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Abstract
To facilitate the numerical analysis of particle methods, we derive truncation error 
estimates for the approximate operators in a generalized particle method. Here, a 
generalized particle method is defined as a meshfree numerical method that typically 
includes other conventional particle methods, such as smoothed particle hydrodynam-
ics or moving particle semi-implicit methods. A new regularity of discrete param-
eters is proposed via two new indicators based on the Voronoi decomposition of the 
domain along with two hypotheses of reference weight functions. Then, truncation 
error estimates are derived for an interpolant, approximate gradient operator, and 
approximate Laplace operator in the generalized particle method. The convergence 
rates for these estimates are determined based on the frequency with which they 
appear in the regularity and hypotheses. Finally, the estimates are computed numeri-
cally, and the results are shown to be in good agreement with the theoretical results.

Keywords Generalized particle method · Truncation error estimate · Approximate 
operator · Smoothed particle hydrodynamics method · Moving particle semi-
implicit method

Mathematics Subject Classification 65M12

1 Introduction

Particle methods, such as the smoothed particle hydrodynamics (SPH) [10, 18, 19] 
and moving particle semi-implicit (MPS) methods [15, 16, 29], are numerical meth-
ods for solving partial differential equations that are based on points called particles 
distributed in a domain. In such methods, an interpolant and several approximate 
differential operators are defined in terms of linear combinations of weighted inter-
actions between neighboring particles. When such methods are applied to partial 
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differential equations, the equations are effectively discretized in space. As the discre-
tization procedure does not require mesh generation in the domain, particle methods 
can be applied to moving boundary problems, such as the deformation and destruc-
tion of structures [5, 22] and flow problems associated with free surfaces [21, 23].

The accuracy of particle methods has been widely researched. From an engineer-
ing perspective, many studies have been conducted into the convergence of such 
methods in practical applications, such as Amicarelli [1, 2], Fulk [9], and Quinlan 
et al. [25]. On the other hand, few studies in the literature have presented numerical 
analyses of these methods from a mathematical perspective. In the 1980s, Mas-Gal-
lic and Raviart [20] and Raviart [26] provided error estimates for particle methods 
when applied to parabolic and hyperbolic partial differential equations on unbounded 
domains. In the 2000s, Ben Moussa and Via [4] and Ben Moussa [3] provided error 
estimates of nonlinear conservation laws on bounded domains. In their work, the 
time integrations of the particle positions and volumes were obtained by solving the 
differential equations with respect to advection fields. However, as their method is 
only applicable to problems described by solvable differential equations, it cannot 
be used with other problems, such as those involving the Navier–Stokes equations.

Sometime later, Ishijima and Kimura [13] developed a truncation error estimate 
for an approximate gradient operator in the MPS method. By introducing a regu-
larity for particle distributions based on an indicator called the equivolume parti-
tion radius, they determined the conditions that depend solely on the space distribu-
tions of the particles. However, a practical limitation is that the indicator cannot be 
computed.

In previous works, we established truncation error estimates for an interpolant, 
approximate gradient operator, and approximate Laplace operator of a generalized 
particle method in which the particle volumes were given as Voronoi volumes [11, 
12]. A generalized particle method is a numerical method that typically includes 
conventional particle methods, such as the SPH and MPS methods. In previous 
studies, we derived truncation error estimates by introducing a regularity using an 
indicator known as the covering radius, which is used in the numerical analysis of 
meshfree methods based on moving least-square methods and radial basis functions 
[17, 27, 30]. Although the formulations and conditions in those works are comput-
able, they are difficult to deploy in practical computations as the computational costs 
associated with particle volumes based on Voronoi decomposition are high.

The focus of the current work was to analyze particle methods under more practi-
cal conditions by extending our results to cases with commonly used particle vol-
umes. We also introduce another indicator of particle volumes, which we refer to 
as a Voronoi deviation, that represents the deviation between particle volumes and 
Voronoi volumes. Then, utilizing the Voronoi deviation, we extend the regularity 
and introduce two hypotheses of reference weight functions. Using the regularity 
and hypotheses, we derive truncation error estimates of the interpolant, approximate 
gradient operator, and approximate gradient operator of the generalized particle 
method. Finally, we numerically analyze our estimates and compare the results to 
those from the theory.

The remainder of this paper is organized as follows. The interpolant and approxi-
mate operators of the generalized particle method are introduced in Sect.  2. A 
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regularity describing the family of discrete parameters is discussed in Sect. 3, after 
which we propose our primary theorem with respect to the truncation error esti-
mates and provide some corollaries. Then, the primary theorem is proven in Sect. 4, 
numerical results are detailed in Sect. 5, and some concluding remarks are outlined 
in Sect. 6.

In the remainder of this section, we describe some notation and define some rel-
evant function spaces. Let ℝ+ , ℝ+

0
 , and ℕ0 be the set of positive real numbers, the 

set of nonnegative real numbers, and the set of nonnegative integers, respectively. 
Let d be the dimension of a space. Let �d be the set of all d-dimensional multi-
indices. For x = (x1, x2,… , xd)

T ∈ ℝ
d and � = (�1, �2,… , �d)

T ∈ �
d , x� is defined 

as x� = x
�1
1
x
�2
2
⋯ x

�d
d

 . If there is no ambiguity, the symbol | ⋅ | is used to denote the 
following: |x| denotes the Euclidean norm for x ∈ ℝ

d ; |S| denotes the volume of S for 
S ⊂ ℝ

d ; |�| denotes |�| ∶= �1 + �2 +⋯ + �d for � ∈ �
d . For S ⊂ ℝ

d , let diam(S) be 
diam(S) ∶= sup {|x − y|; x, y ∈ S} . For S ⊂ ℝ

d , let C(S) be the space of real continu-
ous functions defined in S with the norm ‖ ⋅ ‖

C(S)
 defined as

For S ⊂ ℝ
d and � ∈ ℕ , let C�(S) be the space of functions in C(S) with derivatives 

up to the � th order with its seminorm | ⋅ |
C𝓁 (S)

 and norm ‖ ⋅ ‖
C𝓁 (S)

 defined as

respectively. Here D�v ∶= �
�1
1
�
�2
2
… �

�d
d
v with multi-index � = (�1, �2,… , �d).

2  Approximate operators in a generalized particle method

Let � be a bounded domain in ℝd . Let H be a fixed positive number. For � and H , 
we define extended domain �H as

For N ∈ ℕ , we define a particle distribution XN and particle volume set VN as

respectively. We refer to xi ∈ XN and Vi ∈ VN as a particle and particle volume, 
respectively. An example of the particle distribution XN in 𝛺H (⊂ ℝ

2) is shown in 
Fig. 1.

We define an admissible reference weight function set W as

‖v‖
C(S)

∶= max
x∈S

�v(x)�.

�v�
C�(S)

∶= max
�∈�d ,���=�

‖D�v‖
C(S)

,

‖v‖
C�(S)

∶= max
j=0,1,…,�

�v�
Cj(S)

,

𝛺H ∶=
{
x ∈ ℝ

d|||∃y ∈ 𝛺 s.t. |x − y| < H
}
.

XN ∶=
{
xi ∈ �H; i = 1, 2,… ,N, xi ≠ xj (i ≠ j)

}
,

VN ∶=

{
Vi ∈ ℝ

+; i = 1, 2,… ,N,

N∑
i=1

Vi =
||�H

||
}

,
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we refer to w ∈ W as a reference weight function, and we define the influence radius 
hN ∈ ℝ as satisfying 0 < hN < H and hN → 0 (N → ∞) . If there is no ambiguity, we 
denote hN as h . For reference weight function w and influence radius h , we define the 
weight function wh ∈ C(ℝ+

0
) as

Note that the weight function wh satisfies

and is absolutely continuous.
For v ∈ C(�H) , we define interpolant �h , approximate gradient operator ∇h , and 

approximate Laplace operator �h as

respectively. Here, for x ∈ ℝ
d and r ∈ ℝ

+ ∪ {∞} , �0(x, r) and �(x, r) are index sets 
of particles defined as

respectively.

W ∶=

{
w ∈ C(ℝ+

0
); supp (w) = [0, 1], ∫

ℝd

w(|x|)dx = 1, absolutely continuous

}
,

(1)wh(r) ∶=
1

hd
w
(
r

h

)
.

supp (wh) = [0, h], ∫
ℝd

wh(|x|)dx = 1,

(2)�hv(x) ∶=
∑

i∈�0(x,h)

Viv(xi)wh(|xi − x|),

(3)∇hv(x) ∶= d
∑

i∈�(x,h)

Vi

v(xi) − v(x)

|xi − x|
xi − x

|xi − x|wh(|xi − x|),

(4)�hv(x) ∶= 2d
∑

i∈�(x,h)

Vi

v(xi) − v(x)

|xi − x|2 wh(|xi − x|),

𝛬0(x, r) ∶=
{
i = 1, 2,… ,N; 0 ≤ |x − xi| < r

}
,

𝛬(x, r) ∶=
{
i = 1, 2,… ,N; 0 < |x − xi| < r

}
,

Fig. 1  Particle distribution X
N

 
in 𝛺

H
(⊂ ℝ

2)

H

Ω

ΩH
R2

XN
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As discussed later in Appendix 1, the approximate operators (2), (3), and (4) 
indicate a wider class of approximate operators of particle methods than those in 
the SPH and MPS methods. Therefore, we refer to the approximate operators (2), 
(3), and (4) as generalized approximate operators and to a particle method that 
uses them as a generalized particle method.

3  Truncation error estimates of approximate operators

We first introduce a regularity of discrete parameters. Let {�i} be the Voronoi 
decomposition of �H associated with the particle distribution XN , where �i is the 
Voronoi region defined as

We define a particle volume decomposition � = {�i} as a decomposition of �H 
satisfying

An example of the Voronoi decomposition of �H associated with the particle distri-
bution XN is shown in Fig. 2. We define a covering radius rN for particle distribution 
XN as

Moreover, we define a Voronoi deviation dN for the particle distribution XN and the 
particle volume set VN as

with

𝜎i ∶=
{
x ∈ 𝛺H; |xi − x| < |xj − x|, ∀xj ∈ XN (j ≠ i)

}
, i = 1, 2,… ,N.

||�i|| = Vi,

N⋃
i=1

�i = �H (i = 1, 2,… ,N), �i ∩ �j = � (i ≠ j).

(5)rN ∶= max
i=1,2,…,N

sup
x∈�i

|xi − x|.

(6)dN ∶= inf
�
d�

Fig. 2  Example of the Voronoi 
decomposition of �

H
 associated 

with the particle distribution X
N

xi

σi



570 Y. Imoto 

1 3

Then, we define a regularity for a family consisting of a particle distribution XN , 
particle volume set VN , and influence radius h as follows:

Definition 1 A family {(XN ,VN , hN)}N→∞ is said to be regular with order m (m ≥ 1) 
if there exists a positive constant c0 such that

Remark 1 As shown in Fig. 3, the covering radius rN becomes large in the case of 
a particle distribution with both dense and sparse regions. Therefore, the covering 
radius rN can be considered as an indicator representing the uniformness of particle 
distribution XN.

Remark 2 A Voronoi deviation dN equals zero if and only if the particle volumes 
are given as the Voronoi volume ( Vi =

||�i|| ). Moreover, the Voronoi deviation dN 
becomes large if the particle volumes are given as values far from the Voronoi vol-
umes. Therefore, the Voronoi deviation dN can be regarded as an indicator of the 
deviation between the particle volume set and the Voronoi volume set.

Remark 3 For a given family {(XN ,VN , hN)}N→∞ and given constant m (m ≥ 1) , it 
is possible to determine whether or not the family is regular with order m as the 
covering radius rN and Voronoi deviation dN are absolutely computable, as shown in 
Appendix 2.

Next, we introduce two hypotheses of reference weight function w:

d� ∶= max
i=1,2,…,N

⎧
⎪⎨⎪⎩

N�
j=1

����i ∩ �j
��� +

����i ∩ �j
���

���i��
�xi − xj�

⎫
⎪⎬⎪⎭
.

(7)hm
N
≥ c0(rN + dN), ∀N ∈ ℕ.

rN (XN
(1))

XN
(1)

XN
(2)

rN (XN
(2))

Fig. 3  Two examples of covering radii r
N

 for particle distributions with same number of particles. The 
covering radius r

N
 for the uniform particle distribution (left) is smaller than that for the non-uniform par-

ticle distribution (right)
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Hypothesis 1 For n ∈ ℕ , the reference weight function w satisfies for all � ∈ �
d 

with 1 ≤ |�| ≤ n,

Hypothesis 2 For k ∈ ℕ0 , the reference weight function w satisfies

where for j ∈ ℕ0 , w(j)(r) ∶ (0,∞) → ℝ is defined as

and (w(k))� is dw(k)∕dr.

Remark 4 All reference functions w ∈ W satisfy Hypothesis 1 with n = 1 . Moreo-
ver, for all n ∈ ℕ and k ∈ ℕ , reference weight functions satisfying Hypothesis 1 with 
n and Hypothesis 2 with k can be constructed as shown in Appendix 3.

We now state a theorem that defines truncation error estimates of approximate 
operators in the generalized particle method with a continuous norm:

Theorem  3 Suppose that a family {(XN ,VN , hN)}N→∞ is regular with order 
m (m ≥ 1) and that reference weight function w satisfies Hypothesis 1 with n . Then, 
there exists a positive constant c independent of N such that

In addition, if w ∈ W satisfies Hypothesis 2 with k = 0 , then we have

and if w ∈ W satisfies Hypothesis 2 with k = 1 , then we have

The proof of Theorem  3 is presented in the next section. As shown in the 
corollaries in Appendix 1, the approximate operators commonly used in the SPH 
and MPS methods are valid for Theorem 3 under appropriate settings.

∫
ℝd

x�w(|x|)dx = 0.

max

{
sup

r∈(0,1)

|w(k+1)(r)|, sup
r∈(0,1)

|||(w
(k))�(r)

|||
}

< ∞,

(8)w(j)(r) ∶=

⎧
⎪⎨⎪⎩

lim
s↓0

w(s)

sj
, r = 0,

w(r)

rj
, r > 0

(9)��v −�hv
��C(�)

≤ c hmin{m−1,n+1}‖v‖
Cn+1(�H )

, v ∈ Cn+1(�H).

(10)��∇v − ∇hv
��C(�)

≤ c hmin{m−1,n+1}‖v‖
Cn+2(�H )

, v ∈ Cn+2(�H),

(11)���v − �hv
��C(�)

≤ c hmin{m−2,n+1}‖v‖
Cn+3(�H )

, v ∈ Cn+3(�H).
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4  Proof of truncation error estimates

The following notation will be used in the subsequent proof of Theorem 3. Here-
after, let c be a generic positive constant independent of N (allowed dependence 
on the fixed positive parameter H ). For � ∈ �

d , set I� as

For � ∈ �
d and � ∈ ℕ , set I�,� as

For � ∈ ℕ , set J� as

We now present the following lemma.

Lemma 1 Suppose that w ∈ W satisfies Hypothesis 1 with n . Then, there exists a 
positive constant c independent of N such that

Proof First, we prove (12). We fix x ∈ � . Then, let B(x, r) be the open ball in ℝd 
with center x and radius r, i.e.,

I�(x) ∶=
∑

i∈�0(x,h)

Vi(xi − x)�wh(|xi − x|) − ∫
ℝd

y�wh(|y|)dy, x ∈ �.

I�,�(x) ∶=
∑

i∈�(x,h)

Vi

(xi − x)�

|xi − x|�wh(|xi − x|) − ∫
ℝd

y�

|y|�wh(|y|)dy, x ∈ �.

J�(x) ∶=
∑

i∈�0(x,h)

Vi|xi − x|�|wh(|xi − x|)|, x ∈ �.

(12)

��v −�hv
��C(�)

≤ c

� �
0≤���≤n

��I���C(�)
+ ��Jn+1��C(�)

�
‖v‖

Cn+1(�H )
,

v ∈ Cn+1(�H),

(13)

��∇v − ∇hv
��C(�)

≤ c

� �
2≤���≤n+2

��I�,2��C(�)
+ ��Jn+1��C(�)

�
‖v‖

Cn+2(�H )
,

v ∈ Cn+2(�H),

(14)

���v − �hv
��C(�)

≤ c

� �
1≤���≤n+3

��I�,2��C(�)
+ ��Jn+1��C(�)

�
‖v‖

Cn+3(�H )
,

v ∈ Cn+3(�H).
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From h < H , we have B(x, h) ⊂ 𝛺H . Then, for all v ∈ C�+1(�H) (� ∈ ℕ) and 
xi ∈ B(x, h) , we obtain the Taylor expansion of v as

From (2) and (15) with � = n , we have

Moreover, by Hypothesis 1, we have

Because

we have

Moreover, we have

Therefore, from (16), (18), and (19), we obtain (12).
Next, we prove (13). From (3) and (15) with � = n + 1 , we have

B(x, r) ∶=
{
y ∈ ℝ

d; |y − x| < r
}
.

(15)

v(xi) =
∑

0≤|�|≤�
D�v(x)

�!
(xi − x)� +

∑
|�|=�+1

(xi − x)�R�(xi, x),

R�(xi, x) ∶=
|�|
�! �

1

0

(1 − t)|�|−1D�v(tx + (1 − t)xi)dt.

�hv(x) =
∑

0≤|�|≤n
D�v(x)

�!

∑
i∈�0(x,h)

Vi(xi − x)�wh(|xi − x|)

+
∑

|�|=n+1

∑
i∈�0(x,h)

R�(xi, x)Vi(xi − x)�wh(|xi − x|).

(16)

�hv(x) − v(x) =
∑

0≤|�|≤n
D�v(x)

�!
I�(x)

+
∑

|�|=n+1

∑
i∈�0(x,h)

R�(xi, x)Vi(xi − x)�wh(|xi − x|).

(17)|R�(y, z)| ≤ 1

�!
|v|

C|�|(�H )
, y ∈ �, z ∈ B(y, h), � ∈ �

d,

(18)

||||||
∑

|�|=n+1

∑
i∈�0(x,h)

R�(xi, x)Vi(xi − x)�wh(|xi − x|)
||||||

≤ c|Jn+1(x)||v|Cn+1(�H )
.

(19)
������
�

0≤���≤n
D�v(x)

�!
I�(x)

������
≤ c‖v‖

Cn(�)

�
0≤���≤n

��I�(x)��.
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Because for � ∈ �
d with |�| = 2,

we have

Hypothesis 1 with n yields

From (21) and (22), we have

From (17), we have

Moreover, we have

Therefore, from (23), (24), and (25), we obtain (13).

∇hv(x) = d
∑

1≤|�|≤n+1
D�v(x)

�!

∑
i∈�(x,h)

Vi

(xi − x)(xi − x)�

|xi − x|2 wh(|xi − x|)

+ d
∑

|�|=n+2

∑
i∈�(x,h)

R�(xi, x)Vi

(xi − x)(xi − x)�

|xi − x|2 wh(|xi − x|).

(20)d ∫
ℝd

y�

|y|2wh(|y|)dy =
{

1, all elements of � are even ,

0, otherwise ,

(21)d
∑
|�|=1

D�v(x)

�! ∫
ℝd

yy�

|y|2wh(|y|)dy = ∇v(x).

(22)�
ℝd

yy�

|y|2wh(|y|)dy = 0 � ∈ 𝔸
d with 2 ≤ |�| ≤ n + 1.

(23)

∇hv(x) − ∇v(x) = −d
∑

1≤|�|≤n+1
D�v(x)

�! �
ℝd

yy�

|y|2wh(|y|)dy

+ d
∑

1≤|�|≤n+1
D�v(x)

�!

∑
i∈�(x,h)

Vi

(xi − x)(xi − x)�

|xi − x|2 wh(|xi − x|)

+ d
∑

|�|=n+2

∑
i∈�(x,h)

R�(xi, x)Vi

(xi − x)(xi − x)�

|xi − x|2 wh(|xi − x|).

(24)

||||||
∑

|�|=n+2

∑
i∈�(x,h)

R�(xi, x)Vi

(xi − x)(xi − x)�

|xi − x|2 wh(|xi − x|)
||||||

≤ c|Jn+1(x)||v|Cn+2(�H )
.

(25)

∑
1≤|�|≤n+1

||||||
∑

i∈�(x,h)

Vi

(xi − x)(xi − x)�

|xi − x|2 wh(|xi − x|) − �
ℝd

yy�

|y|2wh(|y|)dy
||||||

≤ c
∑

2≤|�|≤n+2
|I�,2(x)|.
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Finally, we prove (14). From (4) and (15) with � = n + 2 , we have

From (20), we have

Hypothesis 1 with n yields

Therefore, we have

From (17), we have

Moreover, we have

Therefore, from (26), (27), and (28), we obtain (14).

Next, we show estimates of I� , I�,� , and J�.

Lemma 2 There exists a positive constant c independent of N such that

�hv(x) = 2d
∑

1≤|�|≤n+2
D�v(x)

�!

∑
i∈�(x,h)

Vi

(xi − x)�

|xi − x|2 wh(|xi − x|)

+ 2d
∑

|�|=n+3

∑
i∈�(x,h)

R�(xi, x)Vi

(xi − x)�

|xi − x|2 wh(|xi − x|).

2d
∑
|�|=2

D�v(x)

�! ∫
ℝd

y�

|y|2wh(|y|)dy = �v(x).

�
ℝd

y�

|y|2wh(|y|)dy = 0, � ∈ 𝔸
d with |�| = 1 or 3 ≤ |�| ≤ n + 2.

(26)

�hv(x) − �v(x) = 2d
∑

1≤|�|≤n+2
D�v(x)

�!
I�,2(x)

+ 2d
∑

|�|=n+3

∑
i∈�(x,h)

R�(xi, x)Vi

(xi − x)�

|xi − x|2 wh(|xi − x|).

(27)

||||||
∑

|�|=n+3

∑
i∈�(x,h)

R�(xi, x)Vi

(xi − x)�

|xi − x|2 wh(|xi − x|)
||||||

≤ c|Jn+1(x)||v|Cn+3(�H )
.

(28)
������

�
1≤���≤n+2

D�v(x)

�!
I�,2(x)

������
≤ c‖v‖

Cn+2(�)

�
1≤���≤n+2

��I�,2(x)��.

(29)‖I�‖C(�)
≤ c

�
1 + 2

rN

h

�d
�
rN + dN

h

�
, � ∈ �

d.
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Proof We arbitrarily fix x ∈ � , � ∈ �
d , and particle volume decomposition 

� = {�i ∣ i = 1, 2,… ,N} and split I� into

with

Then, we estimate E1 , E2 , and E3.
First, we estimate E1 . Because

we can rewrite E1 as

From

we obtain

From

we have

I�(x) = E1(x) + E2(x) + E3(x)

E1(x) ∶=
∑

i∈�0(x,h)

Vi(xi − x)�wh(|xi − x|)

−

N∑
i=1

N∑
j=1

|||�j ∩ �i
|||(xi − x)�wh(|xj − x|),

E2(x) ∶=

N∑
i=1

N∑
j=1

(xi − x)� ∫�j∩�i

{wh(|xj − x|) − wh(|y − x|)}dy,

E3(x) ∶=

N∑
i=1

N∑
j=1

(xi − x)� ∫�j∩�i

wh(|y − x|)dy − ∫
ℝd

y�wh(|y|)dy.

(30)
N∑
j=1

|||�j ∩ �i
||| = Vi, i = 1, 2,… ,N,

E1 =

N∑
i=1

N∑
j=1

|||�j ∩ �i
|||(xi − x)�{wh(|xi − x|) − wh(|xj − x|)}.

(31)|(y − x)�| ≤ diam(�H)
|�|, y ∈ �H ,

(32)||E1(x)
|| ≤ c

N∑
i=1

N∑
j=1

|||�j ∩ �i
||||wh(|xi − x|) − wh(|xj − x|)|.

|wh(|y − x|) − wh(|z − x|)| = 0, ∀y, z ∈ ℝ
d⧵B(x, h),
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Because wh is absolutely continuous, we have

for all y, z ∈ ℝ
d . Here, w′ and w′

h
 are dw∕dr and dwh∕dr , respectively. Moreover, we 

have

From (33), (34), and (35), we have

(33)

N∑
i=1

N∑
j=1

|||�j ∩ �i
||||wh(|xi − x|) − wh(|xj − x|)|

≤ ∑
i∈�0(x,h)

N∑
j=1

|||�j ∩ �i
||||wh(|xi − x|) − wh(|xj − x|)|

+

N∑
i=1

∑
j∈�0(x,h)

|||�j ∩ �i
||||wh(|xi − x|) − wh(|xj − x|)|

=
∑

i∈�0(x,h)

N∑
j=1

(
|||�i ∩ �j

||| +
|||�j ∩ �i

|||)|wh(|xi − x|) − wh(|xj − x|)|.

(34)

||wh(|y − x|) − wh(|z − x|)||
=
|||||
{(y − x) − (z − x)}�

1

0

w�
h
(t|y − x| + (1 − t)|z − x|)dt

|||||
≤ |y − z|

|||||�
1

0

w�
h
(t|y − x| + (1 − t)|z − x|)dt

|||||
≤ |y − z|�

h

0

||w�
h
(r)||dr

≤ |y − z|
hd+1 �

1

0

||w�(r)||dr,

(35)
∑

i∈�0(x,r)

|�i| ≤ |B(x, 1)|(r + rN
)d
, ∀r ∈ ℝ

+
0
.

(36)

N∑
i=1

N∑
j=1

|||�j ∩ �i
||||wh(|xi − x|) − wh(|xj − x|)|

=
c

hd+1

∑
i∈�0(x,h)

N∑
j=1

(|||�i ∩ �j
||| +

|||�j ∩ �i
|||
)
|xi − xj|

≤ c

hd+1

∑
i∈�0(x,h)

|�i|
N∑
j=1

|||�i ∩ �j
||| +

|||�j ∩ �i
|||

|�i| |xi − xj|

≤ c
d�

hd+1

∑
i∈�0(x,h)

|�i| ≤ c
(
1 +

rN

h

)d d�

h
.
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Therefore, from (32) and (36), we obtain

Next, we estimate E2 . Because supp (wh) = [0, h] and 𝜎j ⊂ B(xj, rN) , we have

From (37), we have

Moreover, from (34) and (35), we have

Therefore, from (31) and (38), we obtain

Finally, we estimate E3 . Because

||E1(x)
|| ≤ c

(
1 +

rN

h

)d d�

h
.

(37)∫�j∩�i

|wh(|xj − x|) − wh(|y − x|)|dy = 0,

i = 1, 2,… ,N, j ∉ �0(x, h + rN).

N∑
i=1

N∑
j=1

∫�j∩�i

|wh(|xj − x|) − wh(|y − x|)|dy

=

N∑
i=1

∑
j∈�0(x,h+rN )

∫�j∩�i

|wh(|xj − x|) − wh(|y − x|)|dy

=
∑

j∈�0(x,h+rN )
∫�j

|wh(|xj − x|) − wh(|y − x|)|dy.

(38)

N∑
i=1

N∑
j=1

��j∩�i

|wh(|xj − x|) − wh(|y − x|)|dy ≤ c

hd+1

∑
j∈�0(x,h+rN )

��j

|xj − y|dy

≤ c
rN

hd+1

∑
j∈�0(x,h+rN )

|�j|

≤ c
(
1 + 2

rN

h

)d rN

h
.

|E2(x)| ≤
N∑
i=1

N∑
j=1

||(xi − x)�||��j∩�i

|||wh(|xj − x|) − wh(|y − x|)|||dy

≤ c

N∑
i=1

N∑
j=1

��j∩�i

|||wh(|xj − x|) − wh(|y − x|)|||dy

≤ c
(
1 + 2

rN

h

)d rN

h
.

∫
ℝd

y�wh(|y|)dy = ∫�H

(y − x)�wh(|y − x|)dy,



579

1 3

Truncation error estimates of approximate operators in a…

we can rewrite E3 as

Because E3 = 0 when |�| = 0 , we estimate when |�| ≥ 1 . Let �k (k = 1, 2,… , |�|) be 
d-dimensional multi-indices with satisfying

Then, we have, for all y, z ∈ ℝ
d,

From (31) and (39), we obtain

By supp (wh) = [0, h] and 𝜎j ⊂ B(xj, rN) , if j ∉ �0(x, h + rN) , then

Moreover, from w ∈ W ⊂ C(ℝ+
0
) , we have

From (35), (41), and (42), we have

E3(x) =

N∑
i=1

N∑
j=1

∫�j∩�i

{(xi − x)� − (y − x)�}wh(|y − x|)dy.

|�|∑
k=1

�k = �, |�k| = 1 (k = 1, 2,… , |�|).

(39)

|y� − z�| ≤ |||y
� − y�−�1z�1

||| +
|||y

�−�1z�1 − z�
|||

≤ |y − z||y||�|−1 + |||y
�−�1 − z�−�1

||||z|
≤ |y − z||y||�|−1 + |y − z||y||�|−2|z| + |||y

�−�1−�2 − z�−�1−�2
||||z|

2

⋮

≤ |y − z|
|�|∑
k=1

|y||�|−k|z|k−1.

(40)

|E3(x)| ≤
N∑
i=1

N∑
j=1

��j∩�i

|(xi − x)� − (y − x)�||wh(|y − x|)|dy

≤ c

N∑
i=1

N∑
j=1

��j∩�i

|y − xi||wh(|y − x|)|dy.

(41)∫�j∩�i

|y − xi||wh(|y − x|)|dy = 0, i = 1, 2,… ,N.

(42)�wh(�y − x�)� = 1

hd

�����
w

��y − x�
h

������
≤ 1

hd
‖w‖C(ℝ+

0
), ∀y ∈ �H .
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Therefore, from (40), (43), and h ≤ H , we obtain

From the estimates of E1 , E2 , and E3 , we obtain

Because � is arbitrary, we establish (29).

Lemma 3 Suppose that a reference weight function w satisfies Hypothesis 2 with k . 
Then, there exists a positive constant c independent of N such that for all � ∈ �

d 
and � ∈ ℕ with 1 ≤ � − k ≤ |�|,

Proof We arbitrarily fix x ∈ � , � ∈ �
d , particle volume decomposition 

� = {�i ∣ i = 1, 2,… ,N} , and � ∈ ℕ with 1 ≤ � − k ≤ |�| and split I�,� into

(43)

N�
i=1

N�
j=1

��j∩�i

�y − xi��wh(�y − x�)�dy

=

N�
i=1

�
j∈�0(x,h+rN )

��j∩�i

�y − xi��wh(�y − x�)�dy

≤ c

hd

N�
i=1

�
j∈�0(x,h+rN )

��j∩�i

�y − xi�dy

≤ c

hd

N�
i=1

�
j∈�0(x,h+rN )

��j∩�i

(�y − xj� + �xj − xi�)dy

≤ c

hd

�
rN

�
j∈�0(x,h+rN )

����j
��� +

�
j∈�0(x,h+rN )

N�
i=1

����j ∩ �i
����xj − xi�

�

≤ c

hd

� �
j∈�0(x,h+rN )

����j
���
�⎧⎪⎨⎪⎩

rN + max
j=1,2,…,N

⎛
⎜⎜⎝

N�
i=1

����i ∩ �j
��� +

����j ∩ �i
���

����j
���

�xj − xi�
⎞
⎟⎟⎠

⎫⎪⎬⎪⎭
≤ c

�
1 + 2

rN

h

�d�
rN + d�

�
.

|E3(x)| ≤ c
(
1 + 2

rN

h

)d

(rN + d� )

≤ c
(
1 + 2

rN

h

)d rN + d�

h
.

‖I�‖C(�)
≤ c

�
1 + 2

rN

h

�d rN + d�

h
.

(44)‖I�,�‖C(�)
≤ c

�
1 + 2

rN

h

�d rN + dN

hk+1
.

I�,�(x) = E4(x) + E5(x) + E6(x)
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with

Then, we estimate E4 , E5 , and E6.
First, we estimate E4 and set w(k) as (8) and w(k)

h
 as

Then, from (30), we can rewrite E4 as

Because

we obtain

From supp (w
(k)

h
) = [0, h] , we have

Thus, we obtain

E4(x) ∶=
∑

i∈�(x,h)

Vi

(xi − x)�

|xi − x|�wh(|xi − x|)

−
∑

i∈�(x,∞)

∑
j∈�(x,∞)

|||�j ∩ �i
|||
(xi − x)�

|xi − x|�−k
wh(|xj − x|)
|xj − x|k ,

E5(x) ∶=
∑

i∈�(x,∞)

∑
j∈�(x,∞)

|||�j ∩ �i
|||
(xi − x)�

|xi − x|�−k
wh(|xj − x|)
|xj − x|k

−
∑

i∈�(x,∞)

N∑
j=1

(xi − x)�

|xi − x|�−k ∫�j∩�i

wh(|y − x|)
|y − x|k dy,

E6(x) ∶=
∑

i∈�(x,∞)

N∑
j=1

(xi − x)�

|xi − x|�−k ∫�j∩�i

wh(|y − x|)
|y − x|k dy

− ∫
ℝd

y�

|y|�wh(|y|)dy.

w
(k)

h
(r) ∶=

1

hd+k
w(k)

(
r

h

)
, r ∈ ℝ

+
0
.

E4(x) =
∑

i∈�(x,∞)

N∑
j=1

|||�j ∩ �i
|||
(xi − x)�

|xi − x|�−k {w
(k)

h
(|xi − x|) − w

(k)

h
(|xj − x|)}.

(45)
|||||
(xi − x)�

|xi − x|�−k
|||||
≤ |xi − x||�|−�+k ≤ diam(�H)

|�|−�+k, i ∈ �(x,∞),

|E4(x)| ≤ c

N∑
i=1

N∑
j=1

|||�j ∩ �i
|||
|||w

(k)

h
(|xi − x|) − w

(k)

h
(|xj − x|)|||.

w
(k)

h
(|xi − x|) − w

(k)

h
(|xj − x|) = 0, i, j ∉ �(x, h).
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Using an argument similar to (34), if w satisfies Hypothesis 2 with k , then for all 
y, z ∈ ℝ

d,

From (46) and (47), we obtain

Next, we estimate E5 . By using w(k)

h
 , we can rewrite E5 as

From (45), we obtain

By supp (w
(k)

h
) = [0, h] and 𝜎j ⊂ B(xj, rN) , we have

From (47) and (48), we obtain

(46)

|E4(x)| ≤ c

( ∑
i∈�(x,h)

N∑
j=1

|||�j ∩ �i
|||
|||w

(k)

h
(|xi − x|) − w

(k)

h
(|xj − x|)|||

+

N∑
i=1

∑
j∈�(x,h)

|||�j ∩ �i
|||
|||w

(k)

h
(|xi − x|) − w

(k)

h
(|xj − x|)|||

)
.

(47)|w(k)

h
(|y − x|) − w

(k)

h
(|z − x|)| ≤ |y − z|

hd+k+1 �
1

0

|||(w
(k))�(r)

|||dr.

|E4(x)| ≤ c

hd+k+1

∑
i∈�(x,h)

N∑
j=1

(|||�i ∩ �j
||| +

|||�j ∩ �i
|||
)|||xi − xj

|||

≤ c

hd+k+1

∑
i∈�(x,h)

||�i||
N∑
j=1

|||�i ∩ �j
||| +

|||�j ∩ �i
|||

||�i||
|||xi − xj

|||

≤ c
(
1 +

rN

h

)d d�

hk+1
.

E5(x) =
∑

i∈�(x,∞)

N∑
j=1

(xi − x)�

|xi − x|�−k ∫�j∩�i

{
w
(k)

h
(|xj − x|) − w

(k)

h
(|y − x|)

}
dy.

|E5(x)| ≤ c

N∑
i=1

N∑
j=1

��j∩�i

|||w
(k)

h
(|xj − x|) − w

(k)

h
(|y − x|)|||dy

≤ c

N∑
j=1

��j

|||w
(k)

h
(|xj − x|) − w

(k)

h
(|y − x|)|||dy.

(48)∫�j

|||w
(k)

h
(|xj − x|) − w

(k)

h
(|y − x|)|||dy = 0, j ∉ �(x, h + rN).
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Finally, we estimate E6 . Using w(k)

h
 , we can rewrite E6 as

where �∗
i
(x) is

For � ∈ �
d , let �j (j = 1, 2,… , |�|) be d-dimensional multi-indices satisfying

Let �∗
j
(j = 0, 1,… , |�|) be d-dimensional multi-indices defined as

For all y, z ∈ ℝ
d⧵{0} , when |�| = � − k , we have

|E5(x)| ≤ c
∑

j∈�0(x,h+rN )
��j

|||w
(k)

h
(|xj − x|) − w

(k)

h
(|y − x|)|||dy

≤ c

hd+k+1

∑
j∈�0(x,h+rN )

��j

|||xj − y
|||dy

≤ c
rN

hd+k+1

∑
j∈�0(x,h+rN )

|||�j
|||

≤ c
(
1 + 2

rN

h

)d rN

hk+1
.

E6(x) =
∑

i∈�(x,∞)

N∑
j=1

∫�j∩�i

{
(xi − x)�

|xi − x|�−k −
(y − x)�

|y − x|�−k
}
w
(k)

h
(|y − x|)dy

−

N∑
i=1

N∑
j=1

∫�j∩�
∗
i
(x)

(y − x)�

|y − x|�−k w
(k)

h
(|y − x|)dy,

�∗
i
(x) =

{
�i, x = xi,

�, otherwize .

|�j| = 1 and

|�|∑
j=1

�j = �.

�∗
j
∶=

⎧⎪⎨⎪⎩

0, j = 0,
j�

�=1

�� , j = 1, 2,… , ���.



584 Y. Imoto 

1 3

Moreover, from (39) and (49), when |𝛼| > � − k , we have

Therefore, when |�| ≥ � − k , we have for all y ∈ �H⧵{x} and i ∈ �(x,∞),

From (50), we obtain

(49)

||||
y�

|y|�−k −
z�

|z|�−k
|||| ≤

�−k−1∑
j=0

|||||
y
�∗|�|−j z

�∗
j

|y|�−k−j|z|j −
y
�∗|�|−j−1z

�∗
j+1

|y|�−k−j−1|z|j+1
|||||

≤
�−k−1∑
j=0

|||||
y
�∗|�|−j z

�∗
j − y

�∗|�|−j−1z
�∗
j+1

|y|�−k−j|z|j
|||||

+

�−k−1∑
j=0

|||||
y
�∗|�|−j−1z

�∗
j+1

|y|�−k−j|z|j −
y
�∗|�|−j−1z

�∗
j+1

|y|�−k−j−1|z|j+1
|||||

≤ 2(� − k)
|y − z|
|y| .

||||
y�

|y|�−k −
z�

|z|�−k
|||| ≤

|||||
y�

|y|�−k −
y
�∗|�|−�+k z�

∗
�−k

|z|�−k
|||||

+
|||||
y
�∗|�|−�+k z�

∗
�−k

|z|�−k −
z�

|z|�−k
|||||

≤ |y||�|−�+k
|||||
y�

∗
�−k

|y|�−k −
z�

∗
�−k

|z|�−k
|||||
+
|||y

�∗|�|−�+k − z
�∗|�|−�+k |||

≤ 2(� − k)|y − z||y||�|−�+k−1

+ |y − z|
|�|−�+k−1∑

j=0

|y|j|z||�|−�+k−1−j.

(50)
|||||
(xi − x)�

|xi − x|�−k −
(y − x)�

|y − x|�−k
|||||
≤ c

|y − xi|
|y − x| .

|E6(x)| ≤
N∑
i=1

N∑
j=1

��j∩�i

|||||
(xi − x)�

|xi − x|�−k −
(y − x)�

|y − x|�−k
|||||
|||w

(k)

h
(|y − x|)|||dy

+

||||||

N∑
i=1

N∑
j=1

��j∩�
∗
i
(x)

(y − x)�

|y − x|�−k w
(k)

h
(|y − x|)dy

||||||
≤ c

N∑
i=1

N∑
j=1

��j∩�i

|y − xi||||w
(k+1)

h
(|y − x|)|||dy

+

||||||

N∑
i=1

N∑
j=1

��j∩�
∗
i
(x)

(y − x)�

|y − x|�−k w
(k)

h
(|y − x|)dy

||||||
.
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Because |�| ≥ � − k , we have

Therefore, we have

Because for all y ∈ �H,

by the same procedure as (43), we have

Therefore, we obtain

From the estimates of E4 , E5 , and E6 , we obtain

Because � is arbitrary, we establish (44).

Lemma 4 There exists a positive constant c independent of N such that

Proof We arbitrarily fix x ∈ � and particle volume decomposition 
� = {�i ∣ i = 1, 2,… ,N} , and split J� into

||||||

N∑
i=1

N∑
j=1

��j∩�
∗
i
(x)

(y − x)�

|y − x|�−k w
(k)

h
(|y − x|)dy

||||||
≤ c

N∑
i=1

N∑
j=1

��j∩�
∗
i
(x)

||||
(y − x)�

|y − x|�−k−1
||||
|||w

(k+1)

h
(|y − x|)|||dy

≤ c

N∑
i=1

N∑
j=1

��j∩�
∗
i
(x)

|y − x||||w
(k+1)

h
(|y − x|)|||dy.

|E6(x)| ≤ c

N∑
i=1

N∑
j=1

��j∩�i

|y − xi||||w
(k+1)

h
(|y − x|)|||dy.

���w
(k+1)

h
(�y − x�)��� =

1

hd+k+1

�����
w(k+1)

��y − x�
h

������
≤ 1

hd+k+1
‖w(k+1)‖C(ℝ+

0
),

N∑
i=1

N∑
j=1

��j∩�i

|y − xi||||w
(k+1)

h
(|y − x|)|||dy ≤ c

(
1 + 2

rN

h

)d rN + d�

hk+1
.

|E6(x)| ≤ c
(
1 + 2

rN

h

)d rN + d�

hk+1
.

‖I�,�‖C(�)
≤ c

�
1 + 2

rN

h

�d rN + d�

hk+1
.

(51)‖‖J�‖‖C(�)
≤ c

{(
1 + 2

rN

h

)d rN + dN

h
+ h�

}
, � ∈ ℕ.

J�(x) = E7(x) + E8(x) + E9(x) + E10(x)
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with

Then, we estimate E7 , E8 , E9 , and E10.
From (30), we can rewrite E7 as

For all y ∈ �H , we have

From (36) and (52), we obtain

From (38) and (52), we obtain

E7(x) ∶= J�(x) −

N∑
i=1

N∑
j=1

|||�j ∩ �i
||||xi − x|�|wh(|xj − x|)|,

E8(x) ∶=

N∑
i=1

N∑
j=1

|xi − x|� ∫�j∩�i

{|wh(|xj − x|)| − |wh(|y − x|)|}dy,

E9(x) ∶=

N∑
i=1

N∑
j=1

∫�j∩�i

{|xi − x|� − |y − x|�}|wh(|y − x|)|dy,

E10(x) ∶= ∫
ℝd

|y − x|�|wh(|y − x|)|dy.

E7(x) =

N∑
i=1

N∑
j=1

|||�j ∩ �i
||||xi − x|�{|wh(|xi − x|)| − |wh(|xj − x|)|}.

(52)|y − x|� ≤ diam(�H)
� .

||E7(x)
|| ≤

N∑
i=1

N∑
j=1

|||�j ∩ �i
||||xi − x|�|||wh(|xi − x|)| − |wh(|xj − x|)|||

≤ c

N∑
i=1

N∑
j=1

|||�j ∩ �i
||||||wh(|xi − x|)| − |wh(|xj − x|)|||

≤ c

N∑
i=1

N∑
j=1

|||�j ∩ �i
|||
|||wh(|xi − x|) − wh(|xj − x|)|||

≤ c
(
1 +

rN

h

)d d�

h
.
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For all xi ∈ XN and y ∈ �H , we have

From (43), (53), and h < H , we obtain

From (1), we obtain

From the estimates of E7 , E8 , E9 , and E10 , we obtain

Because � is arbitrary, we establish (51).

Using the lemmas defined above, we now prove Theorem 3.

Proof of Theorem 3 By Lemmas 1, 2, and 4, we have for all v ∈ Cn+1(�H)

|E8(x)| ≤
N∑
i=1

N∑
j=1

|xi − x|� ��j∩�i

|||wh(|xj − x|)| − |wh(|y − x|)|||dy

≤ c

N∑
i=1

N∑
j=1

��j∩�i

|||wh(|xj − x|)| − |wh(|y − x|)|||dy

≤ c

N∑
i=1

N∑
j=1

��j∩�i

|||wh(|xj − x|) − wh(|y − x|)|||dy

≤ c
(
1 + 2

rN

h

)d rN

h
.

(53)
||||xi − x|� − |y − x|�||| = ||(xi − x) − (y − x)||

�∑
k=1

(xi − x)k−1(y − x)�−k

≤ � diam(�H)
�−1||y − xi

||.

|E9(x)| ≤
N∑
i=1

N∑
j=1

��j∩�i

||xi − x|� − |y − x|�||wh(|y − x|)|dy

≤ c

N∑
i=1

N∑
j=1

��j∩�i

|y − xi||wh(|y − x|)|dy

≤ c
(
1 + 2

rN

h

)d(
rN + d�

)

≤ c
(
1 + 2

rN

h

)d rN + d�

h
.

|E10(x)| ≤ �
ℝd

|y|�|wh(|y|)|dy = h� �
ℝd

|y|�|w(|y|)|dy.

‖‖J�‖‖C(�)
≤ c

{(
1 + 2

rN

h

)d rN + d�

h
+ h�

}
.
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Moreover, by Lemmas 1, 3, and 4, when w satisfies Hypothesis 2 with k = 0 , we 
have for all v ∈ Cn+2(�H)

and when w satisfies Hypothesis 2 with k = 1 for all v ∈ Cn+3(�H),

Because the family {(XN ,VN , hN)}N→∞ is regular, by applying (7) to (54), (55), 
and (56), we obtain (9), (10), and (11), respectively. We now conclude the proof of 
Theorem 3.

5  Numerical results

Set � = (0, 1)2 and H = 0.1 . Then, �H = (−0.1, 1.1)2 . We now compute the trunca-
tion errors of v ∶ �H → ℝ , which are defined as v(x, y) = sin(2�(x + y)) . Particle dis-
tribution XN is set as

where Δx is taken by 2−5, 2−6,… , 2−12 and �(k)
ij

(i, j ∈ ℤ, k = 1, 2) are random num-
bers satisfying |𝜂(k)

ij
| < 1∕4 . Particle distribution XN with Δx = 2−5 is shown in 

Fig. 4. Particle volume set VN is defined as

(54)��v −�hv
��C(�)

≤ c

��
1 + 2

rN

hN

�d
rN + dN

hN
+ hn+1

N

�
‖v‖

Cn+1(�H )
.

(55)��∇v − ∇hv
��C(�)

≤ c

��
1 + 2

rN

hN

�d
rN + dN

hN
+ hn+1

N

�
‖v‖

Cn+2(�H )
,

(56)���v − �hv
��C(�)

≤ c

��
1 + 2

rN

hN

�d
rN + dN

h2
N

+ hn+1
N

�
‖v‖

Cn+3(�H )
.

XN =
{(

(i + �
(1)

ij
)�x, (j + �

(2)

ij
)�x

)
∈ �H; i, j ∈ ℤ

}
,

Fig. 4  Particle distribution X
N

 
with Δx = 2−5 (N = 1,521) . The 
gray area represents �
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For m = 1, 3, 5 , the influence radius hN is set as

Note that if Δx = 2−5 , then h = 2.6 × 2−5 for all m. Using the discrete param-
eters above, the covering radius rN satisfies rN ≤ √

2(1 + 1∕4)Δx∕2 . Moreover, 
the Voronoi deviation dN satisfies dN ≤ 64(1 +

√
2)Δx∕� . Therefore, the family 

{(XN ,VN , hN)} is regular with order m.
For the interpolant, we consider the following three cases of reference weight 

functions:

(Π1) is the lowest-order polynomial function belonging to W . (Π2) is the cubic 
B-spline commonly used in the SPH method and belonging to W . (Π3) is the low-
est-order polynomial function belonging to W that satisfies Hypothesis 1 with n = 3.

For the approximate gradient operator, we consider the following three cases of 
reference weight functions:

(∇1) is the lowest-order polynomial function belonging to W that satisfies Hypoth-
esis 2 with k = 0 . (∇2) is chosen so that the approximate gradient operator (3) with 
(∇2) coincides with that in the SPH method with the cubic B-spline (see Appen-
dix 1). (∇3) is the lowest-order polynomial function belonging to W that satisfies 
Hypothesis 1 with n = 3 and Hypothesis 2 with k = 0.

For the approximate Laplace operator, we consider the following three cases of 
reference weight functions:

VN =

{
Vi =

||�H
||

N

|||i = 1, 2,… ,N

}
.

hN = 2.6 × 25∕m−5Δx1∕m.

(Π1) w(r) ∶=
3

𝜋

�
1 − r, 0 ≤ r < 1,

0, 1 ≤ r,

(Π2) w(r) ∶=
40

7𝜋

⎧⎪⎨⎪⎩

1 − 6r2 + 6r3, 0 ≤ r <
1

2
,

2(1 − r)3,
1

2
≤ r < 1,

0, 1 ≤ r,

(Π3) w(r) ∶=
5

𝜋

�
(1 − r)(2 − 3r), 0 ≤ r < 1,

0, 1 ≤ r.

(∇1) w(r) ∶=
6

𝜋

�
r(1 − r), 0 ≤ r < 1,

0, 1 ≤ r,

(∇2) w(r) ∶=
40

7𝜋

⎧⎪⎨⎪⎩

6r2 − 9r3, 0 ≤ r <
1

2
,

3r(1 − r)2,
1

2
≤ r < 1,

0, 1 ≤ r,

(∇3) w(r) ∶=
15

2𝜋

�
r(1 − r)(5 − 7r), 0 ≤ r < 1,

0, 1 ≤ r.
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(Δ1) is the lowest-order polynomial function belonging to W that satisfies Hypoth-
esis 2 with k = 1 . (Δ2) is chosen so that approximate Laplace operator (4) with (Δ2) 
coincides with that in the SPH method with the cubic B-spline (see Appendix 1). 
(Δ3) is the lowest-order polynomial function belonging to W that satisfies Hypoth-
esis 1 with n = 3 and Hypothesis 2 with k = 1.

The above settings were used in the computation of the following relative errors

Here, the discrete norm ‖⋅‖𝓁∞(�) is defined as

Figure 5 shows graphs of the relative errors of (a) interpolant �h , (b) approximate 
gradient operator ∇h , and (c) approximate Laplace operator �h versus the influ-
ence radius hN with regular orders m = 1, 3, 5 . In Fig. 5, the slopes of the triangles 
show the theoretical convergence rates obtained via Theorem  3. Table  1 lists the 
numerical and theoretical convergence rates obtained from the cases of �x = 2−11 
and 2−12 , where the theoretical convergence rates correspond to Theorem 3. In the 
case of m = 1 , as the settings could not be applied to Theorem 3, only numerical 
results without convergence were obtained. In contrast, the settings in cases m = 3 
and 5 could be applied Theorem  3; thus, the numerical results with convergence 
were obtained. Moreover, the approximate operators with reference weight functions 
satisfying Hypothesis 1 with n = 3 became higher convergence orders in the cases 
where m = 5 as per Theorem 3.

6  Conclusions

We analyzed truncation errors in a generalized particle method, which is a wider 
class of particle methods that includes commonly used methods such as the SPH 
and MPS methods. In our analysis, we introduced two indicators: the first was the 
covering radius, which represents the maximum radius of the Voronoi region asso-
ciated with the particle distribution, while the second was the Voronoi deviation, 
which indicates the deviation between particle volumes and Voronoi volumes. With 

(Δ1) w(r) ∶=
10

𝜋

�
r2(1 − r), 0 ≤ r < 1,

0, 1 ≤ r,

(Δ2) w(r) ∶=
40

7𝜋

⎧
⎪⎨⎪⎩

6r2 − 9r3, 0 ≤ r <
1

2
,

3r(1 − r)2,
1

2
≤ r < 1,

0, 1 ≤ r,

(Δ3) w(r) ∶=
30

𝜋

�
r2(1 − r)(3 − 4r), 0 ≤ r < 1,

0, 1 ≤ r.

��v −�hv
���∞(�)

‖v‖
C(�)

,

��∇v − ∇hv
���∞(�)

‖∇v‖
C(�)

,

���v − �hv
���∞(�)

‖�v‖
C(�)

.

‖v‖�∞(�) ∶= max
i∈�(�)

�v(xi)�.
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the covering radius and Voronoi deviation, we introduced a regularity of a family of 
discrete parameters, which includes the particle distribution, particle volume set, and 
influence radius associated with the number of particles. Moreover, we introduced 
two hypotheses of reference weight functions. With the regularity and hypotheses 

(c
)

(b
)

(a
)

Fig. 5  Graphs of the relative errors of a the interpolant, b approximate gradient operator, and c approxi-
mate Laplace operator versus the influence radius with regular orders m = 1, 3, 5
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of reference weight functions, we established truncation error estimates for the con-
tinuous norm. The convergence rates are dependent on the regular order and order of 
the reference weight functions appearing in a hypothesis. Moreover, as it was possi-
ble to validate the conditions by calculation, we showed the numerical convergence 
orders were in good agreement with the theoretical ones.

In a forthcoming paper, we plan to establish error estimates of the generalized 
particle method for the Poisson and heat equations.
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like to thank Drs. Daisuke Tagami and Hayato Waki for their helpful comments over the course of this 
work. This research was supported by JSPS KAKENHI Grant number 17K17585 and the JSPS A3 Fore-
sight Program.

Appendix 1: Description of conventional particle methods 
by the generalized particle method

This appendix provides a description of conventional particle methods, such as the 
smoothed particle hydrodynamics (SPH) [18, 24] and the moving particle semi-
implicit (MPS) methods [16], in the context of the generalized particle method. In 
the SPH method, upon using the reference weight function wSPH ∈ W and param-
eters mi, �i ∈ ℝ

+ (i = 1, 2,… ,N) , for v ∈ C(�H) , the approximate operators are 
defined as

(57)�SPH
h

v(x) ∶=

N∑
i=1

mi

�i
v(xi)w

SPH
h

(|x − xi|), x ∈ �H ,

Table 1  Numerical and 
theoretical convergence rates 
of (a) the interpolant, (b) 
approximate gradient operator, 
and (c) approximate Laplace 
operator with regular orders 
m = 1, 3, 5 . The numerical 
convergence rates were obtained 
for the cases of �x = 2−11 and 
2−12

m = 1 m = 3 m = 5

Numer. Theor. Numer. Theor. Numer. Theor.

(a) Interpolant
 (Π1) − 0.10 N/A 2.02 2 2.00 2
 (Π2) 0.05 N/A 2.13 2 2.01 2
 (Π3) 0.00 N/A 4.20 2 7.41 4

(b) Gradient
 (∇1) − 0.05 N/A 2.11 2 2.02 2
 (∇2) − 0.02 N/A 2.08 2 2.03 2
 (∇3) − 0.06 N/A 3.56 2 7.69 4

(c) Laplacian
 (Δ1) − 1.14 N/A 2.91 1 2.05 2
 (Δ2) − 1.09 N/A 2.39 1 2.23 2

(Δ3) − 1.02 N/A 2.76 1 7.50 3
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By setting w = wSPH and VN = {Vi = mi∕�i; i = 1, 2,… ,N} , the generalized inter-
polant (2) coincides with (57). Moreover, because

by setting

and VN = {Vi = mi∕�i; i = 1, 2,… ,N} , (3) and (4) coincide with (58) and (59), 
respectively.

From Theorem 3, we obtain the following corollary that is a truncation error 
estimate of approximate operators (58) and (59).

Corollary 1 Suppose that parameters �i,mi satisfy

and that {(XN ,VN , hN)}N→∞ is regular with order m , where 
VN = {�i∕mi; i = 1, 2,… ,N} . Moreover, suppose that wSPH satisfies the following 
conditions;

Then, there exists a positive constant c independent of N such that

Remark 5 Note that representative reference weight functions employed in the 
SPH method, such as the cubic B-spline, quintic B-spline, and Wendland function 
(5-order positive definite function) [8, 18], satisfy (60).

(58)∇SPH
h

v(x) ∶=

N∑
i=1

mi

�i

{
v(x) − v(xi)

}
∇wSPH

h
(|x − xi|), x ∈ �H ,

(59)

ΔSPH
h

v(x) ∶= 2
∑

i∈�(x,h)

mi

�i

v(x) − v(xi)

|x − xi|
x − xi

|x − xi| ⋅ ∇w
SPH
h

(|x − xi|), x ∈ �H .

−∫
ℝd

x

d
⋅ ∇wSPH(|x|)dx = ∫

ℝd

wSPH(|x|)dx = 1,

w(r) = −d−1r(wSPH)�(r),

N∑
i=1

mi

�i
= ||�H

||,

(60)wSPH ∈ C2(ℝ+
0
), (wSPH)�(r) < 0 (0 < r < 1), lim

s↓0

||||
1

s
(wSPH)�(s)

|||| < ∞.

���v −�SPH
h

v
���C(�)

≤ c hmin{2,m−1}‖v‖
C2(�H )

, v ∈ C2(�H),

���∇v − ∇SPH
h

v
���C(�)

≤ c hmin{2,m−1}‖v‖
C3(�H )

, v ∈ C3(�H),

����v − ΔSPH
h

v
���C(�)

≤ c hmin{2,m−2}‖v‖
C4(�H )

, v ∈ C4(�H).
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In the MPS method [14], upon using reference weight function wMPS ∈ W and 
parameters n̂, �̂ ∈ ℝ

+ for v ∈ C1(�H) , approximate differential operators can be 
defined as

Note that an interpolant is not defined in the MPS method. By setting w = wMPS 
and VN = {Vi = n̂−1; i = 1, 2,… ,N} , the approximate gradient opera-
tor (3) coincides with (61). Moreover, by setting w(r) = �̂−1r2wMPS(r) and 
VN = {Vi = n̂−1; i = 1, 2,… ,N} , approximate Laplace operator (4) coincides with 
(62).

Corollary 2 Suppose that

Moreover, suppose that {(XN ,VN , hN)}N→∞ is regular with order m , where 
VN = {Vi = n̂−1; i = 1, 2,… ,N} . Then, there exists a positive constant c independ-
ent of N such that

Furthermore, when wMPS satisfies Hypothesis 2 with k = 0,

Remark 6 Note that the reference weight function, which is commonly used in the 
MPS method and defined as

does not satisfy wMPS ∈ W . In contrast, the continuous reference weight function 
as introduced in [28] satisfies wMPS ∈ W . However, as far as we know, no reference 
weight functions that also satisfy Hypothesis 2 with k = 0 are proposed in the MPS 
method.

(61)∇MPS
h

v(x) ∶=
d

n̂

∑
i≠j

v(xi) − v(x)

|x − xi|
xi − x

|x − xi|w
MPS
h

(|x − xj|), x ∈ �H ,

(62)ΔMPS
h

v(x) ∶=
2d

n̂�̂

∑
i≠j

{
v(xi) − v(x)

}
wMPS
h

(|x − xj|), x ∈ �H .

n̂ =
N

||�H
||
, �̂ = ∫

ℝd

|x|2wMPS(|x|)dx, wMPS ∈ W.

����v − ΔMPS
h

v
���C(�)

≤ c hmin{2,m−2}‖v‖
C4(�H )

, v ∈ C4(�H).

���∇v − ∇MPS
h

v
���C(�)

≤ c hmin{2,m−1}‖v‖
C3(�H )

, v ∈ C3(�H).

wMPS(r) ∶=

{
1

r
− 1, 0 ≤ r < 1,

0, 1 ≤ r,
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Appendix 2: Computational procedure of the indicators

This appendix introduces the procedures for computing the indicators introduced 
in this paper, namely, the covering radius (5) and Voronoi deviation (6).

The covering radius rN can be computed as follows. As per the methods used 
to construct Voronoi decompositions, such as the increment method [6], we first 
draw the boundaries of the Voronoi region in �H . Next, for each particle, we 
compute the maximum distance from particle xi to the boundary of its Voronoi 
region �i (i.e., maxy∈�i |xi − y| ). Finally, we obtain the covering radius rN by com-
puting the maximum of these distances.

Next, we consider the Voronoi deviation dN . Let � ∈ ℝ
3N be

Using parameters q, si, aij ∈ ℝ
+ (i, j = 1, 2,… ,N) , we set z ∈ ℝ

N2+N+1 as

Moreover, we set M ∈ ℝ
3N×(N2+N+1) so that equation Mz = � represents

and

Then, by considering aij to be |||�i ∩ �j
||| , we find that the minimum value of q with 

condition Mz = � coincides with the Voronoi deviation dN . We therefore consider 
the linear problem:

Here, b ∶= (0, 0,… , 0, 1)T ∈ ℝ
N2+N+1 . The solution bTz of (63) is equivalent to the 

Voronoi deviation dN . Because Mz = � is unique for (XN ,VN , hN) , the linear problem 
is computable via numerical methods for linear programming problems, such as the 
simplex method [7].

Appendix 3: Construction of reference weight functions

For all n ∈ ℕ (n ≥ 2) , it is possible to construct a reference weight function sat-
isfying Hypothesis 1 with n as the condition of Hypothesis 1 can be rewritten to 
include a finite number of conditions

� ∶= (||�1||, ||�2||,… , ||�N||,V1,V2,… ,VN , 0, 0,… , 0)T .

z ∶= (a11, a12,… , aNN , s1, s2,… , sN , q)
T .

N∑
j=1

aij =
||�i||,

N∑
j=1

aji = Vi, i = 1, 2,… ,N

q = si +

N∑
j=1

aij + aji

||�i||
|xi − xj|, i = 1, 2,… ,N.

(63)Minimize bTz subject to Mz = � , z ≥ 0.
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Here, the Gauss symbol ⌊a⌋ denotes the largest integer that is less than or equal to a. 
For example, function w is set as the pth polynomial function:

Then, if coefficients a� satisfy the linear equations

then w satisfies w ∈ W and Hypothesis 1 with n . Therefore, to construct reference 
functions with Hypothesis 1 with n represented by polynomial functions, the degree 
of the polynomial functions must be at least ⌊n∕2⌋ + 2.

Moreover, for all k ∈ ℕ0 , reference weight functions satisfying Hypothesis 2 with k 
can be constructed based on the following proposition.

Proposition 1 Assume that reference the weight function w defined in ℝ+
0
 satisfies 

w ∈ C1(ℝ+
0
) and is represented by a polynomial function in [0, s] for s ∈ (0, 1] . Let 

p0 be the minimum degree of w in [0, s]. Then, if p0 − k ≥ 1 , w satisfies Hypothesis 2 
with k.

Proof From the assumption, w can be represented by

where p ∈ ℕ and a� ∈ ℝ (� = p0, p0 + 1,… , p) . Set w(k) as (8). Since

∫
1

0

rd+2j−1w(r)dr = 0, j = 1, 2,… , ⌊n∕2⌋.

w(r) ∶=

⎧
⎪⎨⎪⎩

𝛾d

�
1 +

p�
�=1

a�r
�

�
, 0 ≤ r < 1,

0, r ≥ 1.

�d

�
1 +

p�
�=1

a�

� + d

�
= 1,

p�
�=1

a� = 0,

p�
�=1

�a� = 0,

1 +

p�
�=1

d + 2j

d + � + 2j
a� = 0, j = 1, 2,… , ⌊n∕2⌋,

w(r) =

p∑
�=p0

a�r
� , 0 ≤ r < s,
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and

if p0 − k ≥ 1 , we have w satisfies Hypothesis 2 with k.

This proposition means that the regularity of the reference functions around zero 
is important.
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