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Abstract
Absolute value equations (AVEs) can be used to solve many engineering, man-
agement science, and operations research problems. This paper proposes two new 
iterative schemes for solving Ax − |x| = b , where A is an M-matrix. These meth-
ods depend on the splitting of the coefficient matrix. The convergence conditions for 
these two methods are given. Some numerical examples are given to demonstrate 
that the iterative schemes are valid and efficient. The results are inspiring and may 
animate more study in this direction.
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1  Introduction

In recent years, AVEs have been recognized as a form of NP-hard and non-differen-
tiable problem, analogous to several other mathematical problems, including linear 
programming, circuit simulations, contact problems, bimatrix games, quadratic pro-
gramming, and journal bearings [1, 9, 14, 18, 26].

The AVE consists of determining an x ∈ ℝ
k such that

where A ∈ ℝ
k×k is an M-matrix, b ∈ ℝ

k and |x| = (|x1|, |x2|,… , |xk|)T . Moreover, 
Eq. (1) represents a special case of the following general case:

(1)Ax − |x| = b,
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where B ∈ ℝ
k×k was introduced in [26].

The AVE is also equivalently reformulated to mixed-integer programming [25, 
30] and linear complementarity problem (LCP) [5, 7]. Using the LCP (M̃, b) prob-
lem as an example: it requires the determination of a vector z ∈ ℝ

k such that

where M̃ ∈ ℝ
k×k and b ∈ ℝ

k . Equation (3) can be written as AVE

with

where B = (M̃ − I) and A = (M̃ + I) . Abdullah et al. [3] described the AVE system 
as an LCP and computed it using a smoothing method. Mezzadri [21] proposed the 
concept of equivalency among AVEs and the horizontal problem of LCPs. In addi-
tion, the unique conditions of AVE as well as the connection to LCP have been ana-
lyzed by Hu and Huang [14].

In recent years, the problem of calculating AVEs has received considerable atten-
tion and has been extensively discussed in the literature. Ke [15] showed a new iter-
ative algorithm for AVE (1) and explained the theory of convergence under proper 
conditions. Based on [31], Zhang and Wei investigated the generalized Newton 
technique to calculate (1) and designated finite as well as global convergence situa-
tions when the interval matrix [A − I,A + I] is regular. Gu et al. [10] proposed non-
linear Picard-CSCS and Picard-like techniques to determine (1) based on the Toe-
plitz matrices. Chen et  al. [8] described the optimal parameter SOR-like iterative 
technique for calculating AVE (1) and designated the convergence properties under 
appropriate conditions. Nguyen et  al. [24] have demonstrated that the system (1) 
can be calculated using unified smoothing functions connected with a second-order 
cone. Using the shift splitting procedure, Wu and Li [28] investigated a shift split-
ting iterative method (SSM) to describe the system (1). Cacetta et al. [6] introduced 
a smoothing Newton strategy to calculate the system of AVE and discussed that the 
technique is globally convergent for ‖A−1‖ < 1 and so on, see [12, 13, 19, 20, 32, 33] 
for more details.

Recently, Miao and Zhang [22], Li et al. [17] and Mao et al. [23] introduced dif-
ferent techniques to calculate the LCPs using the fixed point principle. In this analy-
sis, we intend to apply this procedure to the system of AVEs using the fixed point 
principle and propose effective iterative procedures to determine the system (1). The 
contributions of this article are as follows: we divide the A matrix into three differ-
ent matrices (diagonal, strictly lower and upper triangular matrices) and combine 
them with the fixed point formula to derive the new iterative methods. Moreover, we 
suppose the convergence outcomes of the newly formulated methods under different 
circumstances.

(2)Ax − B|x| = b,

(3)z ≥ 0,Ψ = (M̃z + b) ≥ 0, zTΨ = 0,

(4)Ax − B|x| = b,

x =
1

2
(Bz + b),
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The paper is prepared as follows. Section  2 describes the suggested methods, 
along with their convergence to calculate the system (1). In addition, Sects. 3 and 4 
present numerical tests and concluding remarks.

2 � Proposed iterative methods

Here, we discuss the two new iterative approaches to determining the system (1). 
We begin by recalling some notations, a lemma, as well as an M-matrix definition.

Suppose A = (aij) ∈ ℝ
k×k , we define A ≥ 0 if aij ≥ 0 for all 1 ≤ i, j ≤ k . In addi-

tion, we suggest the spectral radius, and absolute value of A in terms of �(A) and 
|A| = (|aij|) , respectively.

Lemma 2.1  [29] Suppose x and z ∈ ℝ
k , then |x − z| ≥ ||x| − |z||.

Definition 2.2  [23] The matrix A is known as

1.	 Z-matrix if all of its off-diagonal elements are non-positive;
2.	 M-matrix if A−1 ≥ 0 and A is a Z-matrix.

To present and investigate the new iterative methods, let the matrix A be divided 
into the following two parts:

with

where DA , LA , UA are respectively the diagonal, strictly lower triangular and strictly 
upper triangular parts of A, and UT

A
 denotes the transpose of UA . Based on [4], the 

AVE (1) corresponds to the following fixed point problem:

where

Here, 𝜆 > 0 and E ∈ ℝ
k×k is a diagonal matrix consisting of positive diagonal com-

ponents (see [2, 4]). Based on (5), we introduce the following two iterative schemes 
for solving the AVEs:

Method I:

Method II:

(5)A = NA −MA,

NA = DA − UA + UT
A
andMA = LA + UT

A
,

x = F(x),

F(x) = x − �E[Ax − |x| − b].

(6)xm+1 = xm − �E[−MAx
m+1 + NAx

m − (|xm| + b)].

(7)xm+1 = xm + D−1
A
MAx

m+1 − �E
[
Axm − |xm| − b

]
− D−1

A
MAx

m.
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Here 0 < 𝜆 ≤ 1 . Next, we examine the convergence of the above two iterative 
algorithms.

Theorem  2.1  Let A = NA −MA be non-singular and assume 𝜌(R−1S̄) < 1 where 
R = I − �E|MA| and S̄ = 𝜆E + |I − 𝜆ENA| , then for any initial guess x0 ∈ ℝ

k , the 
sequence {xm}∞

m=0
 produced by Method I converges to the unique solution of the AVE 

(1).

Proof  From Eq. (6), we have

By subtracting (8) from (6), we get

By considering the absolute values on each side and applying Lemma 2.1, we obtain

which can be rewritten as

Since MA is a strictly lower triangular matrix, and E is a diagonal matrix with pos-
itive diagonal components, we know that I − �E|MA| is a lower triangular matrix 
with diagonal entries being one. Hence, (I − �E|MA|) is invertible. It follows from 
Eq. (9) that

where

(8)xm = xm−1 − �E[−MAx
m + NAx

m−1 − (|xm−1| + b)].

xm+1 − xm = xm − xm−1 − �E[−MA(x
m+1 − xm) + NA(x

m − xm−1)

− |xm| + |xm−1|],
= xm − xm−1 + �EMA(x

m+1 − xm) − �ENA(x
m − xm−1)

+ �E(|xm| − |xm−1|),
= (I − �ENA)(x

m − xm−1) + �EMA(x
m+1 − xm) + �E(|xm|

− |xm−1|).

|xm+1 − xm| ≤ |(I − �ENA)(x
m − xm−1)| + |�EMA(x

m+1 − xm)|
+ |�E(|xm| − |xm−1|)|,

≤ |I − �ENA||xm − xm−1| + �E|MA||xm+1 − xm|
+ �E||xm| − |xm−1||,

≤ |I − �ENA||xm − xm−1| + �E|MA||xm+1 − xm|
+ �E|xm − xm−1|,

(9)(I − �E|MA|)|xm+1 − xm| ≤ (�E + |I − �ENA|)|xm − xm−1|.

|xm+1 − xm| ≤ R−1S̄|xm − xm−1|,

R = I − 𝜆E|MA|andS̄ = 𝜆E + |I − 𝜆ENA|.
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In this case, the R−1S̄ matrix is non-negative. According to Theorem 2.1 in [2, 4], 
when 𝜌(R−1S̄) < 1, then the {xm}∞

m=0
 sequence of Method I leads to the solution x̄ of 

Eq. (1).
Suppose ̄̃z is another solution to the AVE in order to determine the uniqueness of 

the solution. Based on the equations

and

we have

Since 𝜌(R−1S̄) < 1 , we have

The proof is completed.

Theorem 2.2  If 𝜌(G−1J) < 1 where G = I − D−1
A
|MA| and J = I + �E − |�EA + D

−1
A
M

A
| , 

then for any starting guess x0 ∈ ℝ
k , the sequence {xm}∞

m=0
 created through Method II con-

verges to the unique solution of the AVE (1).

Proof  From Eq. (7), we have

By subtracting (10) from (7), we have

Based on Lemma 2.1 and the absolute values of both sides, we obtain

which can be rewritten as

So,

x̄ = x̄ − 𝜆E[−MAx̄ + NAx̄ − (|x̄| + b)],

̄̃z = ̄̃z − 𝜆E[−MA
̄̃z + NA

̄̃z − (|̄̃z| + b)],

|x̄ − ̄̃z| ≤ R−1S̄|x̄ − ̄̃z|.

x̄ = ̄̃z.

(10)xm = xm−1 + D−1
A
MAx

m − �E[Axm−1 − |xm−1| − b] − D−1
A
MAx

m−1.

xm+1 − xm = xm − xm−1 + D−1
A
MA(x

m+1 − xm) − �EA(xm − xm−1)

+ �E(|xm| − |xm−1|) − D−1
A
MA(x

m − xm−1),

|xm+1 − xm| ≤ |xm − xm−1| + D−1
A
|MA||xm+1 − xm|

− |�EA + D−1
A
MA||xm − xm−1| + �E||xm| − |xm−1||,

≤ |xm − xm−1| + D−1
A
|MA||xm+1 − xm|

− |�EA + D−1
A
MA||xm − xm−1| + �E|xm − xm−1|,

|xm+1 − xm| ≤ (I + �E − |�EA + D−1
A
MA|)|xm − xm−1| + D−1

A
|MA||xm+1 − xm|,

(I − D−1
A
|MA|)|xm+1 − xm| ≤ (I + �E − |�EA + D−1

A
MA|)|xm − xm−1|.
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Evidently, according to Theorem 2.1 in [2, 4], if 𝜌(G−1J) < 1 , the iterative sequence 
{xm}∞

m=0
 developed from Method II leads to the AVE (1) solution.

The uniqueness proof is the same as Theorem 2.1, which is neglected here.

3 � Numerical experiments

Throughout this section of the article, we offer three examples that explain the 
significance of the presented techniques from three distinct standpoints:

•	 The number of iterations (signified as Iter)
•	 The computation time (s) (marked as Time)
•	 The residual vectors (signified as RES)

The stopping criteria is as follows:

In addition, all tests are executed on Intel (C) Core (TM) i5, 4 GB of RAM, CPU 
@ 1.80 GHz, Matlab (R2016a), and the null vector is used as the initial guess in 
Example 3.1.

Numerical investigations are conducted in order to verify the convergence con-
ditions 𝜌(R−1S̄) < 1 and 𝜌(G−1J) < 1 . These outcomes are outlined in Table 1.

As shown in Table 1, we numerically studied the convergence requirements for 
both theorems. Our analysis clearly demonstrates that both strategies satisfy these 
conditions. In addition, we perform the following tests to determine the effective-
ness of the new techniques.

Example 3.1  Supposed A = M + ΨI ∈ ℝ
k×k and Ax⋆ − |x⋆| = b ∈ ℝ

k with
M = tridiag(−1.5I, S,−0.5I) ∈ ℝ

k×k , x⋆ = ((−1)w,w = 1, 2,… , k)T ∈ ℝ
k,

|xm+1 − xm| ≤ G−1J|xm − xm−1|.

RES = ‖b + �xm� − Axm‖ ≤ 10−6.

Table 1   Numerical verification 
of the convergence conditions 
for Theorems 2.1 and 2.2 with 
� = 0.8

Examples k Method I Method II
𝜌(R−1

S̄) �(G−1
J)

3.1 100 0.4862 0.5447
400 0.4941 0.5547

3.2 1000 0.5592 0.5941
3000 0.5662 0.5979

3.3 3600 0.3172 0.5067
6400 0.3302 0.5114
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where S = tridiag(−1.5, 8,−0.5) ∈ ℝ
�×� , I ∈ ℝ

�×� represents the identity or unit 
matrix, and k = �2 . The results are explained in Table 2, while the graphic expres-
sions are illustrated in Figs. 1 and 2.

Table 2presents some iterative outcomes to explain the implementation of the 
proposed approaches. We find that the given approaches become faster if the � 
value is higher. The graphic expression is presented in Figs. 1 and  2. The curves 
in Figs. 1 and  2 illustrate the significance of the recommended techniques using 
various values of �.

Fig. 1   Analysis of the convergence curves for the suggested methods with different � values

Table 2   Experimental calculations for Example 3.1 with Ψ = 4

k � 0.2 0.4 0.6 0.8 1

100 Iter 92 41 24 15 9
Method I Time 0.6475 0.3743 0.3686 0.3263 0.2798

RES 8.349e–07 7.961e–07 5.601e–07 3.447e–07 1.068e–07
Iter 187 64 27 15 10

Method II Time 2.7191 0.4018 0.3014 0.2864 0.2685
RES 8.657e–07 9.777e–07 8.147e–07 3.487e–07 1.840e–07

400 Iter 95 43 25 15 9
Method I Time 2.8984 1.4591 1.0537 0.8743 0.7172

RES 9.336e–07 6.655e–07 5.323e–07 7.318e–07 2.322e–07
Iter 301 73 28 16 10

Method II Time 5.3504 3.0497 1.7462 1.2843 1.0018
RES 1.035e–04 8.964e–07 7.817e–07 5.672e–07 4.395e–07
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Moreover, we extend Example  3.1 and assess the newly designed methods 
in comparison with the method presented in [16] (exposed as SD), the scheme 
stated in [4] (indicated as RA), and the technique described in [11] (defined as 
MG). These results are indicated in Table 3.

Based on Table 3, all experimented techniques can efficiently determine the solu-
tion of the system (1). We observe that the iterations (Iter) and analysis time (Time) 
of the presented techniques are less than those of other techniques.

Fig. 2   Analysis of the convergence curves for the suggested methods with different � values

Table 3   Experimental calculations for Example 3.1 with Ψ = 4

Approaches k 400 900 1600 2500

SD Iter 18 18 19 19
Time 0.3987 1.7600 8.0868 24.6703
RES 6.304e−07 9.6046e−07 4.531e−07 5.691e−07

RA Iter 14 14 14 14
Time 0.2632 1.6627 7.4940 13.0066
RES 3.231e−07 4.187e−07 5.026e−07 5.799e−07

MG Iter 12 13 13 13
Time 0.8933 5.2213 24.1473 86.4593
RES 9.632e−07 3.281e−07 4.542e−07 5.803e−07

Method I Iter 9 9 10 10
Time 0.0829 1.0736 2.1367 4.6428
RES 6.337e−07 9.914e−07 1.610e−07 2.044e−07

Method II Iter 10 10 10 11
Time 0.0938 1.3758 3.1024 6.0695
RES 4.297e−07 6.939e−07 9.481e−07 1.768e−07
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Example 3.2  Suppose A = tridiag(−1, 4,−1) ∈ ℝ
k×k , x⋆ = ((−1)w,w = 1, 2,… , k)T ∈ ℝ

k,
and b = Ax⋆ − |x⋆| ∈ ℝ

k . In Examples 3.2 and 3.3, using the exact stopping cri-
terion and the initial guess as provided in [28]. Furthermore, we compare the newly 
designed methods with the process given in [15] (exposed as NM), the approach 
shown in [8] (indicated as SOR), and the special shift splitting iterative method sug-
gested in [28] (indicated by SSM). Table 4 provides the outcomes of the analysis.

Based on Table 4, all techniques can efficiently and precisely calculate the prob-
lem (1). We demonstrate that our methods (Method I and Method II) perform better 
than those of the NM, SOR, and SSM approaches in expressions of the iterations 
(Iter) as well as computation time (Time).

Example 3.3  Suppose the matrix A ∈ ℝ
k×k is presented by

where S = tridiag(−1, �,−1) ∈ ℝ
�×� , I ∈ ℝ

�×� represents the unit matrix, and 
k = �2 . Calculate b = Ax⋆ − |x⋆| ∈ ℝ

k using x⋆ = (x1, x2, x3,… , xk)
T ∈ ℝ

k such 
that xk = (−1)k . The outcomes are listed in Table 5.

A =

⎧⎪⎨⎪⎩

S, for j = i

−I, for

�
j = i + 1, i = 1, 2,… , k − 1,

j = i − 1, i = 2,… , k,

0. otherwise.

Table 4   Experimental calculations for Example 3.2 with � = 0.97

Approaches k 1000 2000 3000 4000

NM Iter 26 26 26 26
Time 4.2170 18.7970 48.1753 100.2579
RES 9.408e−07 9.416e−07 9.419e−07 9.421e−07

SOR Iter 19 19 19 19
Time 3.1590 14.2079 36.5739 74.4664
RES 7.881e−07 7.885e−07 7.897e−07 7.898e−07

SSM Iter 14 14 14 14
Time 2.929 10.0753 23.0271 65.1347
RES 8.914e−07 8.925e−07 8.929e−07 8.931e−07

Method I Iter 11 11 11 11
Time 2.2669 9.5221 21.5332 62.4024
RES 9.532e−07 9.538e−07 9.539e−07 9.541e−07

Method II Iter 12 12 12 12
Time 2.5873 9.9568 21.8843 63.2067
RES 3.688e−07 3.667e−07 3.661e−07 3.587e−07
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Based on Table 5, all experimented techniques can quickly determine the solu-
tion of the system (1). We observe that the iterations (Iter) and analysis time (Time) 
of the presented technique are less than those of other approaches. Eventually, we 
deduce that our suggested techniques are achievable and valuable for AVEs.

4 � Conclusions

We have presented two new iterative methods to compute the AVEs and determined 
that these procedures converge to the AVE (1) with a suitable choice of parameter � . 
The theoretical analyses as well as numerical investigations have demonstrated that 
the proposed approaches appear promising for solving AVEs.

We have successfully developed two new iterative approaches to solve Eq. (1) 
when the coefficient matrix A is an M-matrix. The next issue to be addressed con-
cerns the more general cases of coefficient matrices.

Appendix

This Appendix demonstrates how to execute the proposed iterative methods. 
Method I for the AVE:

Method II for the AVE:

xm+1 = xm − �E[−MAx
m+1 + NAx

m − (|xm| + b)].

Table 5   Experimental calculations for Example 3.3 with � = 0.97 and � = 8

Approaches k 3600 4900 6400 8100

NM Iter 17 17 17 17
Time 45.5976 104.5182 245.9640 347.2709
RES 7.133e−07 7.172e−07 7.201e−07 7.235e−07

SOR Iter 15 15 15 15
Time 39.5642 93.6924 236.5739 274.4664
RES 7.541e−07 7.569e−07 7.573e−07 7.590e−07

SSM Iter 11 11 11 11
Time 34.2291 68.06189 112.0280 171.3622
RES 7.057e−07 6.944e−07 6.857e−07 6.788e−07

Method I Iter 9 9 9 9
Time 21.2711 59.5480 99.8715 162.4024
RES 4.925e−07 4.519e−07 4.226e−07 4.135e−07

Method II Iter 10 10 10 10
Time 25.6784 63.46895 104.1276 167.8023
RES 6.166e−07 5.506e−07 5.017e−07 5.007e−07
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Both iterative schemes on the right-hand side include xm+1 , which defines the 
unknown vector. Based on Ax − |x| = b, we obtain

Thus, xm+1 can be approximated as follows:

This procedure is named the Picard scheme [27]. The subsequent step is to describe 
the Method I algorithm. Algorithm for Method I:

Method II follows the similar procedure.
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