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Abstract
The rule 184 fuzzy cellular automaton is regarded as a mathematical model of traffic 
flow because it contains the two fundamental traffic flow models, the rule 184 cel-
lular automaton and the Burgers equation, as special cases. We show that the funda-
mental diagram (flux–density diagram) of this model consists of three parts: a free-
flow part, a congestion part and a two-periodic part. The two-periodic part, which 
may correspond to the synchronized mode region, is a two-dimensional area in the 
diagram, the boundary of which consists of the free-flow and the congestion parts. 
We prove that any state in both the congestion and the two-periodic parts is stable, 
but is not asymptotically stable, while that in the free-flow part is unstable. Tran-
sient behaviour of the model and bottle-neck effects are also examined by numerical 
simulations. Furthermore, to investigate low or high density limit, we consider ultra-
discrete limit of the model and show that any ultradiscrete state turns to a travelling 
wave state of velocity one in finite time steps for generic initial conditions.
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1  Introduction

In modern society, efficient transportation system for goods and people is indispen-
sable to the foundation of industry, hence it is necessary to analyse the system in 
detail. However, like the collective behaviour of cars on highways, it is generally 
very difficult to test and characterize them directly. Therefore mathematical model-
ling of traffic flow has been performed since 1950s [9, 17] and various models have 
been constructed to reproduce empirical traffic flows. In the model, rigorous analy-
sis and numerical simulations are used to clarify the basic properties such as traffic 
jams, density-flow diagram, bottleneck effect, etc. [5, 13]. The models are roughly 
classified into a macroscopic model and a microscopic model. A macroscopic model 
is usually described by equations of macroscopic variables such as car density and 
average car velocity. From analogy to flow of molecules in a liquid or a gas, the 
equations are often derived from the fundamental equations of fluid dynamics [12]. 
A simple equation for a macroscopic traffic model is the Burgers equation:

Here �(x, �) (x, � ∈ ℝ) is the normalized density of cars at position x and time � in 
appropriate units. Equation (1) has a shock wave solution

which shows that traffic jams propagate in the opposite direction of car movement, 
that is consistent with actual traffic flow. While, in a microscopic model, a car is 
represented as a self-driven particle that moves in one direction, and its velocity 
changes depending on its position and/or speed relative to other particles [1, 18]. A 
cellular automaton (CA) traffic model is a typical microscopic model [14], in which 
the dynamics of cars is discretized in both time and space. Accordingly a state of 
traffic flow is expressed by an array of cells that take only finite number of states, 
and is updated in discrete time steps by a simple time evolution rule. One of the most 
fundamental CA traffic model is the rule 184 CA in the elementary CAs (ECAs) 
defined by Wolfram [21]. An ECA is a one-dimensional two-states CA, and a state 
of a cell is updated with those of its adjacent two cells and itself at the previous time 
step. Let us denote by ut

n
 ∈ {0, 1} the state of nth cell at time step t ( n, t ∈ ℤ ). The 

updating rule for the rule 184 CA is given as

As a traffic model, we suppose that a single-lane road is divided into pieces of an 
appropriate inter-vehicle distance and number them in the direction of traffic flow. 
If there is a car in the nth section at time step t, we put ut

n
= 1 , otherwise ut

n
= 0 . 

Equation (2) means that a car will move to the next section if and only if it is not 
occupied by the car in front. Although the rule 184 is very simple, it can reproduce 

(1)��

��
(x, �) = 2�(x, �)

��

�x
(x, �) +

�2�

�x2
(x, �).

𝜂(x, 𝜏) =
k

1 + e−kx−k
2𝜏

(k > 0)

(2)ut+1
n

=

{
1 (ut

n−1
= 1, ut

n
= 0) or (ut

n
= ut

n+1
= 1)

0 otherwise
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the congestion phenomenon; the fundamental diagram, which gives the relation of 
the flux (the average velocity of cars multiplied by the density of them) to the den-
sity, shows sharp transition from free-flow region to congested region as the density 
of cars increases. It is noted that the rule 184 CA can be regarded as the ultradiscrete 
analogue of the Burgers equation [16].

In this article, we investigate a traffic model [7], which may be considered as a 
macroscopic extension of the rule 184 CA. We derive the model in the next section 
and show that it includes the rule 184 CA in a special case and that its continuous 
limit gives the Burgers equation. In Sect.  3, all the stationary states are obtained 
and classified for cyclic boundary conditions, and we present the fundamental dia-
grams of the model and prove that this model has stable two-dimensional region 
of so called synchronized mode [8, 10] as well as free-flow region and congested 
region. For open boundary conditions, we show analytic expression of the steady 
states and discuss the bottleneck effect with numerical simulations. In Sect. 4, we 
perform ultradiscrete analysis of the model to examine travelling waves in low den-
sity, and prove that any initial state turns to a travelling wave state in finite time 
steps. Section 5 is devoted to the concluding remarks.

2 � Rule 184 fuzzy CA

We consider a multi-lane road and divide it into one-dimensional array of sections 
by appropriate distance �x (Fig. 1). Let N(x, �) be a number of cars in the section 
[x, x + �x] at time � . Because of equation of continuity, we have

where J(x, �) is the flux of cars at position x and time � , and, roughly speaking, is 
equal to the average velocity of cars multiplied by the density of cars. The average 
velocity in general depends on the density of cars and is a decreasing function of 

(3)
N(x, � + ��) − N(x, t)

��
=

J(x, �) − J(x + �x, �)

�x
,

Fig. 1   Schematic figure for the present traffic model
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the density. The function is sometimes called k–v relation, and is approximately a 
linearly decreasing function [6, 15]. Hence we may assume

where Nmax is the maximum number of cars in a section.
Let us normalize Eq. (3). We define

and, accordingly, we put

Hence, from Eqs.  (3), (5) and (6), the equation of continuity is scaled as

From (4), the normalized flux jt
n
 may be given as

Therefore we have

Note that, from (7), if 0 ≤ �t
n−1

, �t
n+1

≤ 1 , then

Thus, for any initial state {�t=0
n

} ( ∀n, 0 ≤ �0
n
≤ 1) , it holds that ∀n, ∀t, 0 ≤ �t

n
≤ 1 . 

Furthermore, if ∀n , �0
n
∈ {0, 1} , then ∀n, ∀t, �t

n
∈ {0, 1} and

which is the same time evolution rule as that of the rule 184 CA (2). Since (7) is a 
discrete dynamical system in both time and space, and its dependent variables take 
continuous values in [0, 1], we can consider (7) as a continuous CA. A continuous 
CA the updating rule of which is given by fuzzification of the original Boolian CA is 
called a fuzzy CA (FCA) [4]. Hence, we call the dynamical system described by (7) 
the rule 184 FCA, or FCA184 in abbreviation.

To consider a continuous limit of (7) with respect to its independent variables, 
we put (5) into (7),

(4)J(x, �) ∝ N(x − �x, �)

(
1 −

N(x, �)

Nmax

)
,

(5)�t
n
∶=

N(n�x, t��)

Nmax

(0 ≤ �t
n
≤ 1),

(6)jt
n
∶=

��

Nmax�x
J(n�x, t��).

�t+1
n

− �t
n
= jt

n
− jt

n+1
.

jt
n
= �t

n−1
(1 − �t

n
).

(7)�t+1
n

= �t
n−1

(1 − �t
n
) + �t

n
�t
n+1

.

0 ≤ �t+1
n

≤ (1 − �t
n
) + �t

n
= 1.

�t+1
n

=

{
1 (�t

n−1
= 1, �t

n
= 0) or (�t

n
= �t

n+1
= 1)

0 otherwise
,
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As a small fluctuation around Nmax

2
 , we introduce �(x, �) by the following formula:

By taking Taylor series expansion

we have

Thus, to take a limit �x → 0 , �� → 0 with constraint �x
2

2��
= 1 , we obtain the Burgers 

equation (1). Thus we find that the FCA184 (7) contains the rule 184 CA as a spe-
cial case, and that the density fluctuation of FCA184 around �t

n
=

1

2
 is described by 

the Burgers equation.
The Burgers equation has been ultradiscretized into a CA model of traffic flow, 

which is called the Burgers Cellular Automaton (BCA) [16]. The BCA is given as

Here L is a positive integer (the capacity parameter).1 When L = 1 , this is equiva-
lent to the rule 184 CA. As mentioned above, if we impose the initial condition on 
FCA184 as �t=0

n
∈ {0, 1} , it turns to the rule 184 CA. Hence they are exactly the 

same models with each other in this limiting situation.
When we rewrite FCA184 with scaling � →

1

L
� , we have

N(x, � + ��)

Nmax

=

[
N(x − �x, �)

Nmax

(
1 −

N(x, �)

Nmax

)
+

N(x, �)N(x + �x, �)

N2
max

]
.

N(x, �)

Nmax

=
1

2
(1 + �x�(x, �)).

N(x, � + ��)

Nmax

=
1

2
(1 + �x�(x, � + ��))

=
1

2

[
1 + �x

{
�(x, �) + ��

��

��
(x, �) + O(��2)

}]
,

N(x ± �x, �)

Nmax

=
1

2
(1 + �x�(x ± �x, �))

=
1

2

[
1 + �x

{
�(x, �) ± �x

��

�x
(x, �) +

�x2

2

�2�

�x2
(x, �) + O(�x3)

}]
,

��

��
(x, �) + O(��) =

�x2

��
�(x, �)

��

�x
(x, �) +

�x2

2��

�2�

�x2
(x, �) + O

(
�x3

��

)
.

�t+1
n

= �t
n
+min

[
�t
n−1

, L − �t
n

]
−min

[
�t
n
, L − �t

n+1

]
.

�t+1
n

= �t
n
+

1

L
�t
n−1

(L − �t
n
) −

1

L
�t
n
(L − �t

n+1
)

1  They also introduce another parameter M, but it can be eliminated with simple variable transformation 
and we do not discuss it for simplicity.



584	 K. Higashi et al.

1 3

Thus we find that the difference between FCA184 and BCA can be considered as the 
difference of the definition of the car flux jt

n
;

Note that BCA is closed under �t
n
∈ {0, 1, 2,… , L} , while the scaled FCA184 is 

closed under 0 ≤ �t
n
≤ L.

3 � Stationary states and fundamental diagram of FCA184

Statistical properties of traffic flow are empirically investigated by the fundamen-
tal diagram, the diagram which displays the relation between density and flux, 
and it is one of the most important objects which characterize a traffic model. 
To establish the fundamental diagram of FCA184, we adopt a periodic boundary 
condition in which the total number of cars does not change:

An interesting feature of stationary and asymptotically stationary states is that they 
depend on the parity of N. We shall discuss other boundary conditions later in this 
section.

The average density ⟨�⟩ , which is a constant in time, is defined as

and the average flux Jt at time t is given from (2) by

jt
n
=

{
1

L
�t
n−1

(L − �t
n
) ⋯ FCA184

min[�t
n−1

, L − �t
n
] ⋯ BCA

(8)𝜌t
n
= 𝜌t

n+N
, (N ∈ ℤ>0).

(9)⟨�⟩ ∶= 1

N

N�
n=1

�t
n
,

Fig. 2   The fundamental 
diagram of FCA184 in station-
ary states. When the total 
number of sites N is even, 
the fundamental diagram is 
the two-dimensional area 
( s(1 − s) ≤ Q ≤ min[s, 1 − s] ), 
while N is odd, it is the one-
dimensional boundary of this 
area



585

1 3

Rule 184 fuzzy cellular automaton as a mathematical model for traffic flow

Note that �t
0
= �t

N
 . For a state {�t

n
} , we have a pair (⟨�⟩, Jt) , and the fundamental 

diagram is a two-dimensional plot of these pairs. We define a (multi-valued) func-
tion Q(s) which takes the values of Jt for a given density ⟨�⟩ = s . The fundamental 
diagram is exhibited in the two dimensional s-Q plane. An important fundamental 
diagram is that for stationary states. Here a stationary state is the state which real-
izes at t → ∞ for an initial state. More precisely, we define it as follows.

Definition 1  For any 𝜖 > 0 , if there exist integers T and L such that

the solution {�t
n
} of (7) is called a stationary state.

The Definition 1 implies that a quasi-periodic solution is also a stationary state, 
however, as is shown later, FCA 184 with a periodic boundary condition does not 
have a quasi-periodic solution.

3.1 � Stationary states and fundamental diagram of FCA 184

First we consider the case N = 2M ( M ∈ ℤ>0 ). It is readily seen that there are two 
types of stationary states.

Uniform state
There is a trivial state ∀n, ∀t, �t

n
= s ( 0 ≤ s ≤ 1 ). In this case, Jt = s(1 − s) and the 

fundamental diagram is given by the function

Travelling wave state
Let �t

n
= �t

n−t
 and find a solution of FCA184 which satisfies �t

j
= �j . Since

we have

Thus we obtain the following solutions.
1) two-periodic solution If ∀j, �j ≠ 0 , then, we find

Hence, �2m−1 = �, �2m = �       (1 ≤ m ≤ M ). If � = � , we have a uniform state. 
Hence a uniform state is a special case of the two-periodic state.

The flux is caluculated as

(10)Jt ∶=
1

N

N∑
n=1

�t
n−1

(1 − �t
n
).

∀n, ∀t, |𝜌t
n
− 𝜌t+T

n+L
| < 𝜖,

(11)Q(s) = s(1 − s) (0 ≤ s ≤ 1).

�j−1 = �j−1(1 − �j) + �j�j+1,

�j(�j+1 − �j−1) = 0 �j�j+1 = �j−1�j.

∀j �j−1 = �j+1.
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Since the average density ⟨�⟩ is equal to s = �+�

2
 , by putting � = s + c, � = s − c , 

the function Q(s) is determined as

2) free flow solution In the case ∃i0, �i0 = 0 , ∀j, �j�j+1 = �j−1�j . Thus we find

Therefore a solution must satisfy either �j = 0 or �j+1 = 0 for an arbitrary j. For 
example, with a set of M values {�1, �2,… , �M} (0 ≤ �m ≤ 1),

is one of such solutions. A free flow solution shows a travelling wave going forward 
with velocity 1.

The average flux is given as

Noticing the fact that �j ≠ 0 → �j−1 = 0 , we have

Since the average density s is equal to 1

2M

∑N

j=1
�j , we find

Note that Jt ≤ 1

2
 . There is no solution for s > 1

2
.

3) anti-free flow solution By putting qt
n
= 1 − �t

n
 , (7) turns into

Thus we see that, if �t
n
 is a solution to (7), then qt

n
= �t

−n
 is a solution to (14). Accord-

ingly, by putting j = n + t , rj ∶= qt
n
 satisfies

A solution corresponding to the two-periodic solution is also a two-periodic solu-
tion, but, there is another kind of solutions which satisfy either rj = 0 or rj+1 = 0 
for any j. This condition implies that either �t

n
= 1 or �t

n+1
= 1 for arbitrary n, and 

�t
n
= �0

n+t
 . This solution, an anti-free flow solution, shows a travelling wave which 

goes backward with velocity 1.
Since

Jt =
1

2
(�(1 − �) + �(1 − �)).

(12)Q(s) = s(1 − s) + c2 (|c| ≤ min(s, 1 − s)).

�1�2 = �2�3 = ⋯ = �N�1 = 0.

�2m = 0, �2m+1 = �m (m = 1, 2,… ,M)

J ∶=
1

2M

N∑
j=1

�j−1(1 − �j).

J =
1

2M

∑
�j≠0

�j =
1

2M

N∑
j=1

�j.

(13)Q(s) = s
(
0 ≤ s ≤

1

2

)
.

(14)qt+1
n

= qt
n+1

(1 − qt
n
) + qt

n
qt
n−1

(1 ≤ n ≤ N).

rj+1 = rj+1(1 − rj) + rjrj−1 → rjrj−1 = rj+1rj.
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the average flux is calculated as

Here we use the fact rjrj+1 = 0 . Thus we find

In case of N = 2M + 1 ( M ∈ ℤ>0 ), by repeating the similar arguments as above, we 
find that there exist uniform states, free flow states and anti-free flow states, but no 
two-periodic state exists because of the periodic boundary condition. The uniform 
states have the same function Q(s) as in the case of N even;

For the free flow states, the function Q(s) is given as

and for the anti-free flow states

As will be proved in the next subsection (Theorem  2), stationary solutions of 
FCA 184 are all that were listed above. Thus, in summary, we have the following 
Theorem.

Theorem 1  When the number of the sections N is even, the fundamental diagram of 
the present traffic model for stationary states is the two-dimensional region:

1

N

N∑
j=1

rj =
1

N

N∑
n=1

(1 − �t
n
) = 1 − s,

J =
1

N

N∑
n=1

�t
n−1

(1 − �t
n
)

=
1

N

N∑
n=1

qt
n
(1 − qt

n+1
)

=
1

N

N∑
j=1

rj(1 − rj+1)

=
1

N

N∑
j=1

rj = 1 − s.

(15)Q(s) = 1 − s
(
1

2
≤ s ≤ 1

)
.

(16)Q(s) = s(1 − s) (0 ≤ s ≤ 1).

(17)Q(s) = s
(
0 ≤ s ≤

M

N

)
,

(18)Q(s) = 1 − s
(
M + 1

N
≤ s ≤ 1

)
.

(19)s(1 − s) ≤ Q ≤ min[s, 1 − s] (0 ≤ s ≤ 1).
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While that for odd N ( N = 2M + 1) is the one-dimensional boundary of the region 
(19) which consists of the three parts (Fig. 2);

One may think it strange that the fundamental diagram depends on the parity 
of the total number of sites. In fact, the features of traffic flow will not be affected 
by a boundary condition for N → ∞ . Figure 3 shows an example of time evolu-
tion of FCA184 in case of even N with a periodic boundary condition. The initial 
value of each site is generated randomly, and we see that the state soon converges 
into a two-periodic state. While Fig. 4 shows the case of odd N. Although it will 
converges to a uniform state, the state shows a feature of a two-periodic state over 
a long period of time.

It is experimentally observed that three qualitative different types of traffic 
exists in a multi-lane traffic: free traffic flow, synchronized traffic flow, and traf-
fic jams [8]. Figure  4 suggests that the two-periodic part for odd N is metasta-
ble, that is, a state in this part is not strictly stable but is long-lived. Hence we 

(20)

⎧⎪⎨⎪⎩

Q = s(1 − s) (0 ≤ s ≤ 1)

Q = s (0 ≤ s ≤
M

N
)

Q = 1 − s
�

M+1

N
≤ s ≤ 1

� .

Fig. 3   A transient behaviour of FCA184 in the case of even N ( N = 50 ). The lighter the colour, the 
greater the value. The state soon converges into a two-periodic state
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presume that these states correspond to the metastable synchronize modes which 
are observed in different models [10, 20].

3.2 � Stability of stationary states

The time evolution rule of FCA 184 is regarded as a weighted average rule 
defined by Betel and Flocchini [2]. Asymptotic properties of FCAs with weighted 
average rules have been investigated in Ref. [2], and the following proposition 
was proved.

Proposition 1  (Betel–Flocchini: Theorem3.9) If it holds that ∀n, 0 < 𝜌t=0
n

< 1 , the 
state of FCA 184 with a periodic boundary condition asymptotically converges to a 
two-periodic state when N is even, and to a uniform state when N is odd.

In order to make the present article self-contained, we give a proof of the Prop-
osition 1 for the case where N is even. If N is odd, proof is performed in a similar 
way and is easier.

Fig. 4   A transient behavior of FCA184 in the case of odd N ( N = 51 ). The lighter the colour, the greater 
the value. The state shows a feature of a two-periodic state for a long period of time
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Prior to the proof of the proposition, we prepare a Lemma 1. Let us define vt
n
 

by �t
n
=∶ vt

n−t
 . Because of the cyclic boundary condition, vt

n+2M
= vt

n
 , and

Introducing xt
i
 and yt

i
 as

we find that xt
i+M

= xt
i
 , yt

i+M
= yt

i
 , and 

Lemma 1  The following inequalities hold.

Proof  In (21a), the inequality 0 ≤ yt
i
≤ 1 implies

Hence we have

The left hand side of the above inequality is equal to min
i

[
xt
i

]
 , and the inequality 

(22a) holds. The other inequalities (22b)–(22d) are proved similarly. 	�  ◻

Since, from the Lemma 1the sequence 
(
mini

[
xt
i

])∞
t=0

 is a monotonically increas-
ing sequence with respect to t and is bounded above, it converges to a certain real 
number. The other sequences like 

(
maxi

[
xt
i

])∞
t=0

 also converge, and we have 

vt+1
n

= (1 − vt
n+1

)vt
n
+ vt

n+1
vt
n+2

.

xt
i
∶= vt

2i−1
, yt

i
∶= vt

2i
(i = 1, 2,… ,M),

(21a)xt+1
i

= (1 − yt
i
)xt

i
+ yt

i
xt
i+1

(21b)yt+1
i

= (1 − xt
i+1

)yt
i
+ xt

i+1
yt
i+1

.

(22a)min
i

[
xt+1
i

]
≥ min

i

[
xt
i

]

(22b)max
i

[
xt+1
i

]
≤ max

i

[
xt
i

]

(22c)min
i

[
yt+1
i

]
≥ min

i

[
yt
i

]

(22d)max
i

[
yt+1
i

]
≤ max

i

[
yt
i

]

min[xt
i
, xt

i+1
] ≤ xt+1

i
≤ max[xt

i
, xt

i+1
].

min
i

[
min[xt

i
, xt

i+1
]
]
≤ min

i

[
xt+1
i

]
.

(23a)lim
t→∞

min
i

[
xt
i

]
=∶ �1
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 where 0 ≤ �1, �2, �1, �2 ≤ 1.
The following Lemma is readily obtained from (21a) and (21b).

Lemma 2  If all the initial values are in the open interval (0, 1), inequalities

hold for any i and any t.

Definition 2  Fix the integers t and n. By using (21a), cn(i, t + s) 
( s = 0, 1, 2,… ,M − 2 ), which are polynomials of { y�

i
} , are defined successively as 

follows.

For k < n , we define ck(i, t + s) ∶= 0.
We also define � as

Note that, from Lemma 2, (22c) and (22d), the following inequality holds for any 
t and any n.

(23b)lim
t→∞

max
i

[
xt
i

]
=∶ �2

(23c)lim
t→∞

min
i

[
yt
i

]
=∶ �1

(23d)lim
t→∞

max
i

[
yt
i

]
=∶ �2

0 < xt
i
< 1, 0 < yt

i
< 1

xt+M−1
n

= (1 − yt+M−2
n

)xt+M−2
n

+ yt+M−2
n

xt+M−2
n+1

∶= cn(n;t +M − 2)xt+M−2
n

+ cn+1(n;t +M − 2)xt+M−2
n+1

= (1 − yt+M−2
n

)
{
(1 − yt+M−3

n
)xt+M−3

n
+ yt+M−3

n
xt+M−3
n+1

}

+ yt+M−2
n

{
(1 − yt+M−3

n+1
)xt+M−3

n+1
+ yt+M−3

n+1
xt+M−3
n+2

}

= (1 − yt+M−2
n

)(1 − yt+M−3
n

)xt+M−3
n

+
{
(1 − yt+M−2

n
)yt+M−3

n

+yt+M−2
n

(1 − yt+M−3
n+1

)
}
xt+M−3
n+1

+ yt+M−2
n

yt+M−3
n+1

xt+M−3
n+2

=∶ cn(n;t +M − 3)xt+M−3
n

+ cn+1(n;t +M − 3)xt+M−3
n+1

+ cn+2(n;t +M − 3)xt+M−3
n+2

= ⋯

=∶

n+M−1∑
i=n

ci(n;t)x
t
i

� ∶= min
i

[
min[y0

i
, 1 − y0

i
]
]
= min

[
min
i
[y0

i
], 1 −max

i
[y0

i
]
]
.

(24)0 < 𝛿 ≤ yt
n
, 0 < 𝛿 ≤ 1 − yt

n
.
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Furthermore, for s = M − k − 1 , we have 

 From (25c) and (25d), we find a recurrence relation:

Lemma 3 
Proof  We prove by induction of s, starting from s = M − 2 and going downwards.

Equation (27) clearly holds for s = M − 2.
Suppose that it holds up to s = M − k ( 2 ≤ k ≤ M − 1).
If ∀i , xt+M−k−1

i
= 1 , then ∀i , xt+M−k

i
= 1 . Hence, by taking ∀i , xt+M−k−1

i
= 1 in 

(25a), (25d) leads to

Noticing the inequality ci(n;t +M − k) ≥ �k−1 , from (24) and (26),

Thus (27) is true for s = M − k − 1 . Therefore, by the induction hypothesis, (27) 
holds for 0 ≤ s ≤ M − 2 . 	�  ◻

(25a)

xt+M−1
n

=

n+M−k−1∑
i=n

ci(n;t +M − k)xt+M−k
i

(25b)
=

n+M−k−1∑
i=n

ci(n;t +M − k)

×
{
(1 − yt+M−k−1

i
)xt+M−k−1

i
+ yt+M−k−1

i
xt+M−k−1
i+1

}

(25c)
=

n+M−k∑
i=n

{
ci(n;t +M − k)(1 − yt+M−k−1

i
)

+ci−1(n;t +M − k)yt+M−k−1
i−1

}
xt+M−k−1
i

(25d)=

n+M−k∑
i=n

ci(n;t +M − k − 1)xt+M−k−1
i

.

(26)
ci(n;t +M − k − 1)

= ci(n;t +M − k)(1 − yt+M−k−1
i

) + ci−1(n;t +M − k)yt+M−k−1
i−1

.

(27)
n+M−s−1∑

i=n

ci(n;t + s) = 1, �M−1−s ≤ ci(n;t + s)

n+M−k−1∑
i=n

ci(n;t +M − k) =

n+M−k∑
i=n

ci(n;t +M − k − 1) = 1.

ci(n;t +M − k − 1) ≥ ci(n;t +M − k)(1 − yt
i
) ≥ �k.
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Proof of Proposition 1  We prove by contradiction.
Since 0 < 𝛼1 ≤ 𝛼2 < 1 , we suppose that 𝛼1 < 𝛼2 . From (23a), (23b) and the 

monotonicity of the sequences, for any 𝜖 > 0 , there exists t� such that if t ≥ t� , then

Let d ∶= �2 − �1 and choose � so that the inequality 0 < 𝜖 < d𝛿M−1 holds. For t ≥ t� , 
let n and m be the integers that satisfy

Then, from Lemma 3,

Therefore xt+M−1
n

< 𝛼2 . However, by definition,

which is a contradiction. Thus we find that �1 = �2.
The equality �1 = �2 can be proved in the same way and the Proposition  1 is 

proved. 	�  ◻

Now we will prove that all the stationary solutions are the uniform solutions 
and the travelling wave solutions listed in the previous Sect. 3.1. When the initial 
values contain neither 0 nor 1, Proposition  1 means that there is no stationary 
solution other than the uniform and the two-periodic solutions. Hence we exam-
ine stationary states with 0s and/or 1s. In such a state, there are four kinds of pat-
terns which have a series of 0s between non-zero values as

𝛼1 − 𝜖 < min
i
[xt

n
] ≤ 𝛼1, 𝛼2 ≤ max

i
[xt

n
] < 𝛼2 + 𝜖.

xt+M−1
n

= max
i
[xt+M−1

i
], xt

m
= min

i
[xt

i
].

xt+M−1
n

=

n+M−1∑
i=n

ci(n;t)x
t
i

= cm(n;t)x
t
m
+

n+M−1∑
i=n, i≠m

ci(n;t)x
t
i

< cm(n;t)𝛼1 +

n+M−1∑
i=n, i≠m

ci(n;t)(𝛼2 + 𝜖)

= cm(n;t)𝛼1 + (1 − cm(n;t))(𝛼2 + 𝜖)

< 𝛼2 + 𝜖 − cm(n;t)(𝛼2 − 𝛼1)

≤ 𝛼2 + 𝜖 − d𝛿M−1

< 𝛼2.

xt+M−1
n

= max
i

[
xt+M−1
i

]
≥ �2,
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Here ∗ indicates any value other than 0 and 1.
For a given state, we define the number of the above patterns at time t as

We consider time evolution of FCA 184 by introducing a new variable vt
n
= �t

n+t
:

with a periodic boundary condition vt
n+N

= vt
n
.

Proposition 2  Let Mt
0
 be the number of 0s at time t, and Mt

1
 be that of 1s. Then it 

holds that

Note that

Proof  For a state at time step t, vt+1
n

= 0 is achieved in the three cases:

where a is arbitrary. Hence we can count the number of 0s at t + 1 as follows.

•	 For k = 1 , the patterns 10 ∗ and 101 contribute to the case ii), and the numbers of 
them are l(10)

1
(t) and l(11)

1
(t) respectively.

P(00) ∶= {P
(00)

k
}N−1
k=1

, P
(00)

k
∶=∗ 0⋯ 0

⏟⏟⏟
k

∗

P(10) ∶= {P
(10)

k
}N−2
k=1

, P
(10)

k
∶= 1 0⋯ 0

⏟⏟⏟
k

∗

P(10) ∶= {P
(01)

k
}N−2
k=1

, P
(01)

k
∶=∗ 0⋯ 0

⏟⏟⏟
k

1

P(11) ∶= {P
(11)

k
}N−1
k=1

, P
(11)

k
∶= 1 0⋯ 0

⏟⏟⏟
k

1.

(28)l
(ij)

k
(t) ∶= number of the pattern P

(ij)

k
at time t (i, j ∈ {0, 1}).

(29)vt+1
n

= (1 − vt
n+1

)vt
n
+ vt

n+1
vt
n+2

(30)Mt+1
0

≤ Mt
0
, Mt+1

1
≤ Mt

1
.

Mt
0
=

N−1∑
k=1

k
(
l
(00)

k
(t) + l

(10)

k
(t) + l

(01)

k
(t) + l

(11)

k
(t)
)
.

vt
n
vt
n+1

vt
n+2

i) 0 a 0

ii) a 1 0

iii) 0 0 a



595

1 3

Rule 184 fuzzy cellular automaton as a mathematical model for traffic flow

•	 For k = 2 , the pattern ∗ 00 ∗ contributes to the case iii) 100 ∗ to ii) and iii), 
∗ 001 to iii), 1001 to ii) and iii). The numbers are l(00)

2
(t), 2l

(10)

2
(t), l

(01)

2
(t) , and 

2l
(11)

2
(t) respectively.

•	 For k ≥ 3 , each pattern contains k − 2 sequences of 000 which contributes to i). 
Therefore, each of four patterns generates (k − 1)l

(00)

k
(t), kl

(10)

k
(t), (k − 1)l

(01)

k
(t) 

and kl(11)
k

(t) 0s respectively.
•	 Besides these, patterns 0 ∗ 0 ( ∗≠ 0, 1 ) and 010 can exist in the state at the 

boundary of those four patterns. Let the number of the sequence 0 ∗ 0 be b(t). 
This sequence appears in the four patterns: 

 The total number of the first and second pattens is less than the number of the 
sequences ∗ 0⋯ 0 ∗ , that of the third and fourth patterns is less than the number 
of the pattern ∗ 0⋯ 01 . Thus 

 The sequence 010 appears in the following patterns: 

 But contribution of these patterns was already counted as the case ii).
From the above consideration,

From the symmetry between 0 and 1, the same discussion applies to the number of 
1s. Thus we have proved (30). 	�  ◻

The following Corollary immediately follows from Proposition 2.

Corollary 1  The number of 0s and that of 1s are conserved in time for a stationary 
state.

The following Proposition implies that the stationary solutions are all that we 
have listed in the previous subsection.

∗ 0⋯ 0 ∗ 0⋯ 0 ∗, 10⋯ 0 ∗ 0⋯ 0 ∗, ∗ 0⋯ 0 ∗ 0⋯ 01, 10⋯ 0 ∗ 0⋯ 01

(P
(00)

k
P
(00)

k�
) (P

(10)

k
P
(00)

k�
) (P

(00)

k
P
(01)

k�
) (P

(10)

k
P
(01)

k�
)

b(t) ≤

N−1∑
k=1

l
(00)

k
(t) + l

(01)

k
(t).

∗ 0⋯ 010⋯ 0 ∗, 10⋯ 010⋯ 0 ∗, ∗ 0⋯ 010⋯ 01

(P
(01)

k
P
(10)

k�
) (P

(11)

k
P
(10)

k�
) (P

(01)

k
P
(11)

k�
)

Mt+1
0

=

(
N−1∑
k=1

(k − 1)l
(00)

k
(t) + kl

(10)

k
(t) + (k − 1)l

(01)

k
(t) + kl

(11)

k
(t)

)
+ b(t)

≤

N−1∑
k=1

k
(
l
(00)

k
(t) + l

(10)

k
(t) + l

(01)

k
(t) + l

(11)

k
(t)
)

= Mt
0
.
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Proposition 3  A stationary state which contains 0 or 1 satisfies one of the following 
equations.

The following Lemma is essential to prove Proposition 3.

Lemma 4  In a stationary state with 0 or 1, if there exists an element ∗ other than 0 
and 1, both of its two adjacent elements are 0 or 1, that is, ∗ exists in a pattern 0 ∗ 0 
or 1 ∗ 1.

Proof  In a stationary state, from the proof for Proposition 2, we find that

where b(t) is the number of the boundaries between the patterns P(ij) in the form 
0 ∗ 0 ( ∗≠ 0, 1 . Equation (32) implies that all the patterns P(00) and P(01) consist the 
boundaries of that form. Hence the leftmost 0 of the patterns P(00) and P(01) must be 
the right 0 of this boundary ( 0 ∗ 0 ), that means there is no sequence of the form 
0 a1 … ak
⏟⏟⏟

k≥1

∗ 0 ( ai ≠ 1).

Similarly, from the symmetry between 0 and 1, there is no sequence of the form 
1 ∗ b1 … bk

⏟⏟⏟
k≥1

1 ( bi ≠ 1 ). Thus the proof was completed. 	�  ◻

Proof of Proposition 3 

•	 From Lemma 4, if there is no 1, only the pattern P(00) among the four patterns 
exists and (31a) holds. Similarly if there is no 0, (31b) holds.

•	 If there is no element other than 0 and 1, FCA 184 turns to the rule 184 CA, 
which has been investigated in detail as a traffic model [16, 21]. When the 
number of 0 is equal to or greater than the number of 1, the state converges to 
a free-flow state where both of the two adjacent elements of 1 are 0. Hence we 
have (31a). Similarly, if the number of 0 is less than the number of 1, the state 
converges to a congestion state where both of the two adjacent elements of 0 
are 1, and we have (31b).

•	 When 0, 1, and ∗ (≠ 0, 1) are mixed, from Lemma 4, we suppose that there are 
two elements �(≠ 0, 1) and � �(≠ 0, 1) at a time step in the form of 0�0 and 1� ′1 . 
From (29), noticing the facts that vt

n+1
= 0 implies vt+1

n
= vt

n
 , and that vt

n+1
= 1 

implies vt+1
n

= vt+2
n

 , we find the time evolution rule gives 

(31a)∀i, ut
i
ut
i+1

= 0

(31b)∀i, (1 − ut
i
)(1 − ut

i+1
) = 0

(32)b(t) =
∑
k

l
(00)

k
(t) + l

(01)

k
(t),

0 � 0 → 0 � a, b 1 � ′ 1 b′ → � ′ 1 b′ c c′,
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 where a, b, b′ , c, and c′ are some values depending on the state. For a stationary 
state Lemma 4 implies that a = 0 and that the left adjacent element to � ′ is equal 
to 1. Therefore a pattern 0 � 0 does not change its position and a pattern 1 � ′ 1 
moves two cites to the left. Hence after a certain time steps, one of the following 
patterns is realized 

 At the next time step, these patterns change to 

 respectively, all of which cannot exist in a stationary state. Thus we find that 
0 ∗ 0 and 1 ∗ 1 do not coexist in a stationary state.

	   Suppose that there exist patterns 0 ∗ 0 . Since a sequence 0 ∗ 0 does not 
move in time, the time evolution of the other cells does not change by the 
transformation ∗→ 1 . Hence, by the consideration of the case where only 0 
and 1 exist, a sequence 0 ∗ 0 can exists when the number of 0s is greater than 
or equal to the number of other values in a stationary state, and (31a) holds. 
While a sequence 1 ∗ 1 exists, because of the symmetry between 0 and 1, (31b) 
holds.

Thus Proposition 3 was proved. 	�  ◻

Since Proposition 3 indicates that either a free-flow solution or a anti-free flow 
solution is allowed in a stationary state which contains 0 or 1, and otherwise a 
stationary state is restricted to a uniform solution or a two-periodic solution, we 
obtain the following theorem.

Theorem 2  All the stationary solutions are the uniform solutions and the travelling 
wave solutions listed in the Sect. 3.1.

Finally let us discuss stability of the stationary solutions.

Theorem 3  Free flow or anti-free flow solutions are unstable. While two-periodic or 
uniform solutions are stable, but not asymptotically stable.

Proof  From the Proposition 1, a free flow solution will translate to a certain two-
periodic or a uniform solution by small perturbation. Hence a free flow solu-
tion is unstable and so is an anti-flow solution. Let us consider a uniform solution 
�t
n
= � . Suppose that it is perturbed by small fluctuation as �0

n
= � + �n at t = 0 . Let 

� ∶= maxn[|�n|] . By the same arguments in the proof of Lemma 1, we can show that 
(maxn[�

t
n
])∞
t=0

 is a monotonically decreasing sequence in time t and that (minn[�
t
n
])∞
t=0

 
is a monotonically increasing sequence. Thus it holds that |�t

n
− �| ≤ � , which 

implies �t
n
 is stable in the sense of Lyapunov [3]. However, in general, it will not 

converge into the same uniform state and is not asymptotically stable. In a similar 
way, a two-periodic solution is proved to be stable but not asymptotically stable. 	� ◻

0 � 0 1 � ′ 1, 0 � 0 0 1 � ′ 1, 0 � 0 1 1 � ′ 1.

0 � � ′ ⋯ , 0 � 0 � ′ 1 ⋯ , 0 � 1 � ′ 1 ⋯
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Figures 5 shows an example of temporal change of the fundamental diagram for 
even N. Here we chose the initial state as

where ⟨�⟩ is the average density and � ( 0 ≤ � ≤
1

2
 ) is a parameter. The system con-

verges into various two-periodic states by changing � . The flux always increases in 
time under this initial condition, though it can decrease in general.

3.3 � Fixed boundary conditions and bottle‑neck effect

On highways, car density and/or car flux may differ place to place. In particular, they 
discontinuously change at entrance and exit. They also change at the place where the 
number of lanes decreases or increases. With these situations in mind, let us con-
sider FCA 184 with the boundary condition

(33)

�
�t=0
n

= 2⟨�⟩� n = 1, 2,… ,
N

2

�t=0
n

= 2⟨�⟩(1 − �) n =
N

2
+ 1,… ,N

,

Fig. 5   The transient behaviour of the fundamental diagrams in case of even N ( N = 600 ). A flux 
increases in time and a state asymptotically turns to a two-periodic state
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The boundary condition (34) may correspond to the case where the density and flux 
of cars at the entrance are controlled to be constant. For a stationary state, there 
is neither a travelling wave solution nor a uniform solution except for � = a(1 − a) 
due to the boundary condition (34). However, some time-independent solutions may 
exist and we examine them.

In (7), we assume that �t
n
 does not depend on t and put un = �t

n
 . Then we have 

the three terms recurrence relation

Equation (35) has a conserved quantity

and can be written as

Thus un can be obtained by continued fraction expansion as

Hence if and only if ∀n, 0 ≤ Un(�, a) ≤ 1 , there exists a time independent solution 
(Fig. 6).

Proposition 4  Time-independent solutions of (35) exist if and only if the following 
conditions are satisfied;

(34)𝜌t
0
= a, 𝜌t

0
(1 − 𝜌t

1
) = 𝜆 (0 < a ≤ 1, 0 ≤ 𝜆 ≤ a).

(35)un+1 =
un − un−1 + unun−1

un
, (u0 = a, u0(1 − u1) = �)

un+1(1 − un) = un(1 − un−1) = �,

(36)un+1 = 1 −
�

un
.

(37)
un = Un(�;a) ∶= 1 −

�

1 −
�

⋱ 1−
⋱ �

1−
�
a

.

Fig. 6   Time independent solutions for the fixed boundary conditions. The parameters are � = 0.1,a = 0.7 
(left) and � = 0.25,a = 0.7 (right)
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To prove Proposition 4, we use the following Lemma.

Lemma 5 

where t± are the two roots of the algebraic equation t2 − t + � = 0:

Proof  We define two polynomials of � , pn(�) and qn(�) , as p0(�) = a, q0(�) = 1 , 
and 

 Clearly, (36) gives

Since (41a) and (41b) are simultaneous linear recurrence relations, we obtain

Thus we obtained (39). 	�  ◻

Proof of Proposition 4  We give the proof in the three cases: (1) 1
4
< 𝜆 ≤ 1 , (2) � =

1

4
 , 

and (3) 0 ≤ 𝜆 <
1

4
.

(1) For 1
4
< 𝜆 ≤ 1 , t± can be expressed as

where �� satisfies cos �� =
1

2
√
�
 and sin �� =

√
1 −

1

4�
 . From Eq. (39), we obtain

(38)� ≤
1

4
and

1

2
−

√
1

4
− � ≤ a.

(39)Un(�;a) =
(tn+1
+

− tn+1
−

)a + (−tn+1
+

t− + tn+1
−

t+)

(tn+ − tn
−
)a + (−tn+t− + tn

−
t+)

,

(40)t±(�) =
1 ±

√
1 − 4�

2
.

(41a)pn+1(�) = pn(�) − �qn(�)

(41b)qn+1(�) = pn(�).

(42)un =
pn(�)

qn(�)
.

(43)

(
pn(�)

qn(�)

)
=

(
1 − �

1 0

)n (
a

1

)

=
1

t+ − t−

(
t+ t−
1 1

)(
t+ 0

0 t−

)n (
1 − t−
−1 t+

)(
a

1

)

=
1

t+ − t−

(
(tn+1
+

− tn+1
−

)a + (−tn+1
+

t− + tn+1
−

t+)

(tn
+
− tn

−
)a + (−tn

+
t− + tn

−
t+)

)
,

t± =
√
� e

√
−1�� ,
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where

Since 0 < 𝜃𝜆 ≤
𝜋

3
 , there exists a positive integer n0 such that

that implies Un0
(𝜆;a) < 0 or ∞ , and the condition ∀n, 0 ≤ un ≤ 1 is not satisfied.

(2) For � =
1

4
 , we have

For a ≥
1

2
 , 1

2
< Un(

1

4
;a) ≤ 1 holds for any n and a time-independent solution 

exists. While for a <
1

2
 , there exists n0 ∈ ℤ≥0 such that (a − 1

2
)n0 + a ≥ 0 and 

(a −
1

2
)(n0 + 1) + a < 0 , that implies Un0+1

(𝜆;a) < 0 or ∞ , and the condition 
∀n, 0 ≤ un ≤ 1 is not satisfied.

(3) When 𝜆 <
1

2
 , we have

where

Let � ∶=
t−

t+
 . Because

Tn(�) is a monotonically decreasing function with respect to n, and

(44)

Un(�;a) =
√
�
a sin(n + 1)�� −

√
� sin n��

a sin n�� −
√
� sin(n − 1)��

=
√
�

sin
�
n�� + �

�

sin
�
(n − 1)�� + �

� ,

� ∶= tan−1

�
a sin ��

a cos �� −
√
�

�
.

sin
(
(n0 − 1)𝜃𝜆 + 𝜙

)
≤ 0 and 0 < sin

(
n0𝜃𝜆 + 𝜙

)
,

Un(
1

4
;a) =

1

2

(a −
1

2
)n + a

(a −
1

2
)(n − 1) + a

.

U1(�;a) = 1 −
�

a
, Un(�;a) = Tn(�)

Tn+1(�)a − �

Tn(�)a − �
(n ≥ 2),

Tn(�) ∶=
tn
+
− tn

−

tn−1+ − tn−1
−

= t+

1 −
(

t−

t+

)n

1 −
(

t−

t+

)n−1
.

Tn+1(𝜆) − Tn(𝜆) = −
𝛿n−1(1 − 𝛿)2

(1 − 𝛿n)(1 − 𝛿n−1)
< 0,

T2(�) = 1, lim
n→∞

Tn(�) = t+.
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Hence, if t+a − 𝜆 < 0 , there exists n0 such that aTn0 − � ≥ 0 and aTn0+1 − 𝜆 < 0 , that 
implies Un0+1

(𝜆;a) < 0 or ∞ , and the condition ∀n, 0 ≤ un ≤ 1 is not satisfied. While, 
if t+a − � ≥ 0,

and a time-independent solution exists. Since t+a − � ≥ 0 ⇔ a ≥ t−, the proof is 
completed. 	�  ◻

If traffic congestion takes place, the car flux at the entrance of a highway is differ-
ent from that at the exit. Since a car flux is constant in a time-independent state, the 
congestion is a transient phenomenon. Figure 7 show the time evolution of FCA 184 
with the boundary condition where the flux at the entrance is larger than that at the 
exit. We find that the high density region of cars is extending backward as is empiri-
cally seen in traffic jams. To examine this kind of transient behaviour analytically, 
we consider ultradiscrete limit of FCA 184 in the next section.

4 � Ultradiscrete analysis for FCA 184

Ultradiscretisation is a limiting procedure which transforms a given equation to a 
piece-wise linear equation [19]. For FCA 184, we put

and construct equations for Ut
n
 by taking � → +0 . However, since (7) contains a neg-

ative term, it is not straightforward to take a limit. A method to avoid this difficulty 
is to use the method of ultradiscretisation with sign [11], but here we use another 
approach. Let qt

n
∶= 1 − �t

n
 . Then, from (14), we find 

Un(𝜆;a) < Tn(𝜆) ≤ 1

(45)�t
n
= e−U

t
n
∕� ,

Fig. 7   Bottle-neck effect of traffic flow is shown. The congested regions propagate to the backward direc-
tion. The car density ut

n
 changes from 0.4 to 0.8 (left), and from 0.4 to 0.5 (right). When the difference 

in density is small (right), the sharp kink first becomes smooth and then the congested regions moves 
backwards
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 Introducing Vt
n
 by

and taking the limit � → +0 , we obtain the following simultaneous equations. 

 Note that Ut
n
, Vt

n
∈ ℝ≥0 ⊔ {∞} due to the inequality 0 ≤ �t

n
, qt

n
≤ 1.

Proposition 5  If ∀n, min[U0
n
,V0

n
] = 0 , then ∀n, ∀t, min[Ut

n
,Vt

n
] = 0.

Proof  We prove by induction.
For t = 0 , the statement is trivial. Suppose that it holds for t = k . If Uk+1

n
≠ 0 , 

one of the pair {Uk
n−1

, Vk
n
} and one of {Uk

n
, Uk

n+1
} are not equal to 0. Since one 

of {Uk
n
, Vk

n
} is equal to 0, non-zero pairs must be {Uk

n−1
, Uk

n
} , {Uk

n−1
, Uk

n+1
} , or 

{Vk
n
, Uk

n+1
} , that means one of the following three pairs are both zero {Vk

n−1
, Vk

n
} , 

{Vk
n−1

, Vk
n+1

} and {Uk
n
, Vk

n+1
} . The first pair and the third pair give Vk+1

n
= 0 , and the 

second pair also gives Vk+1
n

= 0 because one of Uk
n
 and Vk

n
 is zero. Thus the Proposi-

tion is true for t = k + 1 . From the induction hypothesis, the Proposition is true for 
any t, which completes the proof. 	�  ◻

Proposition  5 means that once the initial state satisfy (48c), it is satisfied for-
ever, and the dynamical system described by (48a) and (48a) is deterministic. If 
∀n, U0

n
,V0

n
∈ {0,∞} , the dynamical system is equivalent to the rule 184 CA because 0 

and ∞ correspond to 1 and 0 in the rule 184 CA.
Firstly we examine transient behaviour in the region 0 < 𝜌t

n
≪ 1 (free-flow region). 

In the ultradiscrete limit, this situation will correspond to the case ∀n, V0
n
= 0 . We also 

assume that the initial state satisfies the following condition:

where N is a positive integer. Note that, due to the transformation 
Ut

n
= − lim�→+0 log �

t
n
 , the smaller the value Ut

n
 , the higher the density �t

n
.

(46a)�t+1
n

= �t
n−1

qt
n
+ �t

n
�t
n+1

(46b)qt+1
n

= qt
n+1

�t
n
+ qt

n
qt
n−1

(46c)1 = �t
n
+ qt

n
.

(47)qt
n
= e−V

t
n
∕� ,

(48a)Ut+1
n

= min
[
Ut

n−1
+ Vt

n
,Ut

n
+ Ut

n+1

]

(48b)Vt+1
n

= min
[
Vt
n+1

+ Ut
n
,Vt

n
+ Vt

n−1

]

(48c)0 = min
[
Ut

n
,Vt

n

]
.

(49)U0
n
> 0, and U0

n
= 𝛼 (n ≥ N), U0

n
= 𝛽 (n ≤ −N),
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Proposition 6  Any state given by (48a)–(48c), that satisfies ∀n, V0
n
= 0 and (49), 

turns to be a stationary travelling wave state with velocity one in finite time steps.

To prove Proposition  6, we prepare several notations and Lemmas. We put 
Ut

n
=∶ Xt

n−t
 , then, from Proposition 5, (5) becomes

with boundary condition

The following Lemmas are readily proved by induction with respect to t.

Lemma 6 

Lemma 7  If there exists a time step t0 such that Xt
n+1

= X
t0
n+1

 and Xt
n+2

= X
t0
n+2

 for 
∀ t ≥ t0 . Then, ∀ t ≥ t0 + 1 , Xt

n
= X

t0+1
n .

Lemma 8  If Yt
n
 is a solution of (50) with the initial condition that satisfies 

∀n, X0
n
≥ Y0

n
 , then, it holds that ∀n, ∀t, Xt

n
≥ Yt

n
.

Let � be the minimum value among {�,X−N+1,X−N+2,… ,XN−1, �} , and let Yt
n
 be 

the solution of (50) with the boundary condition

We also define the Fibonacci numbers Fj (j = 0, 1, 2,…) as

Definition 3 
For example, F2 = 2 , F3 = 3 , F4 = 5 and F5 = 8.

Lemma 9  Let k� be the positive integer which satisfies

Then, for n ≤ −N − k� + 1 , Yt
n
 is constant in time, that is,

Proof  From (50) and (53), we have

(50)Xt+1
n

= min
[
Xt
n
,Xt

n+1
+ Xt

n+2

]
,

(51)X0
n
> 0, and X0

n
= 𝛼 (n ≥ N), X0

n
= 𝛽 (n ≤ −N).

(52)∀t, ∀n, Xt+1
n

≤ Xt
n

(53)Y0
N
=

{
� (−N + 1 ≤ n)

� (n ≤ −N)
.

F0 = 1, F1 = 1, Fj+1 = Fj + Fj−1 (j = 1, 2,…).

(54)Fk𝛾
𝛾 ≤ 𝛽 < Fk𝛾+1

𝛾 .

(55)Yt
n
= Y0

n
= � (n ≤ −N − k� + 1)
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In the next time step,

By repeating this procedure in the case F4𝛾 ≤ 𝛽 < F5𝛾 for example, we find the fol-
lowing time evolution pattern

Thus, for n = −N − i ( i = 0, 1, 2 ), Yt
n
 becomes Fi+2 � at t = i + 1 , and does not change 

afterwards, and Yt
n
 is constant in time for n ≤ −N − 3.

Let us consider general cases. Note that Yt
n
= Y0

n
= � for −N + 1 ≤ n.

When k� = 1 Y1
−N

= min[�,F2 �] = � and ∀n, X1
n
= X0

n
 . Hence, ∀ t, ∀ n , and 

Lemma 9 holds.
When k� ≥ 2 , Y1

−N
= F2 � and Y1

n
= � for n ≤ −N − 1 . Since ∀t , Yt

n
= � for 

−N + 1 ≤ n , Yt
−N

= 2 � for t ≥ 1.
Similarly, for t = i + 1 ( i = 0, 1,… , k� − 2 ), only at the site n = −N − i , Yt

n
 

changes its value as Yi
−N−i

= � → Yi+1
−N−i

= Fi+2 �.
At t = k�,

Thus we find that ∀n, Yk�
n = Y

k�−1

n  , which implies that ∀n, Yt
n
= Y

k�−1

n  for t ≥ k� . 
Therefore it holds that Yt

n
= � for n ≤ −N − k� + 1 , which completes the proof. 	�  ◻

Proof of Proposition 6  From Lemma 7 and ∀t, Xt
N
= Xt

N+1
= � , we have Xt

N−1
= X1

N−1
 

( t ≥ 1) , Xt
N−2

= X2
N−2

 (t ≥ 2) , … . Hence for t ≥ j , Xt
n
 does not change if n ≥ N − j . 

On the other hand, from Lemmas 9 and 8, it holds that

Y1
n
=

⎧
⎪⎨⎪⎩

� (n ≥ −N + 1)

min[�, 2�] (n = −N)

� (−N − 1 ≤ n)

.

Y2
n
=

⎧
⎪⎨⎪⎩

� (n ≥ −N + 1)

min[�, 2�] (n = −N)

min[�, Y1
−N

+ �] (n = −N − 1)

� (−N − 2 ≤ n)

.

n − N − 4 − N − 3 − N − 2 − N − 1 − N − N + 1 − N + 2

t = 0 ⋯ � � � � � � � ⋯

t = 1 ⋯ � � � � 2� � � ⋯

t = 2 ⋯ � � � 3� 2� � � ⋯

t = 3 ⋯ � � 5� 3� 2� � � ⋯

t = 4 ⋯ � � 5� 3� 2� � � ⋯

t = 5 ⋯ � � 5� 3� 2� � � ⋯

Y
k�

−N−k�+1
= min[Y

k�−1

−N−k�+1
, Y

k�−1

−N−k�+2
+ Y

k�−1

−N−k�+3
]

= min[�,Fk�
� + Fk�−1

�]

= min[�,Fk�+1
�] = � = Y

k�−1

−N−k�+1
.
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However, from Lemma 6, Xt
n
≤ X0

n
= � for n ≤ −N , and we have

Therefore, for t ≥ 2N + k� − 1 , ∀n, Xt
n
 does not change in time, which completes the 

proof of Proposition 6. 	�  ◻

Because of the symmetry between Ut
n
 and Vt

n
 , we immediately have the follow-

ing Corollary.

Corollary 2  Any state given by (48a)–(48c), that satisfies ∀n, U0
n
= 0 and the bound-

ary condition:

turns to be a stationary travelling wave state in finite time steps which moves to the 
opposite direction with velocity one.

The condition ∀n, U0
n
= 0 corresponds to a congestion limit, and Corollary  2 

means that the congestion wave propagates backward, that coincides with our 
empirical understanding. We also note that, if we consider a cyclic boundary con-
dition with period N, then we can similarly prove that, in time steps less than 
N, any state turns to be a forward going travelling wave state with velocity one 
if ∀n, V0

n
= 0 , and a backward going travelling wave state with velocity one if 

∀n, U0
n
= 0.

Figures  8 shows two examples of time evolution patterns. The Fibonacci type 
solutions are obtained for the initial conditions given by step functions. For exam-
ple, if U0

n
 is given for k ≥ 2 as

∀t, Xt
n
≥ Yt

n
= � (n ≤ −N − k� + 1).

∀t, Xt
n
= X0

n
= � (n ≤ −N − k� + 1).

V0
n
> 0, and V0

n
= 𝛼 (n ≥ N), V0

n
= 𝛽 (n ≤ −N),

Fig. 8   Examples of time evolution of Ut
n
 in the solutions of (48a)–(48c)
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then, after k − 2 time steps, Ut
n
 converges to the travelling wave state with velocity 

one as

A triangle type solution also exhibits a travelling wave with velocity one. For a posi-
tive integer k ( k ≥ 2 ), it is given as

We can construct various kinds of exact solutions by mixing these solutions. It is 
also fairly simple to solve an initial value problem of the ultradiscrete equations 
(48a)–(48c).

(56)U0
n
=

{
Fk (n ≤ 0)

1 (n ≥ 1)
,

(57)Ut
n
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Fk (n − t ≤ k − 2)

Fk−1 (n − t = k − 1)

Fk−2 (n − t = k)

⋯

F2 (n − t = 0)

1 (n − t ≥ 1)

(58)Ut
n
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

k (n − t ≤ −k + 1)

k − 1 (n − t = −k + 2)

⋯

1 (n − t = 0)

2 (n − t = 1)

⋯

k (n − t ≥ k − 1)

Fig. 9   Relation between 
FCA184 and other models. 
When we restrict the values 0 
and 1, FCA184 becomes the 
rule 184 CA. The Burgers equa-
tion is obtained by continuous 
limit aroung �t

n
= 0.5 . The 

ultradiscrete limit of FCA184 
gives low and high density limit 
of FCA184
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5 � Concluding remarks

In this article, we investigated FCA184 as a mathematical model of traffic flow. It 
includes the rule 184 ECA and the Burgers equation as special cases. We obtained all 
the stationary solutions for the periodic boundary conditions and proved their stability. 
An interesting feature of this model is that, when the number of total sites is even, the 
fundamental diagram of stationary states is a two-dimensional domain and any point 
in the domain denotes a stable state. We presume that this domain corresponds to the 
synchronized modes of traffic flow. The bottle-neck effect was demonstrated by fixed 
boundary conditions and we gave the condition of the boundary values for the exist-
ence of time independent solutions. The ultradiscrete limit of FCA184 was also dis-
cussed and proved that any state turns to a travelling wave state in finite time steps for 
generic initial conditions. Extension of the FCA184 to more realistic models such as a 
slow start model is one of the problems we wish to address in the future (Fig. 9).
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