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Abstract
In this paper, we address the weighted linear matroid intersection problem from 
computation of the degree of the determinant of a symbolic matrix. We show that a 
generic algorithm computing the degree of noncommutative determinants, proposed 
by the second author, becomes an O(mn3 log n) time algorithm for the weighted lin‑
ear matroid intersection problem, where two matroids are given by column vectors 
of n × m matrices A, B. We reveal that our algorithm is viewed as a “nonstandard” 
implementation of Frank’s weight splitting algorithm for linear matroids. This gives 
a linear algebraic reasoning to Frank’s algorithm. Although our algorithm is slower 
than existing algorithms in the worst case estimate, it has a notable feature. Con‑
trary to existing algorithms, our algorithm works on different matroids represented 
by another “sparse” matrices A0,B0 , which skips unnecessary Gaussian eliminations 
for constructing residual graphs.

Keywords Combinatorial optimization · Polynomial time algorithm · Weighted 
matroid intersection · The degree of determinant · Weight splitting

Mathematics Subject Classification 68W40

1 Introduction

Several basic combinatorial optimization problems have linear algebraic formu‑
lations. It is classically known [2] that the maximum cardinality of a matching in 
a bipartite graph G = (U,V;E) with color classes U = [n],V = [n�] is equal to the 
rank of the matrix A =

∑
e∈E Aexe , where xe (e ∈ E) are variables and Ae is an n × n� 
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matrix with (Ae)ij ∶= 1 if e = ij and zero otherwise. Such a rank interpretation is 
known for the linear matroid intersection, nonbipartite matching, and linear matroid 
matching problems; see [13].

The degree of the determinant of a polynomial (or rational) matrix is a weighted 
counter part of rank, and can formulate weighted versions of combinatorial opti‑
mization problems. The maximum weight perfect matching problem in a bipartite 
graph G = ([n], [n];E) with integer weights ce (e ∈ E) corresponds to computing the 
degree degt detA(t) of the determinant of the (rational) matrix A(t) ∶=

∑
e∈E Aexet

ce . 
Again, the weighted linear matroid intersection, nonbipartite matching, and linear 
matroid matching problems admit such formulations.

Inspired by the recent advance [6, 10] of a noncommutative approach to sym‑
bolic rank computation, the second author [8] introduced the problem of com‑
puting the degree degt DetA(t) of the Dieudonné determinant DetA(t) of a matrix 
A(t) =

∑
i Ai(t)xi , where xi are pairwise noncommutative variables and Ai(t) is 

a rational matrix with commuting variable t. He established a general min‑max 
formula for degt DetA(t) , presented a conceptually simple and generic algo‑
rithm, referred here to as ���-��� , for computing degt DetA(t) , and showed that 
degt detA(t) = degt DetA(t) holds if A(t) corresponds to an instance of the weighted 
linear matroid intersection problem. In particular, ���-��� gives rise to a pseudo‑
polynomial time algorithm for the weighted linear matroid intersection problem. In 
the first version of the paper [8], the second author asked (i) whether ���-��� can 
be a (strongly) polynomial time algorithm for the weighted linear matroid intersec‑
tion, and (ii) how ���-��� is related to the existing algorithms for this problem. He 
pointed out some connection of ���-��� to the primal‑dual algorithm by Lawler 
[15] but the precise relation was not clear.

The main contribution of this paper is to answer the questions (i) and (ii):

• We show that ���-��� becomes an O(nm3 log n) time algorithm for the weighted 
linear matroid intersection problem, where the two matroids are represented and 
given by two n × m matrices A, B. This answers affirmatively the first question.

• For the second question, we reveal the relation between our algorithm and the 
weight splitting algorithm by Frank [4]. This gives a linear algebraic reasoning 
to Frank’s algorithm.

  We show that the behavior of our algorithm is precisely the same as that of 
a slightly modified version of Frank’s algorithm. However our algorithm is 
rather different from the standard implementation of Frank’s algorithm for linear 
matroids. This relationship was unexpected and nontrivial for us, since the two 
algorithms look quite different.

Although our algorithm is slower than the standard O(mn3)‑time implementation 
of Frank’s algorithm in the worst case estimate, it has a notable feature. Frank’s 
algorithm works on a subgraph ḠX of the residual graph GX for a common inde‑
pendent set X, where GX is determined by Gaussian elimination for A, B and ḠX 
is determined by a splitting of the weight. On the other hand, our algorithm does 
not compute the residual graph GX but computes a non‑redundant subgraph G0

X
 

of ḠX , which is the residual graph of different matroids represented by another 
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“sparse” matrices A0,B0 . Consequently, our algorithm applies fewer elimination 
operations than the standard one, which will be a practical advantage.

Related work. The essence of Deg-Det comes from the combinatorial relaxa-
tion algorithm by Murota [11], which is an algorithm computing the degree of the 
(ordinary) determinant of a polynomial/rational matrix; see [12, Sect. 7.1].

Several algorithms have been proposed for the general weighted matroid 
intersection problem under the independence oracle model; see e.g., [16, 
Sect.  41.3] and the references therein. For linear matroids given by two n × m 
matrices, the current fastest algorithms (as far as we know) are an O(mn�)‑time 
implementation of Frank’s algorithm using fast matrix multiplication and an 
O(nm

7−�

5−� log
�−1

5−� n logmC)‑time algorithm by Gabow and Xu [5], where C is the 
maximum absolute value of weights ci and � ∈ [2, 2.37] denotes the exponent of 
the time complexity of matrix multiplication. Huang, Kakimura, and Kamiyama 
[9] gave an O(nm log n∗ + Cmn�−1

∗
)‑time algorithm, where n∗ is the maximum size 

of a common independent set. This algorithm is currently fastest for the case of 
small C.

For unweighted linear matroid intersection, Cunningham [1] showed that the 
classical Edmonds’ algorithm runs in O(mn2 log n) time. Harvey [7] gave a ran‑
domized O(mn�−1)‑time algorithm. His algorithm also treats the problem as the 
rank computation of a matrix with variables xi , and uses random substitution of 
the variables and fast matrix multiplication.

Organization. The rest of this paper is organized as follows. In Sect.  2, we 
introduce algorithm ���-��� , and describe basics of the unweighted (linear) 
matroid intersection problem from a linear algebraic viewpoint; our algorithm 
treats the unweighed problem as a subproblem. In Sect. 3, we first formulate the 
weighted linear matroid intersection problem as the degree of the determinant of 
a rational matrix A, and show that ���-��� computes degt detA correctly. Then 
we present our algorithm by specializing ���-��� , analyze its time complexity, 
and reveal its relationship to Frank’s algorithm.

In this paper, we deal with linear matroids represented over the field of ration‑
als but our augment and algorithm work on an arbitrary field.

2  Preliminaries

2.1  Notation

Let ℚ and ℤ denote the sets of rationals and integers, respectively. Let � ∈ ℚn denote 
the zero vector. For I ⊆ [n] ∶= {1, 2, ..., n} , let �I ∈ ℚn denote the characteristic vec‑
tor of I, that is, (�I)k ∶= 1 if k ∈ I and 0 otherwise. Here, �[n] is simply denoted by �.

For a polynomial p =
∑k

i=0
ait

i ∈ ℚ[t] with ak ≠ 0 , the degree degt p with 
respect to t is defined as k. The degree degt p∕q of a rational function p∕q ∈ ℚ(t) 
with polynomials p, q ∈ ℚ[t] is defined as degt p − degt q . The degree of zero pol‑
ynomial is defined as −∞.
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A rational function p/q is called proper if degt p∕q ≤ 0 . A rational matrix 
Q ∈ ℚ(t)n×m is called proper if each entry of Q is proper. For a proper rational 
matrix Q ∈ ℚ(t)n×m , there is a unique matrix over ℚ , denoted by Q0 , such that

where Q′ is some proper matrix.
For an integer vector � ∈ ℤn , let (t�) denote the n × n diagonal matrix having 

diagonals t�1 , t�2 ,… , t�n in order, that is,

For a matrix A ∈ ℚn×m and J ⊆ [m] , let A[J] denote the submatrix of A consisting of 
the j‑th columns for j ∈ J . Additionally, for I ⊆ [n] , let A[I, J] denote the submatrix 
of A consisting of the (i, j)‑entries for i ∈ I, j ∈ J.

2.2  Algorithm Deg‑Det

Given n × n rational matrices M1,M2,… ,Mm ∈ ℚ(t)n×n , consider the following 
matrix

where x1, x2,… , xm are variables and M is regarded as a multivariate rational matrix 
with (pairwise commutative) variables t, x1, x2,… , xm . We address the computation 
of the degree of the determinant of M with respect to t.

Consider the following optimization problem:

This problem gives an upper bound of degt detM . Indeed, if PMQ is proper, then 
degt detPMQ ≤ 0 , and degt detM ≤ − degt detP − degt detQ . In fact, it is shown [8] 
that the optimal value of (P) is interpreted as the negative of the degree of the Dieu-
donné determinant of M for the case where x1, x2,… , xm are pairwise noncommuta‑
tive variables.

The following algorithm for (P) is due to [8], which is viewed as a simplifi‑
cation of the combinatorial relaxation algorithm by Murota [11]; see also [12, 
Sect. 7.1].

Algorithm: Deg-Det
Input: M = M1x1 +M2x2 +⋯ +Mmxm , where Mi ∈ ℚ(t)n×n for i ∈ [m].

Q = Q0 + t−1Q�,

(t�) =

⎛
⎜⎜⎜⎝

t�1

t�2

⋱

t�n

⎞
⎟⎟⎟⎠
.

M ∶= M1x1 +M2x2 +⋯ +Mmxm ∈ ℚ(t, x1, x2,… , xm),

(P) Max. degt detP + degt detQ

s.t. PMQ ∶ proper,

P,Q ∈ ℚ(t)n×n ∶ nonsingular.
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Output: An upper bound of degt detM (the negative of the optimal value of 
(P)).
0: Let P ∶= t−dI and Q ∶= I , where d is the maximum degree of entries in M. Let 
D∗ ∶= nd.
1: Solve the following problem: 

 and obtain optimal matrices K, L; recall the notation (⋅)0 in Sect. 2.1.
2: If the optimal value r + s is at most n, then stop and output D∗.
3: Let I and J be the sets of row and column indices, respectively, of the r × s 
zero submatrix of K(PMQ)0L . Find the maximum integer �(≥ 1) such that 
(t��I )KPMQL(t−��[n]⧵J ) is proper.
If � is unbounded, then output −∞ . Otherwise, let P ← (t��I )KP , Q ← QL(t−��[n]⧵J ) 
and D∗

← D∗ − �(r + s − n) . Go to step 1.

Observe that in each iteration (P,  Q) is a feasible solution of (P), and D∗ equals 
− degt detP − degt detQ . Thus, (P) gives an upper bound of degt detM . We are 
interested in the case where the algorithm outputs degt detM correctly.

Lemma 2.1 ([8]) In step 2 of Deg-Det, the following holds: 

(1) If r + s > n , then (PMQ)0 is singular over ℚ(x1, x2,… , xm).
(2) If (PMQ)0 is nonsingular, then D∗ = degt detM.

Proof (1). It is obvious that any n × n matrix is singular if it has an r × s zero subma‑
trix with r + s > n.

(2). PMQ is written as (PMQ)0 + t−1N for some proper N. If (PMQ)0 
is nonsingular, then degt detPMQ = degt det(PMQ)0 = 0 , and hence 
degt detM = − degt detP − degt detQ = D∗ .   ◻

2.3  Algebraic formulation for linear matroid intersection

Let A = (a1 a2 ⋯ am) be an n × m matrix over ℚ . Let �(A) = ([m], I(A)) denote the 
linear matroid represented by A. Specifically, the ground set of the matroid �(A) is 
the set [m] of the column indices, and the family I(A) of independent sets of �(A) 
consists of all subsets X ⊆ [m] such that the corresponding column vectors ai (i ∈ X) 
are linearly independent. Let �A ∶ 2[m] → ℤ denote the rank function of �(A) , that 
is, 𝜌A(X) ∶= max{|Y| ∣ Y ∈ I(A),Y ⊆ X} . A minimal (linearly) dependent subset is 
called a circuit. See, e.g., [16, Chapter 39] for basics on matroids.

(P0) Max.r + s

s.t.K(PMQ)0L has an r × s zero submatrix,

K, L ∈ ℚ
n×n ∶ nonsingular ,
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Suppose that we are given another n × m matrix B = (b1 b2 ⋯ bm) ∈ ℚn×m . Let 
�(B) = ([m], I(B)) be the corresponding linear matroid. A common independent set 
of �(A) and �(B) is a subset X ⊆ [m] such that X is independent for both �(A) and 
�(B) . The linear matroid intersection problem is to find a common independent set 
of the maximum cardinality. To formulate this problem linear algebraically, define 
an n × n matrix M = M(A,B) over ℚ(x1, x2,… , xm) by

where x1, x2,… , xm are variables. The following is the matroid intersection theorem 
and its linear algebraic sharpening.

Theorem 2.2 ([3]; see also [13, 17]) The following quantities are equal: 

 (1) The maximum cardinality of a common independent set of �(A) and �(B).
 (2) The minimum of �A(J) + �B([m]⧵J) over J ⊆ [m].
 (1’) rankM.
 (2’) 2n minus the maximum of r + s such that KML has an r × s zero submatrix for 

some nonsingular matrices K, L ∈ ℚn×n.

Sketch of Proof (1) = (2) is nothing but the matroid intersection theorem.
(1) = (1′ ). A k × k submatrix M′ of M is represented by M� = A�DB�⊤ , where 

A′,B′ are k × m submatrices of A, B, and D is the diagonal matrix with diagonals 
x1, x2,… , xm (in order). From Binet‑Cauchy formula, we see that detM′ ≠ 0 if and 
only if there is a k‑element subset X ⊆ [m] such that detA�[X] detB�[X] ≠ 0 . Thus, 
rankM ≥ k if and only if there is a common independent set of cardinality k.

(2) ≥ (2′ ). Take a basis u1, u2,… , ur of the orthogonal complement of the vec‑
tor space spanned by {ai ∣ i ∈ J} , and extend it to a basis u1, u2,… , un of ℚn , 
where r = n − �A(J) . Similarly, take a basis v1, v2,… , vn of ℚn that contains a 
basis v1, v2,… , vs of the orthogonal complement of the vector space spanned by 
{bi ∣ i ∈ [m]⧵J} , where s = n − �B([m]⧵J) . Then u⊤

k
aib

⊤
i
v� = 0 for all k ∈ [r] , 

� ∈ [s] , and i ∈ [m] . This means that KML has an r × s zero submatrix for 
K = (u1 u2 ⋯ un)

⊤ and L = (v1 v2 ⋯ vn).
(2′ ) ≥ (1′ ). If KML has an r × s zero submatrix, then 

rankM = rankKML ≤ n − r + n − s .   ◻

Let us briefly explain Edmonds’ algorithm to obtain a common independent 
set of the maximum cardinality. For any common independent set X, the auxiliary 
(di)graph GX = GX(A,B) is defined as follows. The set V(GX) of nodes of GX is 
equal to the ground set [m] of the matroids, and the set E(GX) of arcs is given by: 
(i, j) ∈ E(GX) if and only if one of the following holds:

• i ∈ X , j ∉ X , and i, j belong to a circuit of �(A).
• i ∉ X , j ∈ X , and i, j belong to a circuit of �(B).

M ∶=

m∑
i=1

aib
⊤

i
xi,
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Let SX = SX(A) denote the subset of nodes i ∈ E⧵X such that X ∪ {i} is independ‑
ent in �(A) , and TX = TX(B) denote the subset of nodes i ∈ E⧵X such that X ∪ {i} 
is independent in �(B) . See Fig. 1 for GX , SX , and TX.

Lemma 2.3 ([3]) Let X be a common independent set, and let R be the set of nodes 
reachable from SX in GX . 

(1) Suppose that R ∩ TX ≠ � . For a shortest path P from SX to TX , the set X △ V(P) 
is a common independent set with |X △ V(P)| = |X| + 1.

(2) Suppose that R ∩ TX = � . Then X is a maximum common independent set and R 
attains minJ⊆[m] 𝜌A(J) + 𝜌B([m]⧵J).

Here △ denotes the symmetric difference. According to this lemma, Edmonds’ 
algorithm is as follows:

• Find a shortest path P in GX from SX to TX (by BFS).
• If it exists, then replace X by X △ V(P) , and repeat. Otherwise, X is a common 

independent set of the maximum cardinality.

In our case, the auxiliary graph GX and optimal matrices K,  L in (2′ ) are nat‑
urally obtained by applying elementary row operation to matrices A,  B as fol‑
lows. Since X is a common independent set, both A[X] and B[X] have column full 
rank |X|. Therefore, by multiplying nonsingular matrices K and L to A and B from 
left, respectively, we can make A and B diagonal in the position X, that is, for 
some injective maps �A, �B ∶ X → [n] , it holds (KA)�A(i)i = (LB)�B(i)i = 1 for i ∈ X 
and other elements are zero. Incorporating permutation matrices in K, L, we can 
assume �A = �B = � . Such matrices KA and LB are said to be X‑diagonal. Notice 

Fig. 1  The auxiliary graph G
X
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that these operations do not change the matroids �(A) and �(B) . See Fig.  2, 
where the columns and rows are permuted appropriately.

Then the auxiliary graph GX is constructed from the nonzero patterns of KA and 
LB as follows. SX (resp. TX ) consists of nodes i with (KA)ki ≠ 0 (resp. (LB)ki ≠ 0 ) 
for some k ∈ [n]⧵�(X) , where �(X) = {j ∈ [n] ∣ ∃i ∈ X, �(i) = j} . Additionally, for 
i ∈ X , arc (i, j) (resp. (j, i)) exists if and only if j ∉ SX and (KA)�(i)j ≠ 0 (resp. j ∉ TX 
and (LB)�(i)j ≠ 0).

Moreover, in the case where R ∩ TX = � , the matrices K, L⊤ attain the maximum 
in (2′ ). Indeed, define I∗ , J∗ , I and J by

Then the submatrix (KML⊤)[I, J] is an (n − |X⧵R|) × (n − |R ∩ X|) zero submatrix, 
where |X| = 2n − (n − |X⧵R| + n − |R ∩ X|) . See Fig. 3.

3  Algorithm

In this section, we consider the weighted linear matroid intersection problem. 
In Sect. 3.1, we formulate the problem as the computation of the degree of the 
determinant of a rational matrix associated with given two linear matroids and 

(2.1)I∗ ∶= [n]⧵�(X),

(2.2)J∗ ∶= [n]⧵�(X),

(2.3)I ∶= �(R ∩ X) ∪ I∗,

(2.4)J ∶= �(X⧵R) ∪ J∗.

Fig. 2  Matrices A, B after elimination
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a weight. In Sect.  3.2, we specialize Deg-Det to present our algorithm for the 
weighted linear matroid intersection problem. Its time complexity is analyzed in 
Sect. 3.3, and its relation to Frank’s algorithm is discussed in Sect. 3.4.

3.1  Algebraic formulation of weighted linear matroid intersection

Let A, B be n × m matrices over ℚ as in Sect. 2.3, and let �(A) and �(B) be the 
associated linear matroids on [m]. We assume that both A and B have no zero col‑
umns. In addition to A, B, we are further given integer weights ci ∈ ℤ for i ∈ [m] . 
The goal of the weighted linear matroid intersection problem is to maximize the 
weight c(X) ∶=

∑
i∈X ci over all common independent sets X.

Here we consider a restricted situation when the maximum is taken over all 
common independent sets of cardinality n. In this case, the maximum weight is 
interpreted as the degree of the determinant of the following n × n rational matrix 
M defined by

Lemma 3.1 Suppose that A and B have row full rank. The degt detM is equal to the 
maximum of the weight c(X) over all common independent sets X of cardinality n.

Proof As in the proof of Theorem 2.2, by Binet‑Cauchy formula applied to M, we 
obtain detM =

∑
X⊆[m]∶�X�=n detA[X] detB[X]tc(X)

∏
i∈X xi , and

  ◻

Lemma 3.2 ([8]) For the setting Mi ∶= aib
⊤
i
tci (i ∈ [m]) , the algorithm Deg-Det out-

puts degt detM.

M ∶=

m∑
i=1

aib
⊤

i
xit

ci .

degt detM = max{c(X) ∣ X ⊆ [m] ∶ detA[X] detB[X] ≠ 0}.

Fig. 3  KML
⊤ has zero submatrix KML

⊤[I, J] , where D is the diagonal matrix with diagonals x1, x2,… , x
n
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Proof Consider step 2 of Deg-Det. Here (PMiQ)
0 is written as a0

i
b0
i

⊤ for 
some a0

i
, b0

i
∈ ℚn ; see (3.2) and (3.3) in the next subsection. In particular, 

(PMQ)0 =
∑m

i=1
a0
i
b0
i

⊤
xi . Therefore, by Theorem 2.2, (PMQ)0 is nonsingular if and 

only if the optimal value r + s of ( P0 ) is at most n. Thus, if the algorithm terminates, 
then (PMQ)0 is nonsingular and D∗ = degt detM by Lemma 2.1.   ◻

3.2  Algorithm description

Here we present our algorithm by specializing Deg-Det. The basic idea is to apply 
Edmonds’ algorithm to solve the problem ( P0 ) for (PMQ)0 =

∑m

i=1
(PMiQ)

0xi , where 
PMQ is proper. We first consider the case where P and Q are diagonal matrices rep‑
resented as P = (t�) and Q = (t�) for some �, � ∈ ℤn . In this case, (PMQ)0 is explic‑
itly written as follows. Observe that the properness of PMQ is equivalent to

For i ∈ [m] , define a0
i
, b0

i
∈ ℚn by

Then (PMiQ)
0 = a0

i
b0
i

⊤ . Namely we have

Therefore the step 1 of Deg-Det can be executed by solving the unweighted linear 
matroid intersection problem for two matroids �(A0) and �(B0) , where the matri‑
ces A0,B0 are defined by

The matrices A0,B0 have the following structure.

Lemma 3.3 If (a0
i
)k ≠ 0 and �k� = �k , then (a0

i
)k� = (ai)k� . If (a0i )k ≠ 0 and 𝛼k′ > 𝛼k , 

then (a0
i
)k� = (ai)k� = 0 . The same properties holds for B0 with �.

Proof The former claim is immediate from the definition (3.2). For the latter claim, 
suppose to the contrary that (a0

i
)k and (a0

i
)k� are nonzero and 𝛼k′ > 𝛼k . Then for some 

�,�′ , (b0
i
)� and (b0

i
)�� are nonzero with �k + �� + ci = �k� + ��� + ci = 0 by the defi‑

nition (3.2). Then, (ai)k� (bi)� ≠ 0 and 𝛼k� + 𝛽� + ci > 𝛼k + 𝛽� + ci = 0 . This contra‑
dicts (3.1).   ◻

(3.1)�k + �� + ci ≤ 0 (i ∈ [m], k,� ∈ [n] ∶ (ai)k(bi)� ≠ 0).

(3.2)(a0
i
)k ∶=

{
(ai)k if ∃� ∈ [n], (ai)k(bi)� ≠ 0, �k + �� + ci = 0,

0 otherwise,

(3.3)(b0
i
)� ∶=

{
(bi)� if ∃k ∈ [n], (ai)k(bi)� ≠ 0, �k + �� + ci = 0,

0 otherwise.

(PMQ)0 =

m∑
i=1

a0
i
b0
i

⊤
xi.

A0 ∶= (a0
1
a0
2
⋯ a0

m
), B0 ∶= (b0

1
b0
2
⋯ b0

m
).
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Suppose that we are given a common independent set X of �(A0) and �(B0) . 
According to Edmonds’ algorithm (given after Lemma 2.3), construct the resid‑
ual graph G0

X
∶= GX(A

0,B0) with node sets S0
X
∶= SX(A

0) and T0
X
∶= TX(B

0) . Then 
we can increase X or obtain K,  L that are optimal to the problem ( P0 ) (as was 
explained in the end of Sect. 2.3).

A key observation here is that K and L are commuted with (t�) and (t�) , 
respectively:

Indeed, by Lemma 3.3, if (a0
i
)k and (a0

i
)k� are nonzero, then �k = �k� holds. There‑

fore, each elementary row operation for A0 is done between rows k, k′ with �k = �k� . 
Consequently, the elimination matrix K is a block diagonal matrix in which the rows 
(columns) k, k′ in the same block have the same �k = �k� . Then we can see the com‑
mutation (3.4) as

where �̄�1, �̄�2,… , �̄�k are distinct values of �1, �2,… , �n.
Therefore the update in step 3 of Deg-Det is done as P ← (t�+��I )K , 

Q ← L(t�−��[n]⧵J ) . Instead of doing such update, we update A,  B as A ← KA , 
B ← L⊤B , which keeps degt detM , and update �, � as � ← � + ��I , 
� ← � − ��[n]⧵J . Then P, Q are always of the form (t�), (t�) , and can be treated as 
exponent vectors �, � , where − degt detP − degt detQ = −

∑n

i=1
(�i + �i) . Now the 

algorithm is written, without explicit references to P, Q, K, L, as follows.

Algorithm: Deg-Det-WMI
Input: n × m matrices A = (a1 a2 ⋯ am) , B = (b1 b2 ⋯ bm) , and weights 
ci ∈ ℤ (i = 1, 2,… ,m).
Output: degt detM for M ∶=

∑m

i=1
aib

⊤
i
xit

ci.
0: X = � , � ∶= −maxi ci� and � ∶= �.
1: If |X| = n , then output −

∑n

i=1
(�i + �i) and stop. Otherwise, according to 

(3.2), (3.3), decompose A,  B as A = A0 + A� , B = B0 + B� . Apply elementary 
row operations to A, B so that A0,B0 are X‑diagonal forms.
2: From A0,B0 , construct the residual graph G0

X
 and node sets S0

X
, T0

X
 . Let R0 be 

the set of nodes reachable from S0
X
 in G0

X
.

2-1. If R0 ∩ T0
X
≠ � : Taking a shortest path P from S0

X
 to T0

X
 , let 

X ← X △ V(P) , and go to step 1.

(3.4)K(t�) = (t�)K, L(t�) = (t�)L.

(3.5)

K(t𝛼) =

⎛
⎜⎜⎜⎝

K1

K2

⋱

Kk

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

t�̄�1I

t�̄�2I

⋱

t�̄�k I

⎞
⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝

t�̄�1I

t�̄�2I

⋱

t�̄�k I

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

K1

K2

⋱

Kk

⎞⎟⎟⎟⎠
= (t𝛼)K,
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2-2. If R0 ∩ T0
X
= � : Then R0 determines the zero submatrix ((t�)M(t�))0[I, J] 

of maximum size |I| + |J|(> n) by (2.3) and (2.4); see also Figs. 2 and 3. Let‑
ting � ← � + ��I , � ← � − ��[n]⧵J , increase � from 0 until a nonzero entry 
appears in the zero submatrix. If � = ∞ or −

∑n

i=1
(𝛼i + 𝛽i) < nmini ci , then 

output −∞ and stop. Otherwise go to step 1.

The step 2 in this algorithm is essentially Edmonds’ algorithm to solve the 
unweighted matroid intersection problem for two matroids �(A0) , �(B0) and an 
initial common independent set X. It turns out below that X is actually commonly 
independent for �(A0) and �(B0) . Assuming this, it is clear that, in step 2‑1, X 
increases and is a common independent set in the next step 1, and that, in step 
2‑2, X is a maximum common independent set and a maximum‑size zero sub‑
matrix of ((t𝛼)M(t𝛽))0 =

∑m

i=1
a0
i
b0
i

⊤
xi is obtained accordingly. After the update of 

�, � , A0 and B0 are changed so that A0[[n]⧵I,R0] and B0[[n]⧵J,E ⧵ R0] become zero 
blocks, and A0[I,E⧵R0] or B0[J,R0] has nonzero entries; see Fig. 4 in Sect. 3.3. 
Other parts are unchanged. In particular, both A0[X] and B0[X] are lower triangu‑
lar matrices (by row/column permutations). Therefore X keeps commonly inde‑
pendent for new matroids �(A0) and �(B0) in the next step 1. If |X| = n , then this 
is in the situation where (PMQ)0 is nonsingular, and hence the algorithm correctly 
outputs degt detM as − degt detP − degt detQ = −

∑n

i=1
(�i + �i) . If the singularity 

of M is detected, e.g., degt detM < nmini∈[m] ci , then it outputs −∞.
Moreover, X is always a common independent set of �(A) and �(B) having the 

maximum weight among all common independent sets of cardinality |X|. There‑
fore Deg-Det-WMI can obtain a maximum weight independent set (of arbitrary 
cardinality) by adding the following procedure.

Fig. 4  Change of A0,B0
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• After the update of X in step 2‑1, for k = |X| , output Xk ∶= X as a maximum 
weight common independent set of cardinality k for �(A) and �(B).

• After the termination of the algorithm, output X∗ from X0,X1,… ,Xn having the 
maximum weight c(Xi) , where X0 ∶= � and c(Xk) ∶= −∞ if Xk is undefined. 
Then X∗ is a maximum weight common independent set for �(A) and �(B).

We show this fact by using the idea of weight splitting [4].

Lemma 3.4 In step 1, define weight splitting ci = c1
i
+ c2

i
 for each i ∈ [m] by

Then X is a common independent set of �(A) and �(B) 
such that c1(X) = max{c1(Y) ∣ Y ∈ I(A), |Y| = |X|} and 
c2(X) = max{c2(Y) ∣ Y ∈ I(B), |Y| = |X|} . Thus X maximizes the weight c(X) over 
all common independent sets of cardinality |X|.

Proof We first verify that X is a common independent set of �(A) and �(B) . We 
may assume X = {1, 2,… , h} . Since X is commonly independent of �(A0) and 
�(B0) , we can assume that A0[[h],X] = B0[[h],X] = I in the X‑diagonal forms. 
Then I∗ = J∗ = {h + 1,… , n} ; recall (2.1) and (2.2). We can further assume that 
�1 ≥ �2 ≥ ⋯ ≥ �h and �1 ≥ �2 ≥ ⋯ ≥ �h . By Lemma 3.3, A[X] and B[X] are lower‑
triangular matrices with nonzero diagonals. Hence X is commonly independent for 
�(A) and �(B).

Next we make some observations to prove the statement. Observe from the defi‑
nition (3.2) (3.3) (3.6) (3.7) and the properness (3.1) that

and

We also observe

This follows from the way of update � ← � + �I , � ← � − �[n]⧵J with the initializa‑
tion � = −maxi ci� , � = � of the algorithm, and the fact that both I∗ ⊆ I and J∗ ⊆ J 
monotonically decrease.

Finally we prove that X maximizes both weights c1 and c2 for �(A) and �(B) , 
respectively. It suffices to show

(3.6)c1
i
∶=ci − c2

i
,

(3.7)c2
i
∶= −max{�� ∣ � ∈ [n] ∶ (bi)� ≠ 0}.

(3.8)c1
i
≤ − �k (∀k ∶ (ai)k ≠ 0),

(3.9)c2
i
≤ − �� (∀� ∶ (bi)� ≠ 0),

(3.10)c1
i
= −�k, c2

i
= −�� (∀k,� ∶ (a0

i
)k(b

0
i
)� ≠ 0).

(3.11)max
k∈[n]

�k = �k� (∀k
� ∈ I∗), max

�∈[n]
�� = ��� (∀�� ∈ J∗).
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Indeed, this is the well‑known optimality criterion of the maximum weight inde‑
pendent set problem on a matroid. Take i,  j with X ∪ {i}⧵{j} ∈ I(A) . If there is a 
nonzero element (ai)k∗ ≠ 0 for some k∗ ∈ I∗ , then by (3.8) and (3.11) it holds 
c1
i
≤ −�k∗ ≤ −�j = c1

j
 , where the equality follows from (3.10) and (a0

j
)j = 1 , and thus 

(3.12) holds. Suppose not. Let k ∈ [h] be the smallest index such that (ai)k ≠ 0 . Then 
c1
i
≤ −�k . Now A[[h], X] is lower triangular. Additionally, by Lemma 3.3 and (3.11), 

A[I∗,X] = A0[I∗,X] is a zero matrix. Therefore, it must hold j ≥ k for i, j to belong 
to a circuit in X ∪ {i} . Hence, c1

j
= −�j ≥ −�k ≥ c1

i
 . Thus (3.12) holds. (3.13) is sim‑

ilarly shown.   ◻

3.3  Analysis

We analyze the time complexity of Deg-Det-WMI. It is obvious that if R0 ∩ T0
X
≠ � 

(step 2‑1) occurs, then X increases and hence the rank of ((t�)M(t�))0 increases. 
Therefore the algorithm goes to step 2‑1 at most n times. The main analysis con‑
cerns step 2‑2, particularly, how nonzero entries appear, how they affect A0 , B0 , and 
G0

X
 , and how many times these scenarios occur until R0 ∩ T0

X
≠ �.

As � becomes positive, the submatrix ((t�)M(t�))0[[n]⧵I, [n] ⧵ J] becomes a 
zero block, since the degree of each element of (t�)M(t�)[[n]⧵I, [n] ⧵ J] decreases. 
Accordingly, A0[[n]⧵I,R0] and B0[[n]⧵J,E ⧵ R0] become zero blocks; see Fig. 4.

Then, in G0
X
 , all arcs entering R0 disappear. Namely increasing � only removes 

arcs entering to R0 and does not change the other parts.
Next we analyze the moment when a non‑zero element appears in 

((t�)M(t�))0[I, J] . Then, in the next step 1, it holds

for some i ∈ [m] , k ∈ I , � ∈ J . In this case, a new nonzero element appears in the 
i‑th column of A0 or B0 . 

 (a‑1) If i ∉ R0 and i ∈ X : In the next step 1, Gaussian elimination for A0 (and A) 
makes the new nonzero element (a0

i
)k = (ai)k zero. Since A0[[n]⧵I,R0] = O , 

this does not affect A0[R0] . Therefore R0 is still reachable from S0
X
 . There may 

appear nonzero elements in A0[I,E⧵R0] , which will make R0 or S0
X
 larger in the 

next step 2.
 (a‑2) If i ∉ R0 and i ∉ X : By (a0

i
)k ≠ 0 , if k ∈ I∗ , then i is included to S0

X
 . Otherwise 

there appears an arc in G0
X
 from X ∩ R0 to i. For the both cases, i is included to 

R0 . By � ∈ J , if � ∈ J∗ , then i belongs to T0
X
 . Otherwise there is an arc from i 

to X⧵R0 . Thus, R0 ∩ T0
X
 becomes nonempty if � ∈ J∗ , and |X ∩ R0| increases if 

� ∈ J⧵J∗.

(3.12)c1(X) ≥c1(X ∪ {i}⧵{j}) (i ∉ X, j ∈ X ∶ X ∪ {i}⧵{j} ∈ I(A)),

(3.13)c2(X) ≥c2(X ∪ {i}⧵{j}) (i ∉ X, j ∈ X ∶ X ∪ {i}⧵{j} ∈ I(B)).

(a0
i
)k(b

0
i
)� ≠ 0
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 (b‑1) If i ∈ R0 and i ∈ X : Similar to the analysis of (a‑1) above, Gaussian elimination 
for B0 makes (b0

i
)k = (bi)k zero, and R0 and T0

X
 increase or do not change.

 (b‑2) If i ∈ R0 and i ∉ X : By (b0
i
)� ≠ 0 , if � ∈ J∗ , then i is included to T0

X
 , and 

R0 ∩ T0
X
≠ � . Otherwise there appears an arc from i to X⧵R0 , and |X ∩ R0| 

increases.

Therefore, if the case (a‑2) or (b‑2) occurs, then T0
X
∩ R0 ≠ � or |X ∩ R0| increases. 

After O(n) occurrences of the cases (a‑2) and (b‑2), T0
X
∩ R0 becomes nonempty and 

|X| increases. When X is updated, Gaussian elimination constructs the X‑diagonal 
forms of A0,B0 in O(mn2) time.

We analyze the occurrences of (a‑1) and (b‑1). When (a0
i
)k becomes nonzero for 

some i ∈ X⧵R0, k ∈ I , it is eliminated by the row operation, and (a0
i
)k = (ai)k never 

becomes nonzero. Therefore, (a‑1) and (b‑1) occur at most O(n|X|) time until X is 
updated, where the row operation is executed in O(m) time per each occurrence. The 
total time for the elimination is O(nm|X|). The augmentation � and the identifica‑
tion of the next nonzero elements are computed in O(nm) time by searching nonzero 
elements in A, B, which is needed for each time one of (a‑1), (a‑2), (b‑1), and (b‑2) 
occurs. Thus, by the naive implementation, Deg-Det-WMI runs in O(mn4) time.

We improve this complexity to O(mn3 log n) as follows. Observe first that � is 
given by

The main idea is to sort indices (i, k,�) ∈ [m] × I × J according to ci + �k + �� and 
keep in a binary heap the potential indices that attain � . Notice that even if (ai)k(bi)� 
is zero in a moment, it will become nonzero by row operations in (a‑1) and (b‑1) 
and can appear in ((t�)M(t�))0[I, J] later. On the other hand, any index (i, k,�) with 
ci + 𝛼k + 𝛽� > 0 keeps (ai)k(bi)� = 0 and is irrelevant until X is updated.

Suppose now that X, A0 , B0 , and G0
X
 were updated in step 1. By BFS for G0

X
 , 

we determine the reachable set R0 and the index sets I,  J. We can sort ci + �� 
(i ∈ [m],� ∈ J) in O(mn logm) time, which is improved to O(mn log n) time as fol‑
lows. By sorting ci (i ∈ [m]) in O(m logm) time, we obtain |J| sorted lists of ci + �� 
(i ∈ [m]) for � ∈ J . By keeping the head elements of these sorted lists in a heap, the 
whole sorted list can be obtained in O(nm log |J|) , as in the merge sort.

From the sorted list, we construct an array p such that the e‑th entry p[e] has all 
indices (i,�) with e‑th largest ci + �� as a linked list. For each k ∈ I , let pk denote 
the copy of the array p, where pk[e] also has the value vk,e ∶= ci + �k + �� for indi‑
ces (i,�) in pk[e] . By the head index of pk (relative to �, �, I, J ), we mean the mini‑
mum index ek such that pk[ek] has the value vk,ek less than 0 and an index (i,�) with 
� ∈ J , where J will decrease later. Notice that if pk[e] has the value vk,e ≥ 0 , then 
(ai)k(bi)� = 0 for all indices (i,�) in pk[e] . Construct a binary (max) heap consist‑
ing of the pointers to the head indices ek for all k ∈ I , where the key is the value 
vk,ek of pk[ek] . In the construction of the heap, if the key vk,ek of a node is equal to 
the key vk′,ek′ of its parent node, then the two nodes are combined as a single node 
and the corresponding pointers are also combined as a single list. Then, by refer‑
ring to the root of the heap, we know all indices (i, k,�) ∈ [m] × I × J having the 

� = −max{ci + �k + �� ∣ i ∈ [m], k ∈ I,� ∈ J ∶ (ai)k(bi)� ≠ 0}.
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maximum negative value. Increase � to the negative of this value (i.e., � ← � + ��I , 
� ← � − ��[n]⧵J ). If the root has no index (i, k,�) with (ai)k(bi)� ≠ 0 , then delete the 
root from the heap, update the head index of each pk indicated by the (deleted) root, 
and add the pointers of new head indices to the heap. Suppose that the root has 
an index (i, k,�) with (ai)k(bi)� ≠ 0 ; then � = −ci − �k − �� . If i ∈ X then execute 
the row operation to make (ai)k(bi)� zero. As mentioned, once (ai)k(bi)� becomes 
zero by the row operation, it never becomes nonzero. Here (ai� )k� (bi� )�� for another 
index (i�, k�,��) in the root may become nonzero from zero, which is eliminated in 
the next if i� ∈ X . Therefore, together with doing such row operations, after looking 
the indices in the root at most twice, the root has no index (i, k,�) with i ∈ X and 
(ai)k(bi)� ≠ 0 . Suppose that there is (i, k,�) with i ∉ X and (ai)k(bi)� ≠ 0 . Then G0

X
 , 

R0 , I, and J are updated. In particular, I increases and J decreases. For each newly 
added k ∈ I , construct array pk (from p), identify the head index of pk , and add the 
pointer to the heap. In this way, until X increases, each index (i, k,�) is referred to 
at most twice, and the heap is updated in O(log n) time per the reference. In total, 
O(mn2 log n) time is required. Thus we have:

Theorem 3.5 Algorithm Deg-Det-WMI runs in O(mn3 log n) time.

3.4  Relation to Frank’s algorithm

In this subsection, we reveal the relation between our algorithm Deg-Det-WMI and 
Frank’s weight splitting algorithm [4]. We show that the common independent sets 
X obtained by Deg-Det-WMI are the same as the ones obtained by a slightly modi‑
fied version of Frank’s algorithm. This means in a sense that Deg-Det-WMI is a 
nonstandard specialization of Frank’s algorithm to linear matroids.

Let us briefly explain Frank’s algorithm; our presentation basically follows [14, 
Sect. 13.7]. His algorithm keeps a weight splitting ci = c1

i
+ c2

i
 for each i ∈ E and a 

common independent set X such that X is maximum for both c1
i
 and c2

i
 over all com‑

mon independent sets of cardinality |X|.

0: c1
i
∶= ci , c2i ∶= 0 for i ∈ E and X ∶= �.

1: Applying elementary row operations to A, B, construct the residual graph GX , 
and node sets SX , TX as in Sect. 2.2.
2: From the weight splitting c = c1 + c2 , construct subgraph ḠX of GX and node 
subsets S̄X ⊆ SX , T̄X ⊆ TX by: ḠX consists of arcs ij with i ∈ X ∌ j and c1

i
= c1

j
 or 

i ∉ X ∋ j and c2
i
= c2

j
 , and 

3: Let R̄ be the set of nodes reachable from S̄X in ḠX.

(3.14)S̄X ∶= {i ∈ SX ∣ ∀j ∈ SX , c
1
i
≥ c1

j
},

(3.15)T̄X ∶= {i ∈ TX ∣ ∀j ∈ TX , c
2
i
≥ c2

j
}.
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4-1: If R̄ ∩ T̄X ≠ � , for a shortest path P from S̄X to T̄X , replace X by XΔV(P) ; go 
to step 1.
4-2: If R̄ ∩ T̄X = � , then let c1

i
∶= c1

i
− � , c2

i
∶= c2

i
+ � for i ∈ R̄ , and increase � 

from 0 until R̄ increases. If � = ∞ , then output −∞ and stop. Go to step 2.

We consider a modified update of the weight splitting. Let R̄′ be the subset of nodes 
i ∈ E⧵(X ∪ R̄) such that all arcs leaving i enters X ∩ R̄ . Then the step 4‑2 can be 
replaced by the following:

4-2′: If R̄ ∩ T̄X = � , then let c1
i
∶= c1

i
− � , c2

i
∶= c2

i
+ � for i ∈ R̄ ∪ R̄� , and 

increase � from 0 until R̄ increases or R̄′ changes. If � = ∞ , then output −∞ and 
stop. Repeat until R̄ increases and go to step 2.

One can easily check that X keeps the optimality (3.12), (3.13) in the modified 
update. Hence, the modified algorithm using 4-2′ is also correct.

We prove that G0
X
 , S0

X
 , T0

X
 in our algorithm and ḠX , S̄X , T̄X in modified Frank’s 

algorithm are the same up to an obvious redundancy. Here an arc in ḠX is said to be 
redundant if it leaves a node i that has no arc entering i.

Proposition 3.6 Suppose that X, � and � are obtained in an iteration of Deg-Det-
WMI. Define weight splitting ci = c1

i
+ c2

i
 by (3.6), (3.7) and ḠX , S̄X and T̄X by 

(3.14), (3.15). Then we have the following: 

(1) G0
X
 is equal to the subgraph of ḠX obtained by removing redundant arcs.

(2) S0
X
 is equal to S̄X.

(3) T0
X
 is equal to the subset of T̄X obtained by removing isolated nodes.

(4) R0 is equal to R̄.
(5) The total sum of increases � until R0 changes is equal to that of increases � until 

R̄ changes in the modified Frank’s algorithm.

Proof Recall (the proof of) Lemma 3.4 that X is a common independent set of �(A) 
and �(B) . Suppose that X = {1, 2,… , h} and A0[[h],X] = B0[[h],X] = I with 
�1 ≥ �2 ≥ ⋯ ≥ �h and �1 ≥ �2 ≥ ⋯ ≥ �h . Observe first that S0

X
⊆ SX . Indeed, from 

Lemma 3.3 and (3.11), A[I∗,X] is a zero matrix. Therefore, if a0
i
 has a nonzero vec‑

tor in a row in I∗ , i.e., i ∈ S0
X
 , then ai is independent from ai′ (i� ∈ X) , i.e., i ∈ SX . 

Consider the weight splitting of nodes in S0
X
 . For i ∈ S0

X
 , c1

i
= −�k (k ∈ I∗) , and 

−�k ≥ c1
j
 for j ∈ SX by (3.11). Thus S0

X
⊆ S̄X . Also, for any i� ∈ SX⧵S

0
X
 , a0

i′
 is a zero 

vector. Indeed, it holds (ai� )k∗ ≠ 0 = (a0
i�
)k∗ for some k∗ ∈ I∗ . This means 

𝛼k∗ + 𝛽� + ci� < 0 for all � ∈ [n] with (ai� )k∗ (bi� )� ≠ 0 . By (3.11), it holds �k ≤ �k∗ for 
all k ∈ [n] , and 𝛼k + 𝛽� + ci� < 0 for all k,� with (ai� )k(bi� )� ≠ 0 , which implies 
a0
i�
= � . Thus, it holds c1

i�
< −𝛼k for k ∈ I∗ . Then c1

i�
< −𝛼k = c1

i
 for i ∈ S0

X
 . Thus we 

have (2).
Showing (3) is similar. As above, we see that T0

X
⊆ TX and for i ∈ T0

X
 , c2

i
= −�� 

( � ∈ J∗ ). Then T0
X
⊆ T̄X . Let i ∈ TX⧵T

0
X
 . Then b0

i
 is a zero vector, and so is a0

i
 . 
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Suppose that arc ji for j ∈ X exists in GX . Recall that A[[h], X] and B[[h], X] are 
lower triangular. Then j is at least the minimum index k with (ai)k ≠ 0 . Then for 
� ∈ J∗ , c1

j
= −𝛼j ≥ −𝛼k > ci + 𝛽� = ci − c2

i
= c1

i
 , where the strictly inequality fol‑

lows from the fact that a0
i
 and b0

i
 are zero vectors. Then ji does not exist in ḠX . Simi‑

larly, arc ij does not exist in ḠX and this means i is an isolated node. Thus we have 
(3).

Next we compare G0
X
 and ḠX to prove (1) and (4). Consider a node i ∈ E⧵X 

such that a0
i
 and b0

i
 are nonzero. Suppose that arc ki exists in G0

X
 , i.e., (a0

i
)k ≠ 0 for 

k ∈ [h] = X . Then c1
i
= −�k = c1

k
 . We show that ki exists also in ḠX . Since �j ≥ �k 

(j ≠ k) implies (ak)j = 0 by Lemma 3.3, Gaussian elimination making A X‑diagonal 
does not affect (ai)k . Thus the arcs ki exists in GX and in ḠX . Similarly, if i� exists 
in G0

X
 , then i� exists in ḠX . Therefore, for any node i ∈ E⧵X with nonzero a0

i
,b0

i
 , the 

arcs incident to i are the same in G0
X
 and ḠX.

Consider a node i ∈ E⧵X such that a0
i
 and b0

i
 are zero vectors. In G0

X
 , 

there are no arcs incident to i. For k ∈ X,� ∈ [n] with (ai)k(bi)� ≠ 0 , it holds 
c1
k
= −𝛼k > 𝛽� + ci ≥ −c2

i
+ ci = c1

i
 . This means that arcs ki entering i do not exist 

in ḠX , and thus arcs i� leaving i are redundant. Thus we have (1). From (1), (2), and 
(3), we have (4).

Finally we prove (5). The step 2‑2 in Deg-Det-WMI changes �, � as � ← � + ��I , 
� ← � − ��[n]⧵J . We analyze the corresponding change of the weight splitting 
c = c1 + c2 defined by (3.6), (3.7). Consider i ∈ [m] such that a0

i
 and b0

i
 are nonzero 

vectors. Suppose that i ∈ R0 = R̄ . Then a0
i
 and b0

i
 have nonzero entries in a row 

in I and in [n]⧵J , respectively; see Fig. 4. Therefore c1
i
= −�k for some k ∈ I and 

c2
i
= −�� for some � ∈ [n]⧵J , and c1

i
, c2

i
 are changed as c1

i
← c1

i
− � , c2

i
← c2

i
+ � . 

Suppose that i ∉ R0.
Then a0

i
 and b0

i
 have nonzero entries in a row in [n]⧵I and in J, respectively. In 

particular, c1
i
= −�k for some k ∈ [n]⧵I and c2

i
= −�� for some � ∈ J.

Then the weight splitting does not change.
Thus, for any node i with nonzero a0

i
, b0

i
 , the update corresponds to the step 4‑2 

or 4‑2′.
Consider a node i with a0

i
= b0

i
= � . Let � be the set of indices k that 

attain maxk∈[n]∶(ai)k≠0 �k , and let � be the set of indices � that attain 
max�∈[n]∶(bi)�≠0 �� = −c2

i
 . 

Case 1: � ∩ J ≠ � . Then c2
i
 does not change and so does c1

i
 . If � ∩ I ≠ � , then � can 

increase until c1
i
 becomes −�k for some k ∈ �.

Case 2: � ∩ J = � ( ⇔ 𝛱 ⊆ [n]⧵J ) Then c2
i
 changes as c2

i
← c2

i
+ � , and hence c1

i
 

changes as c1
i
← c1

i
− � . Here � can increase until � ∩ J ≠ � ; then the situation 

goes to (Case 1).

Notice that arc i� exists in ḠX precisely when −c2
i
= �� = −c2

�
 for � ∈ X ∩ J , and 

hence a node i in the case 2 is precisely a node in R̄′ . Therefore the changes of the 
weight splitting are the same in Deg-Det-WMI and in the modified Frank’s algo‑
rithm (using step 4‑2′ ). The steps are iterated for the same zero submatrix until 
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R0 changes. Therefore, the total sum of � is the same as that of � in the modified 
Frank’s algorithm.   ◻

By this property, the obtained sequences of common independent sets X can be 
the same in Deg-Det-WMI and the modified Frank’s algorithm. Therefore Deg-
Det-WMI can also be viewed as yet another implementation of Frank’s algorithm 
for linear matroids. A notable feature of Deg-Det-WMI is to skip unnecessary 
eliminations in constructing the residual graphs. To see this fact, consider the 
partition {�1, �2,… , �n� } of [n] such that k, k� ∈ [n] belong to the same part if and 
only if �k = ��

k
 . Then the elimination matrix K is a block diagonal matrix with 

block diagonals of size |�i| × |�i| ; recall (3.5). This means that the Gaussian elim‑
ination for A in step 1 is done in O(m

∑
i ��i�2) time. Therefore, if values �k, �� are 

scattered, then K, L are very sparse, and the update of G0
X
 after X changes is very 

fast. On the other hand, necessary eliminations skipped at this moment will be 
done in the occurrences of (a‑1) and (b‑1). Hence, Deg-Det-WMI reduces elimi‑
nations compared with the usual implementation of Frank’s algorithm to linear 
matroids. More thorough analysis (e.g., incorporating Cunningham’s estimate [1] 
for the length of augmenting paths) is left to a future work.

We close this paper by giving an example in which the elimination results are 
actually different in the two algorithms.

Example 3.7 Consider matrices

and weight c = (3 2 3 1 1) . The both algorithms for this input can reach at 
� = (−2 − 2 − 2 − 2) , � = (−1 0 0 0) and X = {1, 2} without elimination. Con‑
sider Deg-Det-WMI from this moment. The matrices A0 and B0 are given by

The Gaussian elimination makes (a0
2
)2 zero. Then G0

X
 consists of one arc 31, and 

S0
X
= {3} and T0

X
= � . The reachable set R0 is determined as R0 = {1, 3} , and I,  J 

are given by I = {1, 2, 3} , J = {2, 3, 4} , I∗ = {1, 3} , and J∗ = {2, 3} . Then �, � are 
changed as � = (−1 − 1 − 1 − 2) , � = (−2 0 0 0) without occurrences of (a‑1) and 
(b‑1). Nonzero elements appear in A0[I∗, {4, 5}] and B0[J∗, {4, 5}] , which implies 
S0
X
∩ T0

X
= {4, 5} . So X is increased.

Therefore Deg-Det-WMI succeeds the augmentation without eliminating (b2)1 , 
whereas Frank’s algorithm eliminates this element in constructing GX.

A =

⎛
⎜⎜⎜⎝

0 0 1 0 1

1 1 0 0 0

0 0 − 1 1 1

0 1 0 1 0

⎞
⎟⎟⎟⎠
,B =

⎛
⎜⎜⎜⎝

1 1 1 0 1

0 0 0 1 1

0 0 0 0 − 1

0 1 0 1 1

⎞⎟⎟⎟⎠

A0 =

⎛
⎜⎜⎜⎝

0 0 1 0 0

1 1 0 0 0

0 0 − 1 0 0

0 1 0 0 0

⎞
⎟⎟⎟⎠
,B0 =

⎛
⎜⎜⎜⎝

1 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

⎞
⎟⎟⎟⎠
.
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