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Abstract
The shortest bibranching problem is a common generalization of the minimum-
weight edge cover problem in bipartite graphs and the minimum-weight arbores-
cence problem in directed graphs. For the shortest bibranching problem, an efficient 
primal-dual algorithm is given by Keijsper and Pendavingh (J Comb Theory Ser 
B 73:130–145, 1998), and the tractability of the problem is ascribed to total dual 
integrality in a linear programming formulation by Schrijver (Ann Discret Math 
16:261–280, 1982). Another view on the tractability of this problem is afforded 
by a valuated matroid intersection formulation by Takazawa (Jpn J Ind Appl Math 
29:561–573, 2012). In the present paper, we discuss the relationship between these 
two formulations for the shortest bibranching problem. We first demonstrate that 
the valuated matroid intersection formulation can be derived from the linear pro-
gramming formulation through the Benders decomposition, where integrality is 
preserved in the decomposition process and the resulting convex programming is 
endowed with discrete convexity. We then show how a pair of primal and dual opti-
mal solutions of one formulation is constructed from that of the other formulation, 
thereby providing a connection between polyhedral combinatorics and discrete con-
vex analysis.
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1 Introduction

The shortest bibranching problem, introduced in [12] (see also [14]), is a com-
mon generalization of the minimum-weight edge cover problem in bipartite 
graphs and the minimum-weight arborescence problem in directed graphs. In a 
directed graph D = (V ,A) with vertex set V and arc set A, an arc subset B ⊆ A is 
called a branching if B does not contain a directed cycle and every vertex v has 
at most one arc in B entering v. For a vertex r ∈ V  , a branching B is called an 
r-arborescence if every vertex v ∈ V⧵{r} has an arc in B entering v. In an undi-
rected graph G = (V ,E) with vertex set V and edge set E, an edge subset F ⊆ E is 
an edge cover if the union of the end vertices of the edges in F is equal to V.

The shortest bibranching problem is described as follows. Let D = (V ,A) be 
a directed graph D = (V ,A) , and {S, T} be a (nontrivial) partition of the vertex 
set V, that is, S and T are nonempty disjoint subsets of V such that S ∪ T = V  . A 
subset B ⊆ A of arcs is called an S-T bibranching if, in the subgraph (V, B), every 
vertex in S reaches T and every vertex in T is reachable from S. We denote the set 
of nonnegative integers by ℤ+.

Instance: A directed graph (V,  A), a partition {S, T} of V, and a nonnegative 
integer arc-weight w ∈ ℤ

A
+
.

Objective: Find an S–T bibranching B minimizing w(B) =
∑

a∈B w(a).

We denote an arc leaving u and entering v by uv. We also denote 
A[S] = {uv ∈ A ∶ u, v ∈ S} , A[T] = {uv ∈ A ∶ u, v ∈ T} , and A[S,T] = {uv ∈ A ∶

u ∈ S, v ∈ T} . Throughout this paper, we assume, without loss of gen-
erality, that there is no arc uv with u ∈ T  and v ∈ S , which implies that 
A = A[S] ∪ A[T] ∪ A[S, T].

The shortest S–T bibranching problem includes, as special cases, the min-
imum-weight edge cover problem in bipartite graphs and the minimum-weight 
r-arborescence problem in directed graphs. If A[S] = A[T] = � , then D = (V ,A) 
is a bipartite graph with color classes S and T, and an S–T bibranching corre-
sponds exactly to an edge cover in this bipartite graph (the underlying undirected 
bipartite graph, to be more precise). If S = {r} , an inclusion-wise minimal S–T 
bibranching is exactly an r-arborescence, and hence the minimum-weight r-arbo-
rescence problem is reduced to the shortest S–T bibranching problem.

There are several methods to solve the shortest bibranching problem in poly-
nomial time. First, the total dual integrality of a linear programming formula-
tion is proved by Schrijver [12], and hence the ellipsoid method works. Second, 
based on this formulation, Keijsper and Pendavingh [6] designed a much faster 
primal-dual algorithm, which is followed by a scaling algorithm by Babenko [1]. 
Third, the shortest bibranching problem can be described as the shortest strong 
connector problem in a source-sink connected digraph, which can be reduced to 
the weighted matroid intersection problem (see [14] for details). The most recent 
method by Takazawa [16] is a polynomial reduction of the shortest bibranch-
ing problem to the valuated matroid intersection problem [7, 8], and hence 
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any valuated matroid intersection algorithm can solve the shortest bibranching 
problem. Among the above four approaches, the linear-programming and val-
uated-matroid approaches are extended to a further generalization, the shortest 
b-bibranching problem [18].

These results demonstrate that the shortest bibranching problem can be under-
stood through the standard framework of polyhedral combinatorics [14], and a rela-
tively new framework of discrete convex analysis [10] as well. In the present paper, 
we discuss the relationship between these two approaches to the shortest bibranch-
ing problem. First, we demonstrate that the valuated matroid intersection formula-
tion can be derived from the linear programming formulation through the Benders 
decomposition [2, 3], where integrality is preserved in the decomposition process 
and the resulting convex programming is endowed with discrete convexity. In this 
view the valuated matroid intersection formulation corresponds to the master prob-
lem and the subproblems1 are instances of the minimum-weight r-arborescence 
problem. This understanding naturally leads us to a solution algorithm analogous to 
the Bender decomposition. The concave functions representing the objective values 
of the subproblems are replaced by valuated matroids, which are discrete analogues 
of concave functions. Next we discuss the relationship between the two duality theo-
rems associated with the linear programming and valuated matroid intersection for-
mulations, and show how a pair of primal and dual optimal solutions of one formu-
lation is constructed from that of the other formulation.

The organization of this paper is as follows. In Sect. 2, we recapitulate the two 
formulations for the shortest S–T bibranching problem, a linear programming for-
mulation and a valuated matroid intersection formulation, where the emphasis is laid 
on a clear-cut presentation of the existing derivation of the latter formulation. In 
Sect. 3, we point out that the valuated matroid intersection formulation can also be 
derived from the linear programming formulation through the Benders decomposi-
tion, which turns out to be compatible with integrality and discrete convexity. In 
Sect. 4, we exhibit how to construct a pair of primal and dual optimal solutions for 
the valuated matroid intersection formulation from a pair of primal and dual optimal 
solutions for the linear programming formulation. Section 5 shows the converse, i.e., 
how to construct a pair of primal and dual optimal solutions for the linear program-
ming formulation from a pair of primal and dual optimal solutions for the valuated 
matroid intersection formulation.

2  Existing two formulations

2.1  Linear programming formulation

In this section, we review the system of linear inequalities describing the shortest S–T 
bibranching problem [12, 14]. This system of inequalities is a common generalization 
of that for the minimum-weight edge cover problem in bipartite graphs and that for 

1 These subproblems correspond to recourse problems in stochastic programming.
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the minimum-weight r-arborescence problem. The total dual integrality of this system 
forms the basis of our understanding of the shortest S–T bibranching problem in the 
framework of polyhedral combinatorics [14].

Let D = (V ,A) be a directed graph, {S, T} be a (nontrivial) partition of 
V, and w ∈ ℤ

A
+
 be a nonnegative integer arc-weight vector. For X ⊆ V  , let 

�+X = {uv ∈ A ∶ u ∈ X, v ∈ V⧵X} and �−X = {uv ∈ A ∶ u ∈ V⧵X , v ∈ X} . 
The following linear program  (P) in variable x ∈ ℝ

A represents the shortest S–T 
bibranching problem:

Described below is the dual program (D) of (P), whose variables are y ∈ ℝ
2S⧵{�} and 

z ∈ ℝ
2T⧵{�}:

A vertex subset X satisfying either X ⊆ S or X ⊆ T  is called a bicut. Intuitively, the 
dual program (D) represents the problem of packing bicuts S′ ⊆ S and T ′ ⊆ T  so that 
the number of bicuts “crossing” an arc a does not exceed w(a) for each a ∈ A.

The complementary slackness conditions for (P) and (D) are as follows:

where a ∈ A in (7), ∅ ≠ S′ ⊆ S in (8), and ∅ ≠ T ′ ⊆ T  in (9).

(1)

(P) Minimize
∑
a∈A

w(a)x(a)

subject to
∑

a∈𝛿+S�

x(a) ≥ 1 (� ≠ S
� ⊆ S),

(2)
∑

a∈𝛿−T �

x(a) ≥ 1 (� ≠ T
� ⊆ T),

(3)x(a) ≥ 0 (a ∈ A).

(4)

(D) Maximize
∑

�≠S�⊆S

y(S�) +
∑

�≠T �⊆T

z(T �)

subject to
∑

S�⊆S, a∈𝛿+S�

y(S�) +
∑

T �⊆T , a∈𝛿−T �

z(T �) ≤ w(a) (a ∈ A),

(5)y(S�) ≥ 0 (� ≠ S� ⊆ S),

(6)z(T �) ≥ 0 (� ≠ T � ⊆ T).

(7)x(a) > 0 ⟹

∑
S�∶a∈𝛿+S�

y(S�) +
∑

T �∶a∈𝛿−T �

z(T �) = w(a),

(8)y(S�) > 0 ⟹

∑
a∈𝛿+S�

x(a) = 1,

(9)z(T �) > 0 ⟹

∑
a∈𝛿−T �

x(a) = 1,
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Theorem 1 (Schrijver [12], see also [14]) For an arbitrary integer vector w ∈ ℤ
A
+
, 

(P) and (D) have integral optimal solutions.

2.2  M‑convex submodular flow formulation

Another formulation of the shortest S–T bibranching problem, given in [16], falls in 
the framework of valuated matroid intersection [7, 8]. This formulation provides a 
new insight into the shortest S–T bibranching problem through discrete convex anal-
ysis [10]. In this paper we adopt a formulation by the M ♮-convex submodular flow 
problem [9], which does not differ essentially from the valuated matroid intersection 
formulation [16], but offers a clearer correspondence to the linear programming for-
mulation in Sect. 2.1.

We begin with some definitions. For a finite set X and an integer vector � ∈ ℤ
X , 

we define supp+(𝜂) = {u ∈ X ∶ 𝜂(u) > 0} and supp−(𝜂) = {u ∈ X ∶ 𝜂(u) < 0} . 
For Y ⊆ X , �Y ∈ ℤ

X is the characteristic vector of Y defined by �Y (u) = 1 if u ∈ Y  
and �Y (u) = 0 if u ∈ X⧵Y  . For u ∈ X , �{u} is abbreviated as �u . For a function 
f ∶ ℤ

X
→ ℤ , where ℤ = ℤ ∪ {+∞} , the effective domain dom f  of f is defined by 

dom f = {𝜂 ∈ ℤ
X ∶ f (𝜂) < +∞} . A function f ∶ ℤ

X
→ ℤ is called an M♮-convex 

function [10, 11] if it satisfies the following exchange property:

For each �, � ∈ ℤ
X and u ∈ supp+(� − �) , it holds that

or there exists v ∈ supp−(� − �) such that

A set D ⊆ ℤ
X is called an M♮-convex set if its indicator function 

�D ∶ ℤ
X
→ ℝ ∪ {+∞} defined by

is an M ♮-convex function. Equivalently, a set D ⊆ ℤ
X is an M ♮-convex set if and 

only if it satisfies the following exchange property:

For each �, � ∈ D and u ∈ supp+(� − �) , it holds that

or there exists v ∈ supp−(� − �) such that

It is pointed out in Takazawa [15, 17] that discrete convexity inherent in branchings 
follows from the arguments in Schrijver [13]. A further connection of S–T bibranch-
ings to discrete convex analysis is revealed in [16]. In the following, we summarize the 

(10)f (� − �u) + f (� + �u) ≤ f (�) + f (�)

(11)f (� − �u + �v) + f (� + �u − �v) ≤ f (�) + f (�).

�D(�) =

{
0 (� ∈ D),

+∞ (� ∉ D)

(12)� − �u ∈ D and � + �u ∈ D

(13)� − �u + �v ∈ D and � + �u − �v ∈ D.
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arguments in [15–17] and exhibit an M ♮-convex submodular flow formulation to high-
light the discrete convexity in the shortest S–T bibranching problem.

For the M ♮-convex submodular flow formulation, it is convenient to regard a (short-
est) S–T bibranching as a discrete system consisting of three components, a branching, 
a cobranching, and a bipartite edge cover, where a cobranching means an arc subset 
such that the reversal of its arcs is a branching. For a precise formulation, we need 
some notations.

For a digraph D = (V ,A) and a partition {S, T} of V, denote the subgraphs induced by 
S and T, respectively, as D[S] and D[T], that is, D[S] = (S,A[S]) and D[T] = (T ,A[T]) . 
For B ⊆ A , denote B[S] = {uv ∈ B ∶ u, v ∈ S} , B[T] = {uv ∈ B ∶ u, v ∈ T} , and 
B[S, T] = {uv ∈ B ∶ u ∈ S, v ∈ T} . For an arc set F ⊆ A[S, T] , define �+F ∈ ℤ

S 
and �−F ∈ ℤ

T by

respectively, where �+u = {uv ∈ A ∶ v ∈ V⧵{u}} and �−v = {uv ∈ A ∶ u ∈ V⧵{v}} . 
For a branching BT in D[T], let R(BT ) denote the set of vertices in T which no arc 
in BT enters. For a cobranching BS in D[S], let R∗(BS) denote the set of vertices in S 
which no arc in BS leaves.

Then we can say that an arc subset B ⊆ A is an S–T bibranching if B[S] is a 
cobranching with R∗(B[S]) = supp+(�+B[S, T]) and B[T] is a branching with 
R(B[T]) = supp+(�−B[S, T]) . Equivalently, B ⊆ A is an S–T bibranching if B[S] is a 
cobranching in D[S], B[T] is a branching in D[T], and B[S, T] is an edge cover in the 
graph D[R∗(B[S]),R(B[T])] . This definition slightly differs from that in [12]: here B[S] 
should be a cobranching and B[T] should be a branching, which is not necessarily the 
case in the definition in [12]. However, we may naturally adopt this alternative defini-
tion as long as we consider the shortest S–T bibranching problem.

If we first specify F ⊆ A[S, T] as the intersection of A[S,  T] and our S–T 
bibranching, then arcs in A[T] to be added to F should form a branching BT in D[T] 
such that R(BT ) = supp+(�−F) . Similarly, a cobranching BS ⊆ A[S] satisfying 
R∗(BS) = supp+(�+F) should be added to F. Then an S–T bibranching B is obtained as 
B = F ∪ BS ∪ BT.

The minimum weights of BT and BS are expressed respectively by the functions 
gT ∶ ℤ

T
→ ℤ and gS ∶ ℤ

S
→ ℤ defined as follows. The effective domain dom gT is 

defined as

and, for � ∈ dom gT , the function value gT (�) is defined as

Similarly, we define gS ∶ ℤ
S
→ ℤ by

�+F(u) = |F ∩ �+u| (u ∈ S),

�−F(v) = |F ∩ �−v| (v ∈ T),

dom gT = {� ∈ ℤ
T
+
∶ there is a branching BT in D[T] with R(BT ) = supp+(�)},

(14)gT (�) = min{w(BT ) ∶ BT is a branching in D[T],R(BT ) = supp+(�)}.
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We remark here that gT and gS are not linear functions. For example, 
gT (�1 + �2) ≠ gT (�1) + gT (�2) in general.

For � ∈ {0, 1}A[S,T] , define �� ∈ ℤ
S∪T by

The restrictions of �� ∈ ℤ
S∪T to S and T are denoted by ��|S ∈ ℤ

S and ��|T ∈ ℤ
T , 

respectively. Now the shortest S–T bibranching problem is formulated as the follow-
ing 0-1 integer program in variable � ∈ {0, 1}A[S,T] representing F ⊆ A[S, T]:

where w(�) =
∑

a∈A[S,T] w(a)�(a).
Notice that the functions gS(��|S) and gT (��|T ) are not linear functions. However, 

this formulation reveals the discrete convexity inherent in the shortest S–T bibranch-
ing problem, which is described as follows.

Theorem 2 (Takazawa [16]) Functions gS in (15) and gT in (14) are M♮-convex func-
tions. Thus, the shortest S–T bibranching problem is formulated as the M♮-convex 
submodular flow problem (MSF) in (16).

We often refer to � ∈ {0, 1}A[S,T] as a flow, and a flow � is said to be feasible if 
��|S ∈ dom gS and −��|T ∈ dom gT . That is, � ∈ {0, 1}A[S,T] is feasible if there exist 
a cobranching BS in D[S] with R∗(BS) = supp+(��|S) and a branching BT in D[T] 
with R(BT ) = supp+(−��|T ).

Remark 1 Note that �� may not be a {0, 1}-vector, though � itself is a {0, 1}-vector. 
Hence the domains of gS and gT should not be restricted to sets of {0, 1}-vectors, but 
they are sets of integers. With some further argument Takazawa [16] reduced the 
formulation (MSF) to the valuated matroid intersection problem [7, 8] so that both 
of the original shortest S–T bibranching problem and the resulting valuated matroid 
intersection problem can be defined on {0, 1}-vectors. In this paper, however, we 
adopt the M ♮-convex submodular flow formulation  (MSF) in order to make the 
whole logic clearer.   ◻

We now show the proof of Theorem  2 by clarifying the arguments scattered 
in [15–17]. The matroidal nature of branchings (M♮-convexity of dom gT , to be 
specific) is first noted in [15]. For a digraph D = (V ,A) , a source component K in 
D is a strong component such that no arc in A enters K, where we identify a com-
ponent K and its vertex set and denote either of them by K. It is not difficult to see 
that, for U ⊆ V  , there exists a branching B with R(B) = U if and only if U ∩ K ≠ � 
for every source component K, where R(B) denotes the set of vertices without 

(15)

dom gS ={� ∈ ℤ
S
+
∶ there is a cobranching BS in D[S] with R

∗(BS) = supp+(�)},

gS(�) =min{w(BS) ∶ BS is a cobranching in D[S],R∗(BS) = supp+(�)}

(� ∈ dom gS).

��(v) = |{a ∶ �(a) = 1, a ∈ �+v}| − |{a ∶ �(a) = 1, a ∈ �−v}| (v ∈ S ∪ T).

(16)(MSF) Minimize w(�) + gS(��|S) + gT (−��|T ),
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entering arcs in B. Hence, {V⧵R(B) ∶ B is a branching in D} is an independent set 
of a partition matroid, and thus {� ∈ ℤ

V ∶ B is a branching in D , R(B) = supp+(�)} 
is an M ♮-convex set (g-matroid).

To prove Theorem 2, we need a stronger exchange property of branchings: the 
arc sets of branchings also have an exchange property. First, the following lemma 
is derived from Edmonds’ disjoint branchings theorem [5].

Lemma 1 [13] Let D = (V ,A) be a digraph, and B1,B2 be branchings partitioning 
A. For R′

1
,R′

2
⊆ V  satisfying R�

1
∪ R�

2
= R(B1) ∪ R(B2) and R�

1
∩ R�

2
= R(B1) ∩ R(B2), 

the arc set A can be partitioned into branchings B′
1
 and B′

2
 such that R(B�

1
) = R�

1
 and 

R(B�
2
) = R�

2
 if and only if K ∩ R�

1
≠ � and K ∩ R�

2
≠ � for every source component K.

The next lemma, which follows from Lemma 1, describes the exchange prop-
erty of the arc sets of branchings.

Lemma 2 ([13], See also [16, 17]) Let D = (V ,A) be a digraph, B1 and B2 be branch-
ings partitioning A,   and s ∈ R(B1)⧵R(B2). Then, there exist branchings B′

1
 and B′

2
 

which partition A and satisfy that

– R(B�
1
) = R(B1)⧵{s} and R(B�

2
) = R(B2) ∪ {s}, or

– there exists t ∈ R(B2)⧵R(B1) such that R(B�
1
) = (R(B1)⧵{s}) ∪ {t} and 

R(B�
2
) = (R(B2) ∪ {s})⧵{t}.

Proof Let K be the strong component containing s. If K is a source compo-
nent, then let t be the root of the directed tree in B2 containing s, and define 
R�
1
= (R(B1) ∪ {s})⧵{t} and R�

2
= (R(B2)⧵{s}) ∪ {t} . Note that t ∈ K and 

t ∈ R(B2)⧵R(B1) . Otherwise, define R�
1
= R(B1) ∪ {s} and R�

2
= R(B2)⧵{s} . Then the 

claim follows from Lemma 1.

We are now ready to show a proof for Theorem 2.

Proof for Theorem  2 It suffices to deal with gT , since the M ♮-convexity of gS is 
proved similarly. Let �, � ∈ dom gT , and let u ∈ supp+(� − �).

If �(u) ≥ 1 , then supp+(� − �u) = supp+(�) and supp+(� + �u) = supp+(�) , which 
imply gT (� − �u) = gT (�) and gT (� + �u) = gT (�) . Hence g

T
(� − �

u
) + g

T
(� + �

u
) ≤

g
T
(�) + g

T
(�) in (10) holds with equality.

If �(u) ≥ 2 and �(u) = 0 , then supp+(� − �u) = supp+(�) and 
supp+(� + �u) = supp+(�) ∪ {u} , which imply gT (� − �u) = gT (�) and 
gT (� + �u) ≤ gT (�) . The latter is derived as follows. Let B� be a branching in D[T] 
yielding gT (�) , i.e., R(B� ) = supp+(�) and w(B� ) = gT (�) . Now �(u) = 0 implies 
u ∈ T⧵R(B) , i.e., B� has an arc a entering u. Then, B�

�
= B�⧵{a} is a branching with 

R(B�
�
) = supp

+(� + �u) , and thus gT (� + �u) ≤ w(B�
�
) = w(B� ) − w(a) ≤ w(B� ) = gT (�) , 

where the latter inequality follows from the nonnegativity of w. Therefore 
gT (� − �u) + gT (� + �u) ≤ gT (�) + gT (�) in (10) holds.
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If �(u) = 1 and �(u) = 0 , then there exist branchings B� and B� in D[T] such that

It is understood that in digraph (T ,B� ∪ B� ) , an arc a contained in both B� and B� has 
multiplicity two in B� ∪ B� . We have u ∈ R(B�)⧵R(B� ) . By Lemma  2 applied to 
(T ,B� ∪ B� ) , there exist branchings B′

�
 and B′

�
 which partition B� ∪ B� and satisfy 

that

or

for some v ∈ R(B� )⧵R(B�) . Then, in the former case we obtain

which shows (10), and in the latter case,

which shows (11). This proves M ♮-convexity of gT.

3  M♮‑convex submodular flow formulation via Benders 
decomposition

In this section, we demonstrate that the M ♮-convex submodular flow formulation (MSF) 
can be obtained from the linear program (P) through the Benders decomposition, where 
integrality is preserved in the decomposition process and the resulting convex program-
ming is endowed with discrete convexity.

We denote by xS,T , xS , and xT the restrictions x|A[S,T] , x|A[S] , and x|A[T] of x to 
A[S, T], A[S], and A[T], respectively. Similarly, we use abbreviations wS,T = w|A[S,T] , 
wS = w|A[S] , and wT = w|A[T] . Then the linear program (P) is rewritten as

R(B�) = supp+(�), w(B�) = gT (�),

R(B� ) = supp+(�), w(B� ) = gT (�).

R(B�
�
) = R(B�)⧵{u} and R(B�

�
) = R(B� ) ∪ {u}

R(B�
�
) = (R(B�)⧵{u}) ∪ {v} and R(B�

�
) = (R(B� ) ∪ {u})⧵{v}

gT (� − �u) + gT (� + �u) ≤ w(B�
�
) + w(B�

�
) = w(B�) + w(B� ) = gT (�) + gT (�),

gT (� − �u + �v) + gT (� + �u − �v) ≤ w(B�
�
) + w(B�

�
)

= w(B�) + w(B� ) = gT (�) + gT (�),

(17)

(LP) Minimize
∑

a∈A[S,T]

wS,T (a)xS,T (a) +
∑

a∈A[S]

wS(a)xS(a) +
∑

a∈A[S]

wT (a)xT (a)

subject to
∑

a∈A[S,T]

xS,T (a) ≥ 1,
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The Benders decomposition proceeds in the following manner. The master problem, 
in variable xS,T , is described as

where the functions hS and hT respectively represent the optimal values of the fol-
lowing subproblems (SUB(S)) and (SUB(T)) parametrized by xS,T:

The subproblems (SUB(S)) and (SUB(T)) are linear programs, whereas the master 
problem (MASTER) is a convex program.

We are concerned with a {0, 1}-valued optimal solution x ∈ {0, 1}A . Theorem 1 
guarantees the existence of an integer optimal solution for (LP), and then the con-
straints (17)–(20) imply that it is {0, 1}-valued. This implies that the master prob-
lem (MASTER) and the subproblems (SUB(S)) and (SUB(T)) are also equipped with 
discreteness.

(18)
∑

a∈�+S�∩A[S,T]

xS,T (a) +
∑

a∈�+S�∩A[S]

xS(a) ≥ 1 (� ≠ S� ⫋ S),

(19)
∑

a∈�−T �∩A[S,T]

xS,T (a) +
∑

a∈�−T �∩A[T]

xT (a) ≥ 1 (� ≠ T � ⫋ T),

(20)xS,T , xS, xT ≥ 0.

(21)

(MASTER) Minimize
∑

a∈A[S,T]

wS,T (a)xS,T (a) + hS(xS,T ) + hT (xS,T )

subject to
∑

a∈A[S,T]

xS,T (a) ≥ 1,

(22)xS,T ≥ 0,

(23)

(SUB(S)) Minimize
∑

a∈A[S]

wS(a)xS(a)

subject to
∑

a∈�+S�∩A[S]

xS(a) ≥ 1 −
∑

a∈�+S�∩A[S,T]

xS,T (a) (� ≠ S� ⫋ S),

(24)xS ≥ 0;

(25)

(SUB(T)) Minimize
∑

a∈A[T]

wT (a)xT (a)

subject to
∑

a∈�−T �∩A[T]

xT (a) ≥ 1 −
∑

a∈�−T �∩A[S,T]

xS,T (a) (� ≠ T � ⫋ T),

(26)xT ≥ 0.
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The combinatorial (or matroidal) nature of the subproblems can be seen as 
follows. Fix xS,T = � ∈ {0, 1}A[S,T] satisfying (21) and (22). We first consider 
(SUB(T)) . On noting that (25) can be rewritten as

and xT may be assumed to be a {0, 1}-vector, we can see that (SUB(T)) is nothing 
other than the problem of finding the minimum-weight branching BT ⊆ A[T] in D[T] 
with R(BT ) = supp+(−��|T ) . Thus, the optimal value of (SUB(T)) , denoted hT (�) , is 
in fact equal to gT (−��|T ) for the function gT defined in (14), i.e., hT (�) = gT (−��|T ) . 
In addition, the function gT is M ♮-convex by Theorem 2. This shows the matroidal 
property of (SUB(T)) . Similarly, we have hS(�) = gS(��|S) for the other subproblem 
(SUB(S)) , where gS is also an M ♮-convex function by Theorem 2.

With the above observations the master problem (MASTER) can be rewritten 
as:

where the constraint (21) in (MASTER) is deleted since it is implied by ��|S ∈ dom gS 
and −��|T ∈ dom gT . Thus, the master problem (MASTER) in the Benders decompo-
sition is equivalent to the M ♮-convex submodular formulation (MSF) in (16).

We remark that this observation implies that the linear program (P) can be 
solved by the Benders decomposition, in which the subproblems are the min-
imum-weight r-arborescence problem and hence can be solved efficiently. 
This method requires neither the ellipsoid method to solve (P) directly, nor the 
sophisticated techniques used in the previous combinatorial algorithms [1, 6] 
other than finding a minimum-weight branching.

It is emphasized that the formulation in the M ♮-convex submodular prob-
lem  (MSF) in Sect.  2.2 is based on purely combinatorial arguments, without 
directly relying on the linear programming formulation (P) or (LP) . In contrast, 
in this section we have started with the linear programming formulation (P) and 
its integrality (Theorem 1), and derived (MSF) therefrom.

4  Optimal flow and potential from optimal LP solutions

According to the theory of M-convex submodular flows in discrete convex 
analysis [9, 10], the M ♮-convex submodular flow formulation (MSF) admits an 
optimality criterion in terms of potentials (dual variables). The objective of this 
section is to show that an optimal flow and an optimal potential for (MSF) can 
be constructed from the optimal solutions of the primal-dual pair of linear pro-
grams (P) and (D).

∑
a∈�−T �∩A[T]

xT (a) ≥ 1 + ��|T (� ≠ T � ⫋ T)

Minimize
∑

a∈A[S,T]

wS,T (a)�(a) + gS(��|S) + gT (−��|T )

subject to � ∈ {0, 1}A[S,T],
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4.1  Optimality criterion for (MSF)

The optimality criterion for M ♮-convex submodular flows [9, 10], when tailored to 
(MSF), is given in Theorem 3 below. For vectors p ∈ ℤ

S and q ∈ ℤ
T , define functions 

gS[+p] ∶ ℤ
S
→ ℤ and gT [+q] ∶ ℤ

T
→ ℤ by

where gS and gT are given in (15) and (14), respectively.

Theorem 3 A feasible flow � ∈ {0, 1}A[S,T] is an optimal solution for (MSF) if and 
only if there exist p ∈ ℤ

S and q ∈ ℤ
T satisfying the following ( i)–(iii ): 

 (i) for a = uv ∈ A[S, T],

 (ii) ��|S ∈ argmin (gS[−p]).

 (iii) −��|T ∈ argmin (gT [+q]).

We refer to (p, q) ∈ ℤ
S∪T satisfying (i)–(iii) in Theorem 3 for some � ∈ {0, 1}A[S,T] 

as an optimal potential for (MSF). Intuitively Theorem 3 is understood in the following 
way. Given p ∈ ℤ

S and q ∈ ℤ
T , define a reduced weight w�(a) for each a = uv ∈ A by

Roughly speaking, Conditions (i)–(iii) mean that � ∈ {0, 1}A[S,T] corresponds to 
optimal solutions for the three independent problems of minimizing

where g′
S
 and g′

T
 are defined by (15) and (14), respectively, with w replaced by w′ . To 

be precise, we need a certain care of the cases ��(u) ≥ 2 for u ∈ S and ��(v) ≤ −2 
for v ∈ T  , because in those cases g�

S
(��|S) and g�

T
(−��|T ) do not exactly coincide 

with the minimum-weights of a cobranchings BS with R∗(S) = supp+(��|S) and a 
branchings BT with R(T) = supp+(−��|T ) , respectively.

gS[+p](�) = gS(�) +
∑
u∈S

p(u)�(u) (� ∈ ℤ
S),

gT [+q](�) = gT (�) +
∑
v∈T

q(v)�(v) (� ∈ ℤ
T ),

(27)�(a) = 1 ⟹ w(a) + p(u) − q(v) ≤ 0,

(28)�(a) = 0 ⟹ w(a) + p(u) − q(v) ≥ 0.

w�(a) =

⎧⎪⎨⎪⎩

w(a) + p(u) − q(v) (a = uv ∈ A[S, T]),

w(a) + p(u) (a = uv ∈ A[S]),

w(a) − q(v) (a = uv ∈ A[T]).

∑
a∈A[S,T]

w�
S,T

(a)xS,T (a), g�
S
(��|S), g�

T
(−��|T ),
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4.2  Construction of an optimal flow and potential for (MSF)

We will show how to construct an optimal flow �∗ ∈ {0, 1}A[S,T] and an optimal 
potential (p∗, q∗) ∈ ℤ

S∪T for (MSF) from the optimal solutions x ∈ {0, 1}A and 
(y, z) ∈ ℤ

2S⧵{�} × ℤ
2T⧵{�} of the linear programs (P) and (D). Recall from Theo-

rem 1 that both (P) and (D) have integer optimal solutions.
Given x and (y, z), define �∗ and (p∗, q∗) by

In other words, for a ∈ A[S, T] , the flow value �∗(a) is one if and only if a is an arc 
in the shortest bibranching represented by x ∈ {0, 1}A . For u ∈ S , the optimal poten-
tial value p∗(u) is equal to the negation of the number of bicuts S′ ⊆ S containing 
u. Similarly, for v ∈ T  , the optimal potential value q∗(v) is equal to the number of 
bicuts T ′ ⊆ T  containing v.

Below we show that �∗ and (p∗, q∗) satisfy Condition (i)–(iii) in Theorem 3, to 
prove that they are an optimal flow and an optimal potential for (MSF). The above 
intuitive understanding of Theorem  3 also works here, but the proof is more 
involved due to the possibilities of ��∗(u) ≥ 2 for u ∈ S and ��∗(v) ≤ −2 for v ∈ T .

Theorem 4 Let x ∈ {0, 1}A and (y, z) ∈ ℤ
2S × ℤ

2T be optimal solutions for (P) and 
(D), respectively. Then, �∗ and (p∗, q∗) defined in (29)–(31) are an optimal flow and 
an optimal potential for (MSF), respectively.

Proof In the following we show (i)–(iii) in Theorem  3. We first show (i). For 
a = uv ∈ A[S, T] , it holds that

where the last inequality is due to (4). Moreover, if �(a) = 1 , the inequality turns 
into an equality by (7), and therefore (27) and (28) follow.

Next we show (iii) (rather than (ii)). Let w�(a) = w(a) − q∗(v) for a = uv ∈ A[T] . 
For an arbitrary � ∈ dom gT , it holds that

(29)�∗(a) = x(a) (a ∈ A[S, T]),

(30)p∗(u) = −
∑

S�⊆S, u∈S�

y(S�) (u ∈ S),

(31)q∗(v) =
∑

T �⊆T , v∈T �

z(T �) (v ∈ T).

−p∗(u) + q∗(v) =
∑

S�⊆S, u∈S�

y(S�) +
∑

T �⊆T , v∈T �

z(T �)

=
∑

S�⊆S, a∈𝛿+S�

y(S�) +
∑

T �⊆T , a∈𝛿−T �

z(T �)

≤ w(a),
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A lower bound for the right-hand side of (32) is provided as follows. For the first 
term we have

since, for any branching B in D[T] with R(B) = supp+(�) , it holds that

where the first inequality is by (4). In addition, the last term of the right-hand side of 
(32) is nonnegative, i.e.,

since q∗(v) ≥ 0 by (31). From (32), (33), and (36), we obtain

(32)

gT [+q
∗](�)

= min{w(B) ∶ B is a branching in D[T],R(B) = supp+(�)} +
∑
v∈T

q∗(v)�(v)

= min{w�(B) ∶ B is a branching in D[T],R(B) = supp+(�)}

+ q∗(T) +
∑

v∈supp+(�)

q∗(v)(�(v) − 1).

(33)
min{w�(B) ∶ B is a branching in D[T],R(B) = supp+(𝜂)}

≥ −
∑

�≠T �⊆T

(|T �| − 1)z(T �),

(34)

w�(B) =
∑
uv∈B

(w(uv) − q∗(v))

=
∑
uv∈B

(
w(uv) −

∑
T �⊆T , v∈T �

z(T �)

)

≥
∑
uv∈B

( ∑
T �⊆T , uv∈𝛿−T �

z(T �) −
∑

T �⊆T , v∈T �

z(T �)

)

(35)

=
∑
uv∈B

(
−

∑
T �⊆T , u,v∈T �

z(T �)

)

= −
∑

�≠T �⊆T

|B[T �]| ⋅ z(T �)

≥ −
∑

�≠T �⊆T

(|T �| − 1)z(T �),

(36)
∑

v∈supp+(�)

q∗(v)(�(v) − 1) ≥ 0,

gT [+q
∗](𝜂) ≥ −

∑
�≠ T �⊆T

(|T �| − 1)z(T �) + q∗(T),
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where the right-hand side is a constant for a fixed z. Hence, in order to prove 
−��∗|T ∈ argmin gT [+q

∗] , it suffices to show that the three inequalities (34), (35), 
and (36) in the above turn into equalities when � = −��∗|T.

For the first and second inequalities (34) and (35), let B∗ = supp+(x) be the short-
est S–T bibranching corresponding to x. Then B∗[T] is a branching in D[T] such that 
R(B∗[T]) = supp+(−��∗|T ) , and the first inequality (34) holds with equality for B∗[T] 
by (7). Moreover, |B∗ ∩ �−T �| = 1 for every nonempty T ′ ⊆ T  with z(T �) > 0 by (9). 
Thus, |B∗[T �]| = |T �| − |B∗ ∩ �−T �| = |T �| − 1 if z(T �) > 0 , and hence the equal-
ity in (35) follows. For the third inequality  (36), suppose q∗(v) > 0 and let T ′ ⊆ T  
contribute to q∗(v) in (31), i.e., v ∈ T � and z(T �) > 0 . Since v ∈ supp+(−��∗|T ) , 
there exists at least one arc a∗ = uv ∈ A[S, T] such that x(a∗) = 1 . Then we have 
that a∗ ∈ �−T � . We also have 

∑
a∈�−T � x(a) = 1 by (9), and hence such a∗ is unique. 

Therefore −��∗|T (v) = 1 follows. Hence all terms in the summation in (36) are equal 
to zero.

Finally, condition (ii) is proved similarly to (iii).

5  Optimal LP solutions from an optimal flow and potential

In this section, we describe how to construct optimal solutions for (P) and (D) of the 
linear programming formulation from an optimal flow � ∈ {0, 1}A[S,T] and an opti-
mal potential (p, q) ∈ ℤ

S∪T for the M ♮-convex submodular flow formulation (MSF).

5.1  Optimal flow and potential with a stronger property

We first establish the following lemma, in which (p, q) need not be an optimal poten-
tial but an arbitrary pair of vectors.

Lemma 3 For arbitrary p ∈ ℤ
S and q ∈ ℤ

T , the following hold.

– If argmin gS[−p] ≠ �, then p(u) ≤ 0 for every u ∈ S. Moreover, p(u) = 0 if 
�∗(u) ≥ 2 for some �∗ ∈ argmin gS[−p].

– If argmin gT [+q] ≠ �, then q(v) ≥ 0 for every v ∈ T  . Moreover, q(v) = 0 if 
�∗(v) ≥ 2 for some �∗ ∈ argmin gT [+q].

Proof It suffices to prove the latter assertion. Suppose that q(v) < 0 for some v ∈ T  . 
Note that �T ∈ dom gT . Then, for an arbitrary positive integer � , we have that

which tends to −∞ as � → +∞ . Therefore, argmin gT [+q] ≠ � implies q(v) ≥ 0 for 
every v ∈ T .

gT [+q](�T + ��v) = gT (�T ) + q(T) + �q(v),
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Now suppose that �∗ ∈ argmin gT [+q] and �∗(v) ≥ 2 . Then 
supp+(�∗) = supp+(�∗ − �v) , and hence gT (�

∗) = gT (�
∗ − �v) , whereas 

gT [+q](�
∗) ≤ gT [+q](�

∗ − �v) by �∗ ∈ argmin gT [+q] . Therefore, we have

which implies q(v) ≤ 0 . Therefore, q(v) = 0 follows.

We next show the existence of an optimal potential satisfying a property 
stronger than (27).

Lemma 4 For an optimal flow � ∈ {0, 1}A[S,T], there exists an optimal potential 
(p, q) ∈ ℤ

S∪T such that

holds for every a = uv ∈ A[S, T].

Proof Let (p◦, q◦) be a given optimal potential and assume that (37) 
fails for a∗ = u∗v∗ ∈ A[S, T] . This means, by (27), that �(a∗) = 1 and 
w(a∗) + p◦(u∗) − q◦(v∗) < 0.

By Lemma 3, it holds that p◦(u∗) ≤ 0 and q◦(v∗) ≥ 0 . Then, there exist �, � ∈ ℤ 
such that

With such �, � we modify (p◦, q◦) to (p�, q�) ∈ ℤ
S × ℤ

T as

Note that (37) holds for a∗ = u∗v∗ with respect to the modified potential (p�, q�).

Claim (p�, q�) is an optimal potential.

Proof for Claim We prove that � and (p�, q�) satisfy (i)–(iii) in Theorem 3. Note that 
(i)–(iii) in Theorem 3 hold for � and (p◦, q◦).

We first show (i). Inequality (28) follows from p′ ≥ p◦ and q′ ≤ q◦ . As for (27), 
it is obvious that (27) holds for a∗ . Let â = ûv̂ ∈ A[S, T]⧵{a∗} be such that 𝜉(â) = 1 . 
If â is not adjacent to a∗ , then w(â) + p�(û) − q�(v̂) = w(â) + p◦(û) − q◦(v̂) ≤ 0 . Sup-
pose that â is adjacent to a∗ , i.e., v̂ = v∗ or û = u∗ . If v̂ = v∗ , then −𝜕𝜉(v̂) ≥ 2 , and 
q◦(v̂) = 0 follows from Lemma 3. Therefore, q�(v̂) = q◦(v̂) = 0 , and hence (27) holds 
for â . The other case of û = u∗ can be treated similarly.

gT [+q](�
∗) ≤ gT [+q](�

∗ − �v)

= gT (�
∗ − �v) + q ⋅ (�∗ − �v)

= gT [+q](�
∗) − q(v),

(37)�(a) = 1 ⟹ w(a) + p(u) − q(v) = 0

p◦(u∗) ≤ � ≤ 0, 0 ≤ � ≤ q◦(v∗), w(a∗) + � − � = 0.

p�(u) =

{
p◦(u) (u ∈ S⧵{u∗}),

� (u = u∗),
q�(v) =

{
q◦(v) (v ∈ T⧵{v∗}),

� (v = v∗).
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We next show (iii), while noting that (ii) can be proved similarly as 
(iii). Suppose, to the contrary, that −��|T ∉ argmin (gT [+q

�]) . That is, 
gT [+q

�](𝜂) < gT [+q
�](−𝜕𝜉|T ) holds for some � ∈ ℤ

T
+
 . Here, we claim the following:

Proof for (38). Since −��|T ∈ argmin (gT [+q
◦]) and −��|T ∉ argmin (gT [+q

�]) , 
we have that q′ ≠ q◦ and consequently 0 ≤ q�(v∗) < q◦(v∗) . Then, (38) follows 
from Lemma 3.
Proof for (39). Denote Δ = q◦(v∗) − q�(v∗) > 0 . Since 

 we have that �(v∗) ≥ −��(v∗) + 1 = 2.
For �̂� ∈ ℤ

T
+
 defined by

it holds that

where (38) and (39) are used. This contradicts −��|T ∈ argmin (gT [+q
◦]) . Thus 

we have shown −��|T ∈ argmin (gT [+q
�]) in (iii). This completes the proof of the 

claim.
By the above claim, we can reduce the number of arcs violating (37) by modify-

ing (p, q) = (p◦, q◦) to (p, q) = (p�, q�) , while maintaining the optimality. By repeat-
ing such modifications we eventually arrive at the situation where (37) holds for 
every a = uv ∈ A[S, T] . This completes the proof for Lemma 4.

5.2  Construction of optimal primal and dual solutions for the LP formulation

In what follows, we assume that � is an optimal flow and (p, q) is an optimal potential 
satisfying the condition (37) in Lemma 4. We construct optimal solutions for (P) and 

(38)−��(v∗) = 1,

(39)�(v∗) ≥ 2.

0 < gT [+q
�](−𝜕𝜉|T ) − gT [+q

�](𝜂)

=

(
gT [+q

◦](−𝜕𝜉|T ) − gT [+q
◦](𝜂)

)
+ Δ ⋅

(
𝜂(v∗) + 𝜕𝜉(v∗)

)

≤ Δ ⋅

(
𝜂(v∗) + 𝜕𝜉(v∗)

)
,

�̂�(v) =

{
1 (v = v∗),

𝜂(v) (v ∈ T⧵{v∗}),

gT [+q
◦](�̂�) = gT [+q

�](𝜂) − q�(v∗)(𝜂(v∗) − 1) + Δ

≤ gT [+q
�](𝜂) + Δ

< gT [+q
�](−𝜕𝜉|T ) + Δ

= gT [+q
◦](−𝜕𝜉|T ),
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(D) by combining the primal and dual solutions of the minimum-weight arborescence 
problems in auxiliary directed graph defined by D[S] and p, and that by D[T] and q.

Let DT = (VT ,AT ) be a directed graph with arc weight w� ∈ ℤ
AT defined as follows:

where rT is a newly introduced additional vertex. For any rT-arborescence B̃T in DT , 
BT = B̃T ∩ A[T] = B̃T [T] is a branching in D[T] with R(BT ) = {v ∈ T ∶ rTv ∈ B̃T} . 
Conversely, for any branching BT in D[T], B̃T = BT ∪ {rTv ∶ v ∈ R(BT )} is an rT
-arborescence in DT.

Lemma 5 There exists in DT a minimum-weight rT-arborescence B̃T such that 
R(B̃T [T]) = supp+(−𝜕𝜉|T ).

Proof By the correspondence between rT-arborescences in DT and branchings in 
D[T] described above, the minimum-weight rT-arborescence problem in DT with 
respect to w′ is equivalent to minimizing w(BT ) +

∑
v∈R(BT )

q(v) over branchings BT 
in D[T]. On the other hand, in minimizing gT [+q](�) , we may assume � ∈ {0, 1}T 
by Lemma 3, and for � = �X with X ⊆ T  , the value of gT [+q](�X) is equal to the 
minimum of w(BT ) +

∑
v∈X q(v) for a branching BT in D[T] satisfying R(BT ) = X . 

Since −��|T ∈ argmin gT [+q] , there exists a minimum-weight branching BT in 
D[T] satisfying R(BT ) = supp+(−��|T ) . Then the corresponding rT-arborescence 
B̃T = BT ∪ {rTv ∶ v ∈ R(BT )} is a minimum-weight rT-arborescence such that 
R(B̃T [T]) = supp+(−𝜕𝜉|T ).

The following problems (P′ ) and (D′ ), whose variables are x� ∈ ℝ
AT and � ∈ ℝ

2T , 
are a linear programming formulation of the minimum-weight rT-arborescence prob-
lem in DT and its dual program, respectively [4, 14]:

VT = {rT} ∪ T , AT = {rTv ∶ v ∈ T} ∪ A[T],

w�(uv) =

{
q(v) (u = rT ),

w(uv) (u ∈ T),

(40)

3(P�) Minimize
∑
a∈AT

w�(a)x�(a)

subject to
∑
a∈�−v

x�(a) = 1 (v ∈ T),

(41)
∑

a∈𝛿−T �

x�(a) ≥ 1 (T � ⊆ T , |T �| ≥ 2),

(42)x�(a) ≥ 0 (a ∈ AT ).
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The complementary slackness conditions for (P′ ) and (D′ ) are as follows:

where a = uv ∈ AT in (45) and T ′ ⊆ T  with |T ′| ≥ 2 in (46).
It is known [4, 14] that there exists an integer optimal solution �∗ for (D′ ) such that 

�∗(v) is nonnegative for all v ∈ T , i.e.,

For example, the arborescence algorithm of Edmonds [4] finds an optimal solution 
�∗ such that �∗(v) = min{w�(a) ∶ a = uv} for every v ∈ T  . Let �∗ ∈ ℤ

2T

+
 be an inte-

gral optimal solution for (D′ ) satisfying (47). Also let B̃T be a minimum-weight rT
-arborescence in DT such that R(B̃T [T]) = supp+(−𝜕𝜉|T ) and x′ be the characteristic 
vector of this B̃T ; cf. Lemma 5.

Similarly, on the S-side, we consider another directed graph DS = (VS,AS) with arc 
weight w�� ∈ ℤ

AS defined as

with a new vertex rS . We consider an arc subset such that the reversal of its arcs is 
an rS-arborescence. Let B̃S be such an arc subset of minimum weight that satisfies 
R∗(B̃S[S]) = supp+(𝜕𝜉|S) . Also let �∗ ∈ ℤ

2S

+
 be an integral optimal solution for the 

associated dual problem satisfying �∗(u) ≥ 0 for all u ∈ S.
Using �∗ and �∗ above as well as F = {a ∈ A[S, T] ∶ �(a) = 1} , define x∗ ∈ {0, 1}A , 

y∗ ∈ ℤ
2S , and z∗ ∈ ℤ

2T by

(43)

(D�) Maximize
∑
v∈T

𝜌(v) +
∑

T �⊆T , |T �|≥2
𝜌(T �)

subject to 𝜌(v) +
∑

T �∶|T �|≥2, a∈𝛿−T �

𝜌(T �) ≤ w�(a) (a = uv ∈ AT ),

(44)𝜌(T �) ≥ 0 (T � ⊆ T , |T �| ≥ 2).

(45)x�(a) > 0 ⟹ 𝜌(v) +
∑

T �∶|T �|≥2, a∈𝛿−T �

𝜌(T �) = w�(a),

(46)𝜌(T �) > 0 ⟹

∑
a∈𝛿−T �

x�(a) = 1,

(47)�∗(v) ≥ 0 (v ∈ T).

VS = {rS} ∪ S, AS = {urS ∶ u ∈ S} ∪ A[S],

w��(uv) =

{
−p(u) (v = rS),

w(uv) (v ∈ S)

(48)x∗ = 𝜒F∪B̃S[S]∪B̃T [T]
,

(49)y∗(S�) = 𝜋∗(S�) (� ≠ S� ⊆ S),

(50)z∗(T �) = 𝜌∗(T �) (� ≠ T � ⊆ T).
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We prove that x∗ and (y∗, z∗) are optimal solutions for (P) and (D), respectively.

Lemma 6 x∗ and (y∗, z∗) defined in (48), (49), and (50), respectively, are feasible for 
(P) and (D), respectively.

Proof Since the arc set F ∪ B̃S[S] ∪ B̃T [T] is a bibranching in D = (V ,A) 
by R(B̃T [T]) = supp+(−𝜕𝜉|T ) and R∗(B̃S[S]) = supp+(𝜕𝜉|S) , it is clear that 
x∗ = 𝜒F∪B̃S[S]∪B̃T [T]

 is feasible for (P). As for (y∗, z∗) , we first show that it satisfies (4). 
For a = uv ∈ A[S, T] , by (28) and Lemma 4, we have that w(a) + p(u) − q(v) ≥ 0 , 
and hence

where 
∑

T �∶a∈�−T � �∗(T �) ≤ w�(a) = q(v) by (43) and the definition of w′ , and simi-
larly 

∑
S�∶a∈�+S� �

∗(S�) ≤ w��(a) = −p(u) . For a ∈ A[T] , it follows from (43) that

The case of a ∈ A[S] can be treated similarly.
Constraint (6) is satisfied by (44) and (47). Similarly (5) is satisfied.

Theorem 5 x∗ and (y∗, z∗) defined in (48), (49), and (50), respectively, are optimal 
solutions for (P) and (D), respectively.

Proof By Lemma 6, it suffices to prove that x∗ and (y∗, z∗) satisfy the complemen-
tary slackness conditions (7)–(9). To show (7), assume x∗(a) > 0 . For a ∈ A[S, T] , 
x∗(a) > 0 means x�(a) = �(a) = 1 . Then, it follows from (45), its counterpart for the 
S-side, and (37) that

For a ∈ A[T] , x�(a) = x∗(a) > 0 implies that

by (45). The case of a ∈ A[S] can be treated similarly.
We next consider (9), while noting that (8) can be shown similarly. To show (9), 

let z∗(T �) > 0 , where ∅ ≠ T ′ ⊆ T  . We are to show x∗(�−T �) = 1.
If |T ′| ≥ 2 , (46) with 𝜌∗(T �) = z∗(T �) > 0 implies |B̃T ∩ 𝛿−T �| = 1 in DT . 

Denote the unique arc in B̃T ∩ 𝛿−T � by uv. For v ∈ T⧵supp+(−��|T ) , it is clear that 
x∗(�−T �) = 1 , and hence (9) holds. For v ∈ supp+(−��|T ) , x∗(�−T �) = −��(v) ≥ 2 

∑
S�∶a∈�+S�

y∗(S�) +
∑

T �∶a∈�−T �

z∗(T �) =
∑

S�∶a∈�+S�

�∗(S�) +
∑

T �∶a∈�−T �

�∗(T �)

≤ −p(u) + q(v)

≤ w(a),

∑
S�∶a∈�+S�

y∗(S�) +
∑

T �∶a∈�−T �

z∗(T �) =
∑

T �∶a∈�−T �

�∗(T �) ≤ w�(a) = w(a).

∑
S�∶a∈�+S�

y∗(S�) +
∑

T �∶a∈�−T �

z∗(T �) = w��(a) + w�(a) = −p(u) + q(v) = w(a).

∑
S�∶a∈�+S�

y∗(S�) +
∑

T �∶a∈�−T �

z∗(T �) =
∑

T �∶a∈�−T �

�∗(T �) = w�(a) = w(a)
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would imply q(v) = 0 by Lemma 3, whereas 0 < z∗(T �) = 𝜌∗(T �) ≤ w�(a) = q(v) ; a 
contradiction. Hence x∗(�−T �) = 1 must hold.

When |T �| = 1 , we have T � = {v} for some v ∈ T  . If v ∉ supp+(−��|T ) , then 
x∗(�−v) = 1 holds since B̃T [T] is a branching in D[T]. If v ∈ supp+(−��|T ) , then 
again x∗(�−T �) = −��(v) ≥ 2 would imply z∗(T �) ≤ q(v) = 0 by Lemma 3, a contra-
diction. Hence x∗(�−T �) = 1 must hold.
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