ψ(vi ) = ∞. (11)

As these conditions already include, a proper measure need to be strictly convex and at
least twice differentiable. Then a barrier function 
(v), based on the kernel function
ψ(vi ), in the scaled space can be defined as the sum of the componentwise deviations:


(v) :=
n∑

i=1

ψ(vi ). (12)

Replacing the barrier function 
c(v) by the above function, we obtain the following
modified Newton system

Ādx = 0,

ĀT�y + ds = 0,

dx + ds = −∇
(v). (13)

The last equality in system (13) can be expressed as

s�x + x�s = −μν∇
(v). (14)

The generic interior-point algorithm for LO is shown in Fig. 1. It is clear from
this description that the closeness of (x, y, s) to (x(μ), y(μ), s(μ)) is measured by
the value of 
(v), with τ as a threshold value: if 
(v) ≤ τ , then we start a new
outer iteration by performing a μ-update; otherwise we enter an inner iteration by
computing the search directions at the current iterate with respect to the current value
of μ and apply the update x := x +α�x, y := y +α�y, s := s +α�s) to get a new
iterate.

The choice of the step size α (0 < α ≤ 1) is a crucial issue in the analysis of
the algorithm. It needs to ensure that the resulting iterate is feasible and stays within a
certain neighborhood of the current μ-center. In the theoretical analysis, the step size
α is usually given a value that depends on the closeness of the current iterates to the
μ-center.

The choice of the barrier update parameter θ plays an important role in both theory
and practice of IPM. If θ depends on the dimension of the problem, e.g., θ = 1√

n
, then

we call the algorithm a small-step (or small-update) method. It uses full Newton steps
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Fig. 1 Generic algorithm

and the iterates stay in a small neighborhood of the central path. If θ is the constant
independent of the dimension n of the problem, e.g., θ = 1

2 , then we call the algorithm
a large-step (or large-update) method. In large-update method the iterates are allowed
to move in a wide neighborhood of the central path.

3 Properties of the new kernel and barrier functions

In this section,we discuss some properties of the newkernel functionψ(t) defined in
(1) and the corresponding barrier function that will be used in the complexity analysis
of the algorithm. According to (1), the scaled barrier function 
(v) is given by


(v) =
n∑

i=1

ψ(vi ) =
n∑

i=1

v2i − 1

2
+ 2 ln(1 + 1

vi
) − 2 ln 2, vi > 0, (15)
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Polynomial interior-point algorithm for linear optimization 745

where v ∈ Rn++. In the analysis of the algorithm,we also use the norm-based proximity
measure δ(v) defined by

δ(v) := 1

2
‖∇
(v)‖ = 1

2
‖dx + ds‖. (16)

Since 
(v) is strictly convex and attains its minimum value of zero at v = e, we have


(e) = 0 ⇔ δ(v) = 0 ⇔ v = e.

Obviously, the new kernel function (1) satisfies the properties

lim
t→0+ ψ(t) = lim

t→∞ ψ(t) = ∞,

ψ ′(1) = ψ(1) = 0.

We write down the first three derivatives of ψ(t) as follows

ψ
′
(t) = t − 2

t + t2
,

ψ
′′
(t) = 1 + 2

1 + 2t

(t + t2)2
,

ψ
′′′
(t) = −4

3t2 + 3t + 1

(t + t2)3
. (17)

Obviously, ψ ′′(t) is monotonically decreasing for all t > 0, and

ψ
′′
(t) > 1. (18)

In [6], the authors introduced a class of eligible kernel function, satisfied the
following conditions

tψ ′′(t) + ψ ′(t) > 0, t > 0, (a)

tψ ′′(t) − ψ ′(t) > 0, t > 0, (b)

ψ
′′′
(t) < 0, t > 0, (c)

2ψ ′′(t)2 − ψ ′(t)ψ ′′′
(t) > 0, 0 < t < 1, (d)

ψ ′′(t)ψ ′(βt) − βψ ′(t)ψ ′′(βt) > 0, t > 1, β > 1. (e) (19)

In order to analyze the new algorithm, we would give the proof that the new kernel
function is eligible in the following Lemma.

Lemma 3.1 The new kernel function (1) is eligible kernel function that satisfies
conditions (19).
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Proof For any t > 0, according to (17), we have

tψ ′′(t) + ψ ′(t) = 2t + 2t(1 + 2t)

(t + t2)2
− 2

t + t2
= 2t + 2

(1 + t)2
> 0,

tψ ′′(t) − ψ ′(t) = 2t
1 + 2t

(t + t2)2
+ 2

t + t2
= 2(2 + 3t)

t(1 + t)2
> 0,

ψ
′′′
(t) = −4

3t2 + 3t + 1

(t + t2)3
< 0,

and

2ψ ′′(t)2 − ψ ′(t)ψ ′′′
(t) = 2(t7 + 4t6 + 6t5 + 18t4 + 33t3 + 24t2 + 10t + 4)

t3(1 + t)4
,

the right-hand side of the above equality is positive for 0 < t < 1, which proves
(19-d). It was shown in [6] that condition (e) is implied by (b) and (c). This completes
the proof. 
�

Lemma 3.2 For ψ(t) we have

1

2
(t − 1)2 ≤ ψ(t) ≤ 1

2
ψ

′
(t)2, t > 0, (20)

ψ(t) ≤ 5

4
(t − 1)2, t > 1. (21)

Proof Proof of (20): using (17) and (18), we have

ψ(t) =
∫ t

1

∫ ξ

1
ψ ′′(ζ )dζdξ ≥

∫ t

1

∫ ξ

1
dζdξ = 1

2
(t − 1)2,

and

ψ(t) =
∫ t

1

∫ ξ

1
ψ ′′(ζ )dζdξ ≤

∫ t

1

∫ ξ

1
ψ ′′(ξ)ψ ′′(ζ )dζdξ = 1

2
ψ ′(t)2.


�

Proof of (21): sinceψ(1) = ψ ′(1) = 0, ψ ′′′(t) < 0, ψ ′′(1) = 5
2 , andbyusingTaylor’s

Theorem at the right neighborhood of t = 1, we have

ψ(t) = ψ(1) + ψ ′(1)(t − 1) + 1

2
ψ ′′(1)(t − 1)2 + 1

6
ψ ′′′(ξ)(ξ − 1)3 ≤ 5

4
(t − 1)2,

for some ξ, 1 ≤ ξ ≤ t . This completes the proof. 
�
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Lemma 3.3 Let � : [0,+∞) → [1,+∞) be the inverse function of ψ(t) for t ≥ 1
and ρ : [0,+∞) → (0, 1] be the inverse function of − 1

2ψ
′(t) for all t ∈ (0, 1]. Then

we have

√
2s + 1 ≤ �(s) ≤ 1 + √

2s, s ≥ 0, (22)

ρ(z) ≥
√

2
λ

2z + 1
, z ≥ 0. (23)

Proof Proof of (22): let s = ψ(t), t ≥ 1, i.e. �(s) = t, t ≥ 1. By the definition of
ψ(t), we have

t2 − 1

2
= s − 2 ln

(
1 + 1

t

)
+ 2 ln 2.

Because −2 ln(1 + 1
t ) + 2 ln 2 is monotonically increasing with respect to t ≥ 1, we

have

t2 − 1

2
≥ s,

which implies that

�(s) = t ≥ √
2s + 1.

By (20), we have s = ψ(t) ≥ 1
2 (t − 1)2, so

�(s) = t ≤ 1 + √
2s.


�
Proof of (23): let z = − 1

2ψ
′(t), t ∈ (0, 1]. Using the definition of ρ : ρ(z) = t, t ∈

(0, 1], we have
2

t + t2
= 2z + t, t ∈ (0, 1].

On one hand, for t ∈ (0, 1], we have

2z + t ≤ 2z + 1.

On the other hand, for any number t0 ∈ (0, 1], there exists a real number λ = 1 + 1
t0
,

such that

2

t + t2
≥ 2

t(λt)
= 2

λt2
, t0 ≤ t ≤ 1.
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748 L. Liu, T. Hua

The above two inequations imply that

ρ(z) = t ≥
√

2
λ

2z + 1
.

This completes the proof. 
�
The lemma below provides a bound for δ(v) in terms of 
(v) which will play

an important role in the analysis of the algorithm.

Lemma 3.4 Let δ(v) be as defined in (16). Then we have

δ(v) ≥
√
1

2

(v).

Proof Using (20), we have


(v) =
n∑

i=1

ψ(vi ) ≤
n∑

i=1

1

2
ψ ′(vi )2

= 1

2
‖∇
‖2 = 2δ(v)2,

so

δ(v) ≥
√
1

2

(v).

This completes the proof. 
�
Remark 3.5 Throughout the paper we assume that τ ≥ 1. Using Lemma 3.4 and the
assumption 
(v) ≥ τ, we have

δ(v) ≥
√
1

2
.

4 Analysis of the algorithm

4.1 Growth behavior of the barrier function at the start of outer iteration

The following theorem yields an upper bound for 
(v) after the μ-update in terms of
the inverse function of ψ(t) for t > 0.

From Theorem 3.2 in [6], we have the following Lemma 4.1.

Lemma 4.1 Let � : [0,+∞) → [1,+∞) be defined as in Lemma 3.3. Then we have


(βv) ≤ nψ

(
β�

(

(v)

n

))
, v ∈ R++, β ≥ 1.
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Lemma 4.2 Let 0 ≤ θ < 1, v+ = v√
1−θ

. If 
(v) ≤ τ . Then we have


(v+) ≤ 5

4(1 − θ)

(√
nθ + √

2τ
)2

.

Proof Since 1√
1−θ

≥ 1 and �(

(v)
n ) ≥ 1, we have

�(

(v)
n )√

1−θ
≥ 1.Using Lemma 4.1 with

β = 1√
1−θ

, (21), (22), and 
(v) ≤ τ , we have


(v+) ≤ nψ

(
1√
1 − θ

�

(

(v)

n

))

≤ n
5

4

(
1√
1 − θ

�

(

(v)

n

)
− 1

)2

= 5n

4(1 − θ)

(
�

(

(v)

n

)
− √

1 − θ

)2

≤ 5n

4(1 − θ)

(
1 +

√
2
(v)

n
− √

1 − θ

)2

≤ 5

4(1 − θ)

(√
nθ + √

2τ
)2

,

where the last inequality holds from 1 − √
1 − θ = θ

1+√
1−θ

≤ θ, 0 ≤ θ < 1. This
completes the proof. 
�

Denote


0 = 5

4(1 − θ)

(√
nθ + √

2τ
)2 = L(n, θ, τ ), (24)

then 
0 is an upper bound for 
(v) during the process of the algorithm.

Remark 4.3 For large-update method we take τ = O(n), θ = �(1),
0 = O(n). For
small-update method we take τ = O(1), θ = �( 1√

n
),
0 = O(1).

4.2 Determining the stepsize

In this section, we determine a default stepsize which not only keeps the iterations
feasible but also gives rise to a sufficiently large decrease of 
(t), as defined in (15),
in each inner iteration. In each inner iteration we first compute the search direction
(�x,�y,�s) from the system (14). After a stepsize α, we have the new iterates

x+ := x + α�x, y+ := y + α�y, s+ := s + α�s.
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Using (5), we have

x+ = x

(
e + α

�x

x

)
= x

(
e + α

dx
v

)
= x

v
(v + αdx ),

s+ = x

(
e + α

�s

s

)
= s

(
e + α

ds
v

)
= s

v
(v + αds).

So we have

v+ =
√
x+s+

μ
= √

(v + αdx )(v + αds).

For α > 0, we define

f (α) = 
(v+) − 
(v).

Then f (α) is the difference of proximities between a new iterate and a current iterate
for fixed μ. By (25), we have


(v+) = 
(
√

(v + αdx )(v + αds)) ≤ 1

2
(
(v + αdx ) + 
(v + αds)).

Therefore we have f (α) ≤ f1(α), where

f1(α) = 1

2
(
(v + αdx ) + 
(v + αds)) − 
(v). (25)

Obviously f (0) = f1(0) = 0. Taking the first two derivative of f1(α) with respect to
α we have

f ′
1(α) = 1

2

n∑
i=1

(ψ ′(vi + αdxi )dxi + ψ ′(vi + αdsi )dsi ),

f ′′
1 (α) = 1

2

n∑
i=1

(ψ ′′(vi + αdxi )d
2
xi + ψ ′′(vi + αdsi )d

2
si ). (26)

Using (10) and (16), we have

f ′
1(0) = 1

2
∇
(v)T (dx + ds) = −1

2
∇
(v)T∇
(v) = −2δ(v)2. (27)

From Lemmas 4.1−4.3 in [6], we have the following Lemmas 4.4–4.6.

Lemma 4.4 Let f1(α) be as defined in (25) and δ(v) be as defined in (16). Then we
have

f ′′
1 (α) ≤ 2δ2ψ ′′(vmin − 2αδ).
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Polynomial interior-point algorithm for linear optimization 751

Lemma 4.5 If the step size α satisfies the inequality

− ψ ′(vmin − 2αδ) + ψ ′(vmin) ≤ 2δ, (28)

we have

f ′
1(α) ≤ 0.

Lemma 4.6 Let ρ : [0,+∞) → (0, 1] be defined as in Lemma 3.3. Then the largest
step size ᾱ satisfying (28) is given by

ᾱ = 1

2δ
(ρ(δ) − ρ(2δ)). (29)

Lemma 4.7 Let ρ be defined as in Lemma 3.3 and ᾱ be defined as in Lemma 4.6. If

(v) ≥ τ ≥ 1, then we have

ᾱ ≥ 1

(12λ + 2)δ
.

Proof By the definition of ρ, we have

−ψ ′(ρ(δ)) = 2δ.

Taking the derivative with respective to δ, we find

−ψ ′′(ρ(δ))ρ′(δ) = 2,

which gives

ρ′(δ) = − 2

ψ ′′(ρ(δ))
< 0.

Since ρ is monotonically decreasing, (29) can be written as

ᾱ = 1

2δ

∫ δ

2δ
ρ′(σ )dσ = 1

δ

∫ δ

2δ

dσ

ψ ′′(ρ(σ ))
.

Due to (17),ψ ′′ is monotonically decreasing. Soψ ′′(ρ(σ )) is maximal for σ ∈ [δ, 2δ]
when ρ(σ) is minimal. Since ρ is monotonically decreasing, this occurs when σ = 2δ.
Therefore

ᾱ = 1

δ

∫ δ

2δ

dσ

ψ ′′(ρ(σ ))
≥ 1

δ

δ

ψ ′′(ρ(2δ))
= 1

ψ ′′(ρ(2δ))
.
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752 L. Liu, T. Hua

Since t ∈ (0, 1], we have 1
t+1 < 1 and

ψ
′′
(t) ≤ 1 + 4

t2
.

Using the above two inequalities, Remark 2.5 and (23), we have

ᾱ ≥ 1

ψ
′′
(ρ(2δ))

>
1

1 + 4
[ρ(2δ)]2

≥ 1

(12λ + 2)δ
.

This completes the proof. 
�
If we denote

α̃ = 1

(12λ + 2)δ
, (30)

then α̃ is the default step size and ᾱ ≥ α̃.

4.3 Decrease of the barrier function during an inner iteration

Lemma 4.8 Let α̃ be the default step size as defined in (30) and 
(v) ≥ 1. Then

f (ᾱ) ≤ − 1

12λ + 2

√
1

2

(v)

1
2 . (31)

Proof Let the univariate function h satisfy

h(0) = f1(0) = 0, h′(0) = f ′
1(0) = −2δ2,

h′′(α) = 2δ2ψ ′′(vmin − 2αδ).

Due to Lemma 3.4, f ′′
1 (α) ≤ h′′(α). As a consequence, f ′

1(α) ≤ h′(α) and f1(α) ≤
h(α). Taking α ≤ ᾱ, with ᾱ as defined in Lemma 3.6, we have

h′(α) = −2δ2 + 2δ2
∫ α

0
ψ ′′(vmin − 2ξδ)dξ

= −2δ2 − δ(ψ ′(vmin − 2αδ) − ψ ′(vmin)) ≤ 0.

Since h′′(α) is increasing with respect to α, using Lemma 3.12 in [2], we have

f (α) ≤ f1(α) ≤ h(α) ≤ αh′(0) = −αδ2.

So, for ᾱ ≥ α̃, we have

f (ᾱ) ≤ −ᾱδ2 ≤ − 1

12λ + 2

√
1

2

(v)

1
2 .
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This completes the proof. 
�

5 Complexity of the algorithm

In this section we estimate the complexity of our new IPM. We first estimate the
complexity of the inner process, i.e., how many inner iterations are required to bring
the iterates back to the specified neighborhood of the current μ-center. We denote
the value of 
(v) after the μ-update as 
0, the subsequent values in the same outer
iteration are denoted as 
k, k = 1, 2, . . . . If K denotes the total number of inner
iterations in the outer iteration, we have


0 = 5

4(1 − θ)

(√
nθ + √

2τ
)2

, 
K−1 > τ, 0 ≤ 
K ≤ τ,

by equation (24), and the decrease in each inner iteration is given


K+1 − 
K ≤ − 1

12λ + 2

√
1

2

(v)

1
2 , k = 0, 1, 2, . . . , K − 1

by inequality (31). We assume that

1

12λ + 2

√
1

2

(v)

1
2 ≥ κ
(v)1−γ

for some positive constants κ and γ , with γ ∈ (0, 1]. We can find the appropriate
values

κ = 1

(12λ + 2)

√
1

2
, γ = 1

2
,

such that


K+1 − 
K ≤ −κ
(v)1−γ .

Lemma 5.1 Let K be the total number of inner iterations in the outer iteration. Then
we have

K ≤ 4(6λ + 1)
√
2


1
2
0 .

Proof Proof. By Lemma 1.3.2 in [3], we have

K ≤ 

γ
0

κγ
= 4(6λ + 1)

√
2


1
2
0 .

This completes the proof. 
�
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Theorem 5.2 Consider LO problem with assumptions stated in Sect. 2. Then the upper
bound on the number of iterations of the IPM in Fig.1 with the new kernel function
(1) to obtain ε-approximate solution of LO problem is

4(6λ + 1)
√
2


1
2
0

log n
ε

θ
.

Proof The number of outer iterations is bounded above by 1
θ
log n

ε
(see [12] ). Multi-

plying the number of outer iterations by the number of inner iterations stated in Lemma
5.1 we get an upper bound for the total number of iterations, namely,

4(6λ + 1)
√
2


1
2
0

log n
ε

θ
.

This completes the proof. 
�
Corollary 5.3 . Considering the case of a large-update method, taking τ = O(n) and
θ = �(1), then we have


0 = O(n).

So the iterations complexity for large-update method is

O(
√
n log

n

ε
).

In case of a small-update method, taking τ = O(1), θ = �( 1√
n
), then we have


0 = O(1).

Therefore, the iterations complexity for small-update method is

O(
√
n log

n

ε
),

which as same as the iterations complexity for large-update IPM.

6 Conclusions

In this paper we introduced a newmodified logarithmic barrier function (1) and studied
its properties inSect. 3.Weused this kernel function todesign andanalyze IPMstated in
Fig. 1.We show that iterationbound for the small-update versionof themethodmatches
the best known iteration bound for small-update IPM, namely O(

√
n log n

ε
). We show

that the iteration bound for large-update version of the method is the same, as for the
small-update method. This is the best known upper bound for large-update method
effectively closing the gap between iterations bounds of small- and large-update IPMs.
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