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Abstract
In this paper, for solving horizontal nonlinear complementarity problem (HNCP), a 
two-step modulus-based matrix splitting iteration method is established. The con-
vergence analysis of the proposed method is presented. Numerical examples are 
reported to show the efficiency of the proposed method.
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splitting iteration method · Two-step method
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1 Introduction

The horizontal nonlinear complementarity problem (HNCP) is a generaliza-
tion of some complementarity problems, such as horizontal linear complemen-
tarity problem (HLCP), nonlinear complementarity problem (NCP), linear com-
plementarity problem (LCP) [4, 7, 8]. Given A,B ∈ ℝ

n×n , q ∈ ℝ
n and a nonlinear 

� ∶ ℝ
n ×ℝ

n
→ ℝ

n , we focus on solving HNCPs with weak nonlinearity, which con-
sist in finding two vectors z, r ∈ ℝ

n such that

(1)Az − Br + q + �(z, r) = 0, z, r ≥ 0 and zTr = 0,
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where for F = (fij),G = (gij) ∈ ℝ
m×n , the order F ≥ (>)G means fij ≥ (>)gij for any 

i and j.
The HNCP can arise in some applications, for example from the discretization 

of the differential equation in hydrodynamic lubrication with complementarity con-
straints and a weak nonlinear source term [5, 9, 12, 13, 18]. Recently, for solving 
the HNCP, by reforming the HNCP to an equivalent implicit fixed-point system, the 
modulus-based matrix splitting (MMS) iteration method was introduced in [16], 
which generalizes the MMS iteration methods for LCP [2], NCP [11, 19] and HLCP 
[14, 15, 28, 30], and was shown to be more efficient than the reduction approaches 
of the HNCP. To see more details on the MMS iteration methods for different com-
plementarity problems, readers can refer to the recent works [17, 21, 24, 26, 27] and 
the references therein.

In particular, among the existing improved techniques of the MMS, the two-step 
splittings had been successfully used in LCP [22, 23], NCP [20, 25] and HLCP [29], 
by making full use of the information contained in the two system matrices. It is 
interesting to investigate the two-step splittings in the MMS of the HNCP. In this 
paper, in order to achieve higher computing efficiency, in Sect. 2, we establish the 
two-step modulus-based matrix splitting (TMMS) iteration method for the HNCP, 
which directly extends the ones in [16] and [29]. In Sect. 3, the convergence theo-
rems of the proposed method are given, which generalize the existing results. Next, 
numerical examples are presented to show the efficiency of the proposed method in 
Sect. 4. Finally, concluding remarks are given in Sect. 5.

Next, we introduce some definitions, notations and existing results.
Let A = (aij) ∈ ℝ

n×n and A = DA − LA − UA = DA − CA , where DA,−LA,−UA 
and −CA denote the diagonal, the strictly lower-triangular, the strictly upper-triangu-
lar and the nondiagonal matrices of A, respectively. By |A| we denote |A| = (|aij|) . ⟨A⟩ = (⟨aij⟩) is the comparison matrix of A, where ⟨aii⟩ = �aii� if i = j and 
⟨aij⟩ = −�aij� if i ≠ j . We call A a Z-matrix if CA ≤ 0 ; a nonsingular M-matrix if 
CA ≤ 0 and A−1 ≥ 0 ; an H-matrix if ⟨A⟩ is a nonsingular M-matrix; an H+-matrix if 
A is an H-matrix with positive diagonal entries; a strictly diagonal dominant (s.d.d.) 
matrix if �aii� > ∑

j≠i

�aij� for all 1 ≤ i ≤ n (e.g., see [1, 3]). If ⟨A⟩ = ⟨M⟩ − �N� , we call 

A = M − N an H-compatible splitting. Denote the identity matrix of order n and the 
Kronecker product by In and “ ⊗ ”, respectively.

2  Two‑step method

First, the MMS iteration method for solving the HNCP is reviewed.
Let A = MA − NA,B = MB − NB be two splittings of A and B, respectively. Then, 

with z = 1

�
(|x| + x) and r = 1

�
�(|x| − x) , the HNCP can be equivalently transformed 

into a system of fixed-point equations

(2)(MB� +MA)x = (NB� + NA)x + (B� − A)|x| − �(q + �(z, r)),
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where � is a positive diagonal parameter matrix and � is a positive constant; see [16] 
for more details. The MMS iteration method is presented based on (2) as follows:

Method 1 [16] Let � ∈ ℝ
n×n be a positive diagonal matrix, � be a positive con-

stant and A = MA − NA,B = MB − NB be two splittings of the matrix A ∈ ℝ
n×n and 

B ∈ ℝ
n×n , respectively. Given an initial vector x(0) ∈ ℝ

n , compute x(k+1) ∈ ℝ
n by 

solving the linear system

Then set z(k+1) =
1

�
(|x(k+1)| + x(k+1)) and r(k+1) =

1

�
�(|x(k+1)| − x(k+1)) for 

k = 0, 1, 2,… , until the iteration sequence {(z(k), r(k))}+∞
k=1

 is convergent.

To achieve high computing efficiency, making use of the information in the 
matrices A and B by two matrix splittings, the TMMS iteration method for solv-
ing the HNCP is established as follows:

Method 2 Two-step modulus-based matrix splitting iteration method for 
the HNCP For any given positive diagonal matrix � ∈ ℝ

n×n and 𝛾 > 0 , let 
A = MA1

− NA1
= MA2

− NA2
 be two splittings of the matrix A ∈ ℝ

n×n , while 
B = MB1

− NB1
= MB2

− NB2
 be two splittings of the matrix B ∈ ℝ

n×n . Given an ini-
tial vector x(0) ∈ ℝ

n , compute x(k+1) ∈ ℝ
n by solving

Then set z(k+1) =
1

�
(|x(k+1)| + x(k+1)) and r(k+1) =

1

�
�(|x(k+1)| − x(k+1)) for 

k = 0, 1, 2,… , until the iteration sequence {(z(k), r(k))}+∞
k=1

 is convergent.

Furthermore, if we take

we can obtain the two-step modulus-based accelerated overrelaxation (TMAOR) 
iteration method. Taking � = � and � = � = 1 , the TMAOR iteration method 
reduces to the two-step modulus-based successive overrelaxation (TMSOR) itera-
tion method and the two-step modulus-based Gauss-Seidel (TMGS) iteration 
method, respectively.

It is noted that Method 2 generalizes some existing methods for various com-
plementarity problems:

(MB� +MA)x
(k+1) = (NB� + NA)x

(k) + (B� − A)|x(k)| − �(q + �(z, r)).

(3)

⎧⎪⎪⎨⎪⎪⎩

(MB1
� +MA1

)x
(k+

1

2
)
= (NB1

� + NA1
)x(k) + (B� − A)�x(k)�

− �(q + �(z(k), r(k))),

(MB2
� +MA2

)x(k+1) = (NB2
� + NA2

)x
(k+

1

2
)
+ (B� − A)�x(k+ 1

2
)�

− �(q + �(z
(k+

1

2
), r(k+

1

2
)
)).

(4)

{
MA1

=
1

�
(DA − �LA),MA2

=
1

�
(DA − �UA),

MB1
=

1

�
(DB − �LB),MB2

=
1

�
(DB − �UB),
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• if MA1
= MA2

,NA1
= NA2

,MB1
= MB2

 and NB1
= NB2

 , Method  2 reduces to 
Method 1.

• if MB1
= MB2

= I,NB1
= NB2

= 0 and �(z, r) = �(z) , Method 2 reduces to the two-
step modulus-based matrix splitting iteration method for the NCP [20, 25].

• if � = 0 , Method 2 reduces to the two-step modulus-based matrix splitting iteration 
method for the HLCP [29].

• if MB1
= MB2

= I,NB1
= NB2

= 0 and � = 0 , Method  2 reduces to the two-step 
modulus-based matrix splitting iteration method for the LCP [22].

3  Convergence analysis

Some useful lemmas are given first.

Lemma 1 [6] Let A be an H-matrix. Then �A−1� ≤ ⟨A⟩−1.

Lemma 2 [10] Let B ∈ ℝ
n×n be an s.d.d. matrix. Then, ∀C ∈ ℝ

n×n,

holds, where e = (1, 1,… , 1)T ∈ ℝ
n.

Lemma 3 [3] If A is a nonsingular M-matrix, then there exists a positive diagonal 
matrix D, such that AD is an s.d.d. matrix with positive diagonal entries.

In the following discussion, we assume that the HNCP has an unique solution 
(z∗, r∗) . Moreover, we also assume that �(z, r) satisfies the smoothness assumptions as 
those in [16] as below: let

be differentiable with

where �zi
,�ri

≥ 0, i = 1, 2,… , n.
Then by the same deduction as that in Sect. 3 of [16], we have

with �(k)
z

≤ �z and �(k)
r

≤ �r , where

��B−1C��∞ ≤ max
1≤i≤n

(�C�e)i
(⟨B⟩e)i

�(z, r) =
(
�1(z1, r1),�2(z2, r2),… ,�n(zn, rn)

)T

0 ≤
��i

�zi
≤ �zi

and 0 ≤
��i

�ri
≤ �ri

,

(5)
�(z(k), r(k)) − �(z∗, r∗)

=
1

�

[
(�(k)

z
−�(k)

r
�)(x(k) − x∗) + (�(k)

z
+�(k)

r
�)(|x(k)| − |x∗|)],
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and �i is a convex combination of (z(k)
i
, r

(k)

i
) and (z∗

i
, r∗

i
) , i = 1, 2,… , n.

Then, by (2) and straightforward computation, we can get that x∗ = �

2
(z∗ −�−1r∗) 

satisfies the implicit fixed-point equations

By subtracting (6) from (3), we have the error equations:

To prove lim
k→+∞

z(k) = z∗ and lim
k→+∞

r(k) = r∗ , we need only to prove lim
k→+∞

x(k) = x∗.

Theorem  3.1 Let � = (�jj) be an n × n positive diagonal matrix and A,B ∈ ℝ
n×n 

be two H+-matrices. Let D be a positive diagonal matrix such that ⟨A⟩D is an s.d.d. 
matrix. Assume that A = MA1

− NA1
= MA2

− NA2
 and B = MB1

− NB1
= MB2

− NB2
 

are two H-compatible splittings of A and B, respectively; |bij|�jj ≤ |aij| (i ≠ j) and 
sign(bij) = sign(aij) (bij ≠ 0) , for all i,  j; and DB ≥ �r . Then for any initial vector 
x(0) ∈ ℝ

n , the iteration sequence {(z(k), r(k))}+∞
k=1

 generated by Method2 converges to 
the unique solution (z∗, r∗) of the HNCP provided

or

Proof By the assumption of H-compatible splittings, we have

�(k)
z

= diag

(
��1

�z1
(�1),

��2

�z2
(�2),… ,

��n

�zn
(�n)

)
,

�(k)
r

= diag

(
��1

�r1
(�1),

��2

�r2
(�2),… ,

��n

�rn
(�n)

)
,

�z = diag(�z1
,�z2

,… ,�zn
),

�r = diag(�r1
,�r2

,… ,�rn
),

(6)
{

(MB1
� +MA1

)x∗ = (NB1
� + NA1

)x∗ + (B� − A)|x∗| − �(q + �(z∗, r∗)),

(MB2
� +MA2

)x∗ = (NB2
� + NA2

)x∗ + (B� − A)|x∗| − �(q + �(z∗, r∗)).

(7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(MB1
� +MA1

)(x
(k+

1

2
)
− x∗) = (NB1

� + NA1
)(x(k) − x∗)

+ (B� − A)(�x(k)� − �x∗�)
− �[�(z(k), r(k)) − �(z∗, r∗)]

(MB2
� +MA2

)(x(k+1) − x∗) = (NB2
� + NA2

)(x
(k+

1

2
)
− x∗)

+ (B� − A)(�x(k+ 1

2
)� − �x∗�)

− �[�(z
(k+

1

2
), r(k+

1

2
)
) − �(z∗, r∗)].

(8)(DB − �r)� ≥ (DA + �z)

(9)(|CA| + 𝛹z)De < (DB − 𝛹r)𝛺De and (DB − min
1≤i≤n

𝜓ri
)𝛺 ≤ DA + min

1≤i≤n
𝜓zi

.
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Since |bij|�jj ≤ |aij| (i ≠ j) and sign(bij) = sign(aij) (bij ≠ 0) , for all i, j, we get

By (10) and (11), we can obtain

Therefore, ⟨MB1
� +MA1

⟩D is an s.d.d. matrix, which implies that MB1
� +MA1

 is an 
H-matrix. Then, by Lemma 1, (5) and the first equality of (7), we have

where

and

Similarly, by the second equality of (7), we have

where

(10)

⟨MB1
� +MA1

⟩De
≥ (⟨MB1

⟩� + ⟨MA1
⟩)De

= (⟨A⟩ + ⟨B⟩� + �NA1
� + �NB1

��)De

≥ (DA + DB� − �CA� − �CB��)De.

(11)|CA| ≥ |CB|� ⇒ |CA + CB�| + |CA − CB�| = 2|CA|.

⟨MB1
𝛺 +MA1

⟩De
≥

�
(2DA − 2�CA� + 𝛹z + 𝛹r𝛺)De ≥ 2⟨A⟩De > 0, if (8) holds;

(DA − �CB�𝛺 + 𝛹z + 𝛹r𝛺)De > (DA − �CA�)De = ⟨A⟩De > 0, if (9) holds.

�x(k+ 1

2
)
− x∗�

=
���(MB1

� +MA1
)−1

�
(NB1

� + NA1
)(x(k) − x∗) + (B� − A)(�x(k)� − �x∗�)

−�[�(z(k), r(k)) − �(z∗, r∗)]}
���

=
���(MB1

� +MA1
)−1

�
(NB1

� + NA1
−�(k)

z
+�(k)

r
�)(x(k) − x∗)

+(B� − A −�(k)
z

−�(k)
r
�)(�x(k)� − �x∗�)����

≤ ⟨MB1
� +MA1

⟩−1(�NB1
� + NA1

−�(k)
z

+�(k)
r
��

+ �B� − A −�(k)
z

−�(k)
r
��)�x(k) − x∗�

≐ P1�x(k) − x∗�
≐ M

−1
1
N1�x(k) − x∗�,

M1 = ⟨MB1
� +MA1

⟩

N1 = |NB1
� + NA1

−�(k)
z

+�(k)
r
�| + |B� − A −�(k)

z
−�(k)

r
�|.

|x(k+1) − x∗| ≤ P2|x(k+
1

2
)
− x∗| = M

−1
2
N2|x(k+

1

2
)
− x∗|,
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and

By Lemma 2, we have

If (8) holds, we obtain

If (9) holds, we obtain

Then, by (12), (13) and (14), we have ||D−1P1D||∞ < 1 . Similarly, we can get

if (8) or (9) holds. Hence the next inequality holds:

M2 = ⟨MB2
� +MA2

⟩

N2 = |NB2
� + NA2

−�
(k+

1

2
)

z +�
(k+

1

2
)

r �| + |B� − A −�
(k+

1

2
)

z −�
(k+

1

2
)

r �|.

(12)||D−1P1D||∞ = ||(M1D)
−1(N1D)||∞ ≤ max

1≤i≤n

(N1De)i

(M1De)i
.

(13)

M1De −N1De

= (⟨MB1
𝛺 +MA1

⟩ − �NB1
𝛺 + NA1

−𝛷(k)
z

+𝛷(k)
r
𝛺�

− �B𝛺 − A −𝛷(k)
z

−𝛷(k)
r
𝛺�)De

≥ (⟨MB1
𝛺⟩ + ⟨MA1

⟩ − �NB1
𝛺� − �NA1

� −𝛷(k)
z

−𝛷(k)
r
𝛺 − DB𝛺 + DA

+𝛷(k)
z

+𝛷(k)
r
𝛺 − �CA� + �CB𝛺�)De

= 2⟨A⟩De
> 0.

(14)

M1De −N1De

= (⟨MB1
𝛺 +MA1

⟩ − �NB1
𝛺 + NA1

−𝛷(k)
z

+𝛷(k)
r
𝛺�

− �B𝛺 − A −𝛷(k)
z

−𝛷(k)
r
𝛺�)De

≥ (⟨MB1
𝛺⟩ + ⟨MA1

⟩ − �NB1
𝛺� − �NA1

� −𝛷(k)
z

−𝛷(k)
r
𝛺 + DB𝛺 − DA

−𝛷(k)
z

−𝛷(k)
r
𝛺 − �CA� + �CB𝛺�)De

≥ 2[(DB − 𝛹r)𝛺 − �CA� − 𝛹z]De

> 0.

||D−1P2D||∞ < 1

𝜌(P2P1)

= 𝜌(D−1P2P1D)

≤ ||D−1P2DD
−1P1D||∞

≤ ||D−1P2D||∞||D−1P1D||∞
< 1,
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which implies that lim
k→+∞

x(k) = x∗ , proving the claim.   ◻

Remark 1 If we take �(z, r) = 0 , which implies �z = �r = 0 , then Theorem  3.1 
reduces to Theorem 3.1 of [29].

Remark 2 If �ri
= �rj

 for any i, j, then (9) can be simplified to

Note that the assumption on the matrix splittings in Theorem 3.1 are H-compati-
ble splittings. It is known that the TMAOR with 𝛼 > 1 does not belong to the cases. 
Next, we present the convergence results for the TMAOR.

Lemma 4 [29] Let A, B be two H+-matrices. If

there exists a positive diagonal matrix D̄ , such that

is an s.d.d. matrix.

Theorem 3.2 Let A,B ∈ ℝ
n×n be two H+-matrices and � ∈ ℝ

n×n be a positive diag-
onal matrix satisfying (DB − �r)� ≥ (DA + �z) . Furthermore, for i, j = 1, 2,… , n , 
let |bij|�jj ≤ |aij|(i ≠ j) and sign(bij) = sign(aij)(bij ≠ 0) . Then, the iteration sequence 
(z(k), r(k))+∞

k=1
 generated by the TMAOR iteration method converges to the unique solu-

tion (z∗, r∗) of (1) for any initial vector x(0) ∈ ℝ
n provided

Proof With the same notations and discussion as the proof of Theorem 3.1, let D̄ 
be the positive diagonal matrix given by Lemma 4. If (DB − �r)� ≥ (DA + �z) , by 
Lemma 4, (4) and (15), we have

(|CA| + 𝛹z)De < (DB − 𝛹r)𝛺De ≤ (DA + min
1≤i≤n

𝜓zi
)De.

0 < 𝛼 <
1

𝜌
[
(DA + DB𝛺)−1(DB𝛺 + |CA|)

] ,

[
1 + 𝛼 − |1 − 𝛼|

𝛼
DA +

1 − 𝛼 − |1 − 𝛼|
𝛼

DB𝛺 − 2|CA|
]
D̄

(15)0 < 𝛽 ≤ 𝛼 <
1

𝜌
[
(DA + DB𝛺)−1(DB𝛺 + |CA|)

] .
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Hence M1D̄ is an s.d.d. matrix. Then by Lemma 1, we have ||D̄−1P1D̄||∞ < 1 . Sim-
ilarly, we can get ||D̄−1P2D̄||∞ < 1 too. Therefore we also have 𝜌(P2P1) < 1 , which 
implies the TMAOR iteration method is convergent.   ◻

Remark 3 Clearly, Theorem 3.2 reduces to Theorem 3.2 of [29] when �(z, r) = 0.

By the proof of Theorem 3.2, it is easy to have the convergence results for the 
MAOR iteration method which was not considered in [16].

Corollary 1 With the same notations and assumptions as Theorem 3.2, if (15) holds, 
the MAOR iteration method for the HNCP converges globally.

4  Numerical examples

In this section, numerical examples are given to show the efficiency of the proposed 
method. The computations were run on an Intel(R) Core(TM) (2.50 GHz CPU and 
4.00 GB RAM).

Consider the following two examples in [16].

Example 1 [16] Consider the 2-D boundary problem:

where z(u, v), r(u, v), q(u, v) are three 2-D mapings and �, � are real parameters.

M1D̄e −N1D̄e

=
�⟨MA1

+MB1
𝛺⟩ − �NA1

+ NB1
𝛺 −𝛷(k)

z
+𝛷(k)

r
𝛺�

−�B𝛺 − A −𝛷(k)
z

−𝛷(k)
r
𝛺��D̄e

=

�
1

𝛼
(DA + DB𝛺) −

𝛽

𝛼
�LA + LB𝛺� − � �1 − 𝛼�

𝛼
(DA + DB𝛺) −𝛷(k)

z
+𝛷(k)

r
𝛺�

−
�𝛽 − 𝛼�

𝛼
�LA + LB𝛺� − �UA + UB𝛺� − �DB𝛺 − DA −𝛷(k)

z
−𝛷(k)

r
𝛺�

−�CB𝛺 − CA�
�
D̄e

≥

�
1 + 𝛼 − �1 − 𝛼�

𝛼
DA +

1 − 𝛼 − �1 − 𝛼�
𝛼

DB𝛺 − �CB𝛺 + CA�
−�CB𝛺 − CA�

�
D̄e

=

�
1 + 𝛼 − �1 − 𝛼�

𝛼
DA +

1 − 𝛼 − �1 − 𝛼�
𝛼

DB𝛺 − 2�CA�
�
D̄e

> 0.

△z +
�2r

�2u
+ �z + �r − q − �(z, r) = 0, z ≥ 0, r ≥ 0 and zTr = 0,
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By discretizing the problem using five-point difference scheme with suit-
able boundary conditions, one can get the HNCP. More concretely, the matri-
ces A and B are given by A = Â + 𝜇In and B = B̂ + 𝜈In , respectively, where 
Â = blktridiag(−I

m
, S,−I

m
) ∈ ℝ

n×n, B̂ = I
m
⊗ S ∈ ℝ

n×n, S = tridiag(−1, 4,−1) ∈ ℝ
m×m 

and n = m2.

Example 2 [16] Let A = Â + 𝜇In,B = B̂ + 𝜈In and q = Az∗ − Bw∗ , where n = m2 , 
Â = blktridiag(−1.5Im, S,−0.5Im) ∈ ℝ

n×n, B̂ = blktridiag(−𝜏Im, S,−𝜏Im) ∈ ℝ
n×n  , 

S = tridiag(−1.5, 4,−0.5) ∈ ℝ
m×m and �, �, � are real parameters.

Consider the nonlinear functions as below:

Note that all these five functions satisfy the smoothness assumptions given in Sect. 3 
with �z = �r = I.

Next, we compare the TMSOR� with the MSOR� for Example  1 and Exam-
ple  2, where the subscript � denotes the relaxation parameter. Let � = 1 , 
� = (DB − �r)

−1(DA + �z) , all initial iteration vectors be x(0) = e and the toler-
ance be set at 10−10 . In order to compare with the theoretical result, the upper 
bounds of � in (15) are presented in Table 1 for Example 1 and Example 2. Note 
that the upper bounds of � in Example 1 listed in Table 1 are all equal to 1 with 
2 decimal digit accuracy. However, the exact bounds are all larger than 1, guar-
anteed by the proof of Lemma 4 in [29]. On the other hand, we also show the 
numerical results when � = 1.2 to analyze the behavior of the methods in more 
critical cases.

Numerical results are reported in Tables  2 and  3, where “time” and “iter” 
denote the CPU time in seconds and the iteration steps, respectively. Specially, 
the percentages of CPU time saved by the TMSOR iteration method from the 
MSOR iteration method (denoted by “save”) are also presented:

�1(z, r) =
z + r + sin(z)cos(z) + sin(r)cos(r)

2
,

�2(z, r) = −
1

1 + z + r
,

�3(z, r) =
arctan(z) + arctan(r)

2
,

�4(z, r) = sin(z + r),

�5(z, r) = ln(1 + z + r).

Table 1  Upper bounds 
of � in (15) when 
� = (D

B
− �

r
)−1(D

A
+ �

z
)

m Example 1 Example 2

128 1.00 1.06
256 1.00 1.06
512 1.00 1.06
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It is also noted that the “best” time for each set of experiments is highlighted by the 
bold font in Tables 2 and 3.

By the numerical results presented in Tables  2 and  3, the MSOR and the 
TMSOR iteration methods converge in all cases.

save =
timeMSOR − timeTMSOR

timeMSOR

× 100%.

Table 2  Numerical results of Example 1 when � = 0 and � = 4

�(z, r) Method m = 128 m = 256 m = 512

Iter Time Save (%) Iter Time Save (%) Iter Time Save (%)

�
1

MSOR
0.8

60 0.2423 61 0.8765 63 4.8783
TMSOR

0.8
27 0.1300 46.35 28 0.5041 42.49 28 2.7360 43.91

MSOR
1.0

41 0.1825 42 0.6194 43 3.3158
TMSOR

1.0
19 0.0998 45.32 19 0.3662 40.88 20 2.0279 38.84

MSOR
1.2

53 0.2146 54 0.8215 56 6.5095
TMSOR

1.2
32 0.1409 34.34 33 0.6391 22.20 33 5.1911 20.25

�
2

MSOR
0.8

82 0.2394 85 0.9349 87 5.3506
TMSOR

0.8
41 0.1832 23.48 42 0.6808 27.18 43 3.9220 26.70

MSOR
1.0

59 0.1739 60 0.6708 62 3.8524
TMSOR

1.0
29 0.1190 31.57 29 0.4925 26.58 30 2.6932 30.09

MSOR
1.2

46 0.1503 47 0.5851 48 3.2401
TMSOR

1.2
35 0.1549 − 3.06 35 0.5908 − 0.97 36 3.3655 − 3.87

�
3

MSOR
0.8

75 0.2669 77 1.0292 79 5.7006
TMSOR

0.8
36 0.1645 38.37 37 0.7566 26.49 38 3.6788 35.47

MSOR
1.0

53 0.2105 54 0.6600 56 3.8958
TMSOR

1.0
25 0.1125 46.56 26 0.4451 32.56 26 2.4416 37.33

MSOR
1.2

49 0.2031 51 0.7009 52 3.6796
TMSOR

1.2
34 0.1464 27.92 35 0.6040 13.83 35 3.4294 6.80

�
4

MSOR
0.8

57 0.2091 59 0.7031 60 3.9675
TMSOR

0.8
25 0.1242 40.60 26 0.5347 23.95 26 2.3594 40.53

MSOR
1.0

39 0.1520 40 0.4974 41 2.9125
TMSOR

1.0
19 0.0898 40.92 19 0.4081 17.95 19 1.9100 34.42

MSOR
1.2

48 0.1789 49 0.5989 51 3.5076
TMSOR

1.2
33 0.1529 14.53 33 0.5776 3.56 34 3.3970 3.15

�
5

MSOR
0.8

63 0.2332 65 0.9272 67 5.2885
TMSOR

0.8
29 0.1332 42.88 30 0.5257 43.30 31 3.0959 41.46

MSOR
1.0

44 0.1755 45 0.6151 46 3.4869
TMSOR

1.0
20 0.0996 43.25 21 0.3946 35.85 21 2.0735 40.53

MSOR
1.2

45 0.2176 46 0.6261 47 3.8525
TMSOR

1.2
34 0.1627 25.23 34 0.5732 8.45 35 3.6354 5.64
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• When � = 0.8 and � = 1.0 , satisfying (15), due to the two-step iteration, the 
iteration step of the TMSOR is about half of those of the MSOR for each 
case. Furthermore, the TMSOR always converges faster than the MSOR and 
the TMSOR can save 16%-53% CPU time from those of the MSOR for a given 
�.

• When � = 1.2 , outside (15), the CPU time of the TMSOR are also less than 
those of the MSOR except for �2 in Example 1.

Table 3  Numerical results of Example 2 when � = 0 and � = 4

�(z, r) Method m = 128 m = 256 m = 512

Iter Time Save (%) Iter Time Save (%) Iter Time Save (%)

�
1

MSOR
0.8

51 0.2180 53 0.8037 54 4.2784
TMSOR

0.8
26 0.1281 41.24 26 0.4883 39.24 27 2.7175 36.48

MSOR
1.0

33 0.1563 34 0.5037 34 2.7800
TMSOR

1.0
19 0.0993 36.47 19 0.3519 30.14 20 2.0050 27.88

MSOR
1.2

87 0.3391 90 1.3156 93 7.3145
TMSOR

1.2
32 0.1571 53.67 33 0.6965 47.06 33 3.9030 46.64

�
2

MSOR
0.8

72 0.2071 74 0.8252 75 4.9977
TMSOR

0.8
39 0.1727 16.61 40 0.6648 19.44 41 3.8966 22.03

MSOR
1.0

48 0.1579 49 0.5364 51 3.2683
TMSOR

1.0
25 0.1058 33.00 26 0.4122 23.15 26 2.4139 26.14

MSOR
1.2

67 0.2086 68 0.7480 70 4.6535
TMSOR

1.2
35 0.1554 25.50 35 0.5919 20.87 36 3.4527 25.80

�
3

MSOR
0.8

65 0.2803 67 0.9268 68 5.3540
TMSOR

0.8
35 0.1864 33.50 36 0.6484 30.04 37 3.6413 31.99

MSOR
1.0

43 0.1659 44 0.5543 45 3.2330
TMSOR

1.0
23 0.1066 35.74 23 0.4014 27.58 23 2.2149 31.49

MSOR
1.2

78 0.2644 80 1.0101 83 6.0045
TMSOR

1.2
34 0.1451 45.12 35 0.6294 37.69 35 3.4899 41.88

�
4

MSOR
0.8

49 0.1761 50 0.6115 51 3.5076
TMSOR

0.8
23 0.1101 37.48 24 0.4270 30.17 25 2.3959 31.69

MSOR
1.0

31 0.1176 32 0.4072 32 2.2810
TMSOR

1.0
19 0.0946 19.56 19 0.3297 19.03 19 1.8088 20.70

MSOR
1.2

72 0.2356 74 0.8973 76 5.2996
TMSOR

1.2
33 0.1582 32.85 33 0.5724 36.21 34 3.3270 37.22

�
5

MSOR
0.8

54 0.2068 56 0.7699 57 4.3207
TMSOR

0.8
28 0.1334 35.49 29 0.5128 33.39 29 2.8660 33.67

MSOR
1.0

35 0.1504 36 0.5016 37 2.8037
TMSOR

1.0
20 0.1009 32.91 21 0.3604 28.15 21 2.0409 27.21

MSOR
1.2

65 0.2263 67 0.9407 68 5.2197
TMSOR

1.2
34 0.1478 34.69 34 0.6196 34.13 35 3.4937 33.07
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In summary, by the two-step technique, the TMSOR can significantly accelerate the 
convergence rate of the MSOR with � in (15) and the TMSOR performs the best 
when � = 1.

5  Conclusions

We have established the TMMS iteration method for the HNCP by employing two-
step matrix splittings, which generalizes the MMS iteration method for the HNCP 
in [16] and the TMMS iteration method for HLCP in [29]. The convergence results 
include and extend some existing results. The effectiveness of the TMMS iteration 
method is shown by numerical experiments. It is worth noticing by the numerical 
results that the upper bound of � in (15) may be enlarged. How to improve the con-
vergence analysis is the future work.

On the other hand, it is known that multisplitting methods are well-suited for 
parallel computations. The two-step methods had been coupled with multisplitting 
techniques in modulus-based methods for LCPs [23]. In the recent work [17], the 
multisplitting techniques had been applied to HLCPs successfully. It is also an inter-
esting topic to examine the two-step multisplitting methods for HNCP as well based 
on similar techniques for LCPs and using the multisplittings of the HLCPs.
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