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Abstract
Since the expense of the numerical integration of large scale dynamical systems is
often computationally prohibitive, model reduction methods, which approximate such
systems by simpler and much lower order ones, are often employed to reduce the com-
putational effort. In this paper, we focus on dynamical systems with a first integral,
which can always be written as skew-gradient systems. By focusing on and making
use of the skew-gradient structure, we present structure-preserving model reduction
approaches that yield efficient reduced-order systems while preserving the first inte-
gral.

Keywords Differential equations · Model reduction · Structure-preserving methods

Mathematics Subject Classification 65L05 · 65M06

1 Introduction

Since the expense of the numerical integration of large scale dynamical systems is
often computationally prohibitive, model reduction methods, which approximate high
dimensional systems by simpler and much lower order ones, are often employed to
reduce the computational effort [3]. The proper orthogonal decomposition (POD)
method with Galerkin projection, which was first introduced by Moore [23], is one
of standard data-driven model reduction methods. This method extracts a few basis
vectors that fit the empirical solution data with good accuracy and projects the high
dimensional system to the subspace spanned by the basis vectors. The POD-Galerkin
approach often provides an efficient surrogate system and has found applications in
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1022 Y. Miyatake

a wide range of areas such as structural dynamics [2], fluid mechanics [16,17,28],
and time-dependent partial differential equations [20,29]. However, when the vector
field of the original system is nonlinear, the complexity of evaluating the nonlinear
term of the reduced-order system remains as expensive as that of the original problem.
To resolve this issue, Chaturantabut and Sorensen proposed the discrete empirical
interpolationmethod (DEIM) based on the POD-Galerkinmethod and an interpolatory
projection [6,7].

Though the aforementioned data-driven approaches work well for many applica-
tions, they rarely inherit underlying mathematical structures of the original system,
such as symmetry, symplecticity and energy-preservation. For dynamical systems
with some mathematical structures, numerical integrators that inherit such properties,
referred to as geometric numerical integrators or structure-preserving integrators, are
often preferred, since they usually produce qualitatively better numerical solutions
than standard general-purpose integrators such as the famous fourth-order explicit
Runge–Kutta method (see, e.g. [15]). Therefore, model reduction while preserving
such properties would be preferred: for example, if the reduced-order system inherits
the mathematical structures, one could easily choose an appropriate numerical inte-
grator for the reduced-order system. Structure-preserving model reduction methods
have received attention in recent years (see [1,5,12,24] and references therein).

In this paper, we are concerned with a dynamical system with a first integral, i.e. a
dynamical system with a conservation law. Such a system can always be formulated
as a skew-gradient system of the form

d

dt
y = S( y)∇ yH( y), y(0) = y0 ∈ R

n, (1)

where S( y) ∈ R
n×n is a skew-symmetric matrix, and the function H : Rn → R is

assumed to be sufficiently differentiable [25]. Indeed, the function H is constant along
the solution:

d

dt
H( y) = ∇ yH( y)� ẏ = ∇ yH( y)�S( y)∇ yH( y) = 0

due to the skew-symmetry of S( y), where the dot stands for the differentiation with
respect to t .

When S( y) is a constant skew-symmetric matrix, that is, it is independent of y,
several structure-preserving model reduction methods have been studied. If S is of the
form

S = J−1
2ñ =

[
0ñ Iñ

−Iñ 0ñ

]
, n = 2ñ, (2)

where 0ñ, Iñ ∈ R
ñ×ñ denote the zero and identity matrices, respectively, the corre-

sponding system is called a Hamiltonian system. Peng and Mohseni [24] proposed
model reduction techniques that find a lower-orderHamiltonian system.Any structure-
preserving integrators, which have been developed for Hamiltonian systems, can be
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Structure-preserving model reduction for dynamical systems 1023

applied to the lower-order Hamiltonian system. For the case S( y) is a constant skew-
symmetric matrix but is not necessarily of the form (2), Gong et al. [12] proposed a
model reduction approach that yields a lower-order skew-gradient system with a con-
stant skew-symmetricmatrix. For other structure-preservingmodel reductionmethods,
see, for example [1,5,18,19] and references therein.

In the line of these research, we are concerned with the case S( y) depends on
y. This situation often arises, for example, as a Hamiltonian system with some con-
straints or from discretizing a Hamiltonian partial differential equation (PDE). The
approach by Gong et al. [12] is applicable to such cases straightforwardly to find a
lower-order skew-gradient system; however, the computational complexity for eval-
uating the vector field may still depend on n (the size of the original problem) due
to the dependence of S( y) on y. In this paper, we study structure-preserving model
reduction techniques so that the vector field of the reduced-order system can be evalu-
ated efficiently. We classify target systems into two types. First, we consider the case
S( y) depends linearly on y and has a specific structure such as S( y) = Y D + DY ,
where D ∈ R

n×n is a constant skew-symmetric matrix and Y = diag( y) ∈ R
n×n .

In this case, we show that the computational complexity for the reduced-order sys-
tem based on the approach [12] is already independent of n, with the help of the
Kronecker product and a vectorization operator. As an example, we employ the KdV
equation, which is a nonlinear PDE. We note that the approach [12] does not use the
DEIM or other techniques to reduce the complexity for nonlinear terms. Therefore,
our discussion indicates that, by focusing on the underlying structure, an efficient
surrogate model could be constructed even if the original problem is nonlinear. Next,
we develop a new approach for more general cases based on the approach [12] and
DEIM, where the key idea is to apply the idea of DEIM to the skew-symmetric
matrix S( y).

This paper is organized as follows. In Sect. 2, the proper orthogonal decomposition
method with Galerkin-projection, the discrete empirical interpolation method and
the existing structure-preserving model reduction method proposed by Gong et al.
[12] are briefly reviewed. Structure-preserving model reduction methods for (1) are
discussed in Sects. 3 and 4. Section 3 considers the specific case and Sect. 4 treats
more general cases. In Sect. 5, we test the methods numerically taking the KdV and
modified KdV equations as our toy problems. Finally, concluding remarks are given in
Sect. 6.

2 Preliminaries: POD, DEIM and structure-preservingmodel
reduction

In this section, we briefly review the proper orthogonal decomposition (POD) method
with Galerkin-projection, the discrete empirical interpolation method (DEIM) and the
structure-preserving model reduction method proposed by Gong et al. [12].
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1024 Y. Miyatake

2.1 Model reduction with Galerkin-projection

Model reductionmethods considered in this paper are based on theGalerkin projection.
The basic procedure to construct a reduced-order system is summarized below.

Let us consider a system of ordinary differential equations of the form

d

dt
y = f ( y), y(0) = y0 ∈ R

n, (3)

as a full-order model, where f : Rn → R
n is supposed to be sufficiently smooth.

A standard way of constructing a reduced-order system is to project the solution
of (3) onto an appropriate subspace of Rn . Assume that the flow y(t) can be well
approximated in a lower dimensional subspace, i.e. a linear combination of some
basis vectors vi ∈ R

n (i = 1, . . . , r ):

y(t) ≈
r∑

i=1

zi (t)vi , (4)

where r � n.Without loss of generality, the basis vectors are chosen such that they are
orthonormal. Let V := [v1, . . . , vr ] ∈ R

n×r . Then, V�V = Ir . By using this notation
and z(t) := [z1(t), . . . , zr (t)]�, the relation (4) can be written as y(t) ≈ V z(t).
SubstitutingV z into y in (3) yields the overdetermined systemV ż = f (V z).Applying
theGalerkinmethod bymultiplying V� from the left leads to the reduced-order system

d

dt
z = V� f (V z), z(0) = V� y0. (5)

2.2 The proper orthogonal decompositionmethod

The proper orthogonal decomposition (POD) method is a popular approach of finding
an appropriate matrix V based on empirical solution data [23].

The POD method seeks to extract important information from empirical solution
data, called snapshots, of the full-order system. A snapshot matrix Y consists of either
numerical solutions or observed data at some time instances t = t1, t2, . . . , ts . LetY :=
[ y1, . . . , ys] ∈ R

n×s , where yi ≈ y(ti ). We then consider the following optimization
problem

min
rank(V )=r

s∑
j=1

‖ y j − VV� y j‖2 such that V�V = Ir , (6)

where ‖ · ‖ denotes the 2-norm in the Euclidean space. The optimal solution to this
problem is given by the singular value decomposition (SVD) for Y . Let v1, . . . , vr
be the left singular vectors of Y corresponding to the first r leading nonzero singular
values. Then thePODmatrixV := [v1, . . . , vr ] solves the aboveoptimization problem
(6). If rank(Y ) = d and σ1 ≥ σ2 ≥ · · · ≥ σd > 0, it follows that
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Structure-preserving model reduction for dynamical systems 1025

s∑
j=1

‖ y j − VV� y j‖2 =
d∑

j=r+1

σ 2
j .

If the vector field f is linear, that is, f ( y) = A y for some constant matrix A ∈
R
n×n , the reduced-order system (5) becomes ż = Âz, where Â = V�AV ∈ R

r×r .
Since thematrix Â can be computed in the off-line stage, the computational complexity
of evaluating the vector field Âz depends only on r and is independent of n (the size
of the original problem).

2.3 The discrete empirical interpolationmethod

In general, the vector field f is often nonlinear. Let f ( y) = A y + g( y), where
A ∈ R

n×n is a constant matrix and g : Rn → R
n denotes a nonlinear part. In this

case, the reduced-order system (5) becomes

d

dt
z = Âz + V�g(V z),

and notice that the computational complexity for the second term V�g(V z) may still
depend on n due to the nonlinearity: one first needs to compute the state variable
y := V z in the original coordinate system, next evaluate the nonlinear vector field
g( y), and then project g( y) back onto the column space of V . This couldmake solving
the reduced-order system more expensive than solving the original full-order system.

The discrete empirical interpolation method (DEIM) was proposed by Chatu-
rantabut and Sorensen [6] to reduce the computational complexity of evaluating the
nonlinear term. Let g(t) := g(V z(t)) to simplify the notation. We consider the
approximation to g(t) by means of a constant matrix U ∈ R

n×m (m � n) and a
time-dependent vector c(t) ∈ R

m : g(t) ≈ U c(t). The DEIM tells us how to construct
appropriateU and c(t). We first explain the construction of c(t) assuming we already
have U . We require that g(t) and U c(t) are equal for m variables out of n variables,
i.e.

gρi
(t) = Uρi c(t), i = 1, . . . ,m, (7)

where Uρi denotes the ρi th row of U . By using P := [eρ1, . . . , eρm ] ∈ R
n×m where

eρi denotes the ρi th column of the identity matrix of size n-by-n, the condition (7)
can be rewritten as P�g(t) = P�U c(t). Now, let us assume that P�U ∈ R

m×m is
nonsingular. Then, c(t) is given by c(t) = (P�U )−1P�g(t), and thus V�g(t) can
be approximated by

V�g(t) ≈ V�U (P�U )−1︸ ︷︷ ︸
r×m

P�g(t)︸ ︷︷ ︸
m×1

.

Note that V�U (P�U )−1 ∈ R
r×m can be computed in the off-line stage, and thus

if the computational complexity for P�g(t) is independent of n, the complexity
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1026 Y. Miyatake

for the approximation of V�g(t) is also independent of n. Note that the compu-
tational complexity for P�g(t) varies from problem to problem. It is independent
of n for many applications, though there are some exceptions (see [6] for more
details).

The procedure for constructing thematricesU and P is summarized inAlgorithm 1,
where [|ρ|, ρ] = max{|g|} implies that |ρ| = max{|g|} and ρ is the first index of
the maximum value(s). Let g1, g2, . . . , gs be snapshot data for g( y) at some time
instances and G := [g1, g2, . . . , gs]. Applying the SVD to this matrix gives the POD
basis vectors u1, u2, . . . , um . The matrix P can be constructed by a greedy algorithm.
Initially, the first interpolation index ρ1 ∈ {1, 2, . . . , n} is selected such that it is
corresponding to the largest magnitude of the first basis function u1. The remaining
indices ρi (i = 2, 3, . . . ,m) are selected such that they correspond to the largest
magnitude of the residual (defined in line 5). Note that P�U is nonsingular if ρ 
= 0
[6].

2.4 Structure-preservingmodel reduction by Gong et al.

Wehere review the structure-preservingmodel reduction proposed byGong et al. [12].
If S in (1) is of the form (2), the original system is a Hamiltonian system and

the approach proposed by Peng and Mohseni [24] is applicable to find a lower-order
Hamiltonian system. However, if S is a constant skew-symmetric matrix, but not of
the form (2), their approach, which makes use of the structure of J−1

2ñ , is not applicable
to (1) .

The reduced-order system to (1) based on the standard Galerkin projection is

d

dt
z = V�S∇ yH(V z). (8)

The key of the approach by Gong et al. [12] is that formally inserting VV� ∈ R
n×n

between S and ∇H(V z) in (8) yields a small skew-gradient system

d

dt
z = V�SV V�∇ yH(V z) = Sr∇z H̃(z), (9)
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Structure-preserving model reduction for dynamical systems 1027

where Sr = V�SV and H̃(z) := H(V z). Since VV� 
= In in general, the system
(9) differs from (8), and thus we need to carefully consider in what sense V z(t) is an
approximation to y(t). The authors proposed to device the snapshot matrix Y :

Y = [ y1, . . . , ys, μ∇ yH( y1), . . . , μ∇ yH( ys)] ∈ R
n×s (10)

for some constant μ > 0. The left singular vectors corresponding to the leading
nonzero singular values extract the information of the gradient ∇ yH( y) as well as y.
Thus, for the POD matrix for this snapshot matrix, VV�∇ yH( y) could be a good
approximation to∇ yH( y). In this case, the vector fields of (8) and (9) are similar, and
the solution to (9) well approximates to that to (8). The error analysis was also given
in [12].

3 Structure-preservingmodel reduction for particular skew-gradient
systems

We consider the case that S( y) in (1) may depend in y. The approach by Gong et al.
[12], which was summarized in Sect. 2.4, is also applicable to the general cases to find
the reduced-order skew-gradient system

d

dt
z = V�S(V z)VV�∇ yH(V z) = Sr (z)∇z H̃(z),

where Sr (z) = V�S(V z)V and H̃(z) := H(V z). But the computational complexity
of evaluating the matrix Sr (z) is not always independent of the size of the full-order
system. In this section, we show that if S( y) is of the form

S( y) = Y D + DY ,

where D ∈ R
n×n is a skew-symmetric constant matrix and Y = diag( y) ∈ R

n×n , the
computational complexity of evaluating Sr (z) is already independent of n.

To discuss the computational complexity of evaluating Sr (z), we use the Kronecker
product, which is defined by

A ⊗ B :=

⎡
⎢⎢⎢⎣
a11B a12B · · · a1n B
a21B a22B · · · a2n B

...
...

. . .
...

am1B am2B · · · amn B

⎤
⎥⎥⎥⎦ ∈ R

mp×nq

for A = [ai j ] ∈ R
m×n and B ∈ R

p×q . To simplify the notation, we shall con-
sider the computational complexity for Sr (z) after vectorizing it. For this aim, for
A = [a1, a2, . . . , an] ∈ R

m×n , we define the vectorization operator, vec : Rm×n →
R
mn , by vec(A) := [a�

1 , a�
2 , . . . , a�

n ]�, and its inverse, vec−1 : Rmn → R
m×n , by

vec−1(vec(A)) = A. We frequently use the following property: for A ∈ R
m×n and

B ∈ R
n×p, it follows that
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1028 Y. Miyatake

vec(AB) = (Ip ⊗ A) vec(B) = (B� ⊗ Im) vec(A), (11)

where In ∈ R
n×n is the identity matrix (see e.g. [9, p. 275]).

Let us consider the computational complexity for vec(V�S(V z)V ), which is equiv-
alent to discuss the complexity for V�S(V z)V . By using (11), it follows that

vec(V�(Y D + DY )V ) = (Ir ⊗ V�) vec((Y D + DY )V )

= (Ir ⊗ V�)(V� ⊗ In) vec(Y D + DY )

= (V ⊗ V )�︸ ︷︷ ︸
r2×n2

(
(D� ⊗ In) + (In ⊗ D)

)
︸ ︷︷ ︸

n2×n2

vec(Y )︸ ︷︷ ︸
n2×1

.

Note that vec(Y ) = [y1, 0, . . . , 0, y2, 0, . . . , yn]� ∈ R
n2×1, where only (nk + 1)th

elements (k = 0, . . . , n − 1) are nonzero. We define D̃ ∈ R
n2×n by collecting the

(nk + 1)th columns (k = 0, . . . , n − 1) of the matrix
(
(D� ⊗ In) + (In ⊗ D)

)
. Note

that D̃ is explicitly given by

D̃ = −

⎡
⎢⎢⎢⎣
diag(d11, . . . , d1n)
diag(d21, . . . , d2n)

...

diag(dn1, . . . , dnn)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...

0 · · · 0 dn

⎤
⎥⎥⎥⎦ ,

where D = [d1, d2, . . . , dn]. By using this notation, vec(V�S( y)V ) can be simplified
as follows:

vec(V�S( y)V ) = (V ⊗ V )�︸ ︷︷ ︸
r2×n2

D̃︸︷︷︸
n2×n

y︸︷︷︸
n×1

.

Then, substituting V z into y in vec(V�S( y)V ) yields

vec(V�S(V z)V ) = (V ⊗ V )�︸ ︷︷ ︸
r2×n2

D̃V︸︷︷︸
n2×r

z︸︷︷︸
r×1

,

and thus

Sr (z) = V�S(V z)V = vec−1
(
(V ⊗ V )� D̃V z

)
.

Since (V ⊗V )� D̃V ∈ R
r2×r can be computed in the off-line stage, the computational

complexity of evaluating Sr (z) is independent of n.

Remark 1 The above discussion is applicable to a bit more general cases. For example,
the approach applies, in a similar manner, to S( y) = Y D + DY + Dc, where Dc is a
constant skew-symmetric matrix, and to S( y) with a different ordering of Y such as
Y = diag(yn, y1, y2, . . . , yn−1).
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Structure-preserving model reduction for dynamical systems 1029

4 Structure-preservingmodel reduction for general skew-gradient
systems

Weconsider general cases, such as the case that S( y) nonlinearly depends on y. In such
cases, the computational complexity of evaluating Sr (z) = V�S(V z)V may depend
on n unless S( y) has a specific structure. In this section, we show that the complexity
can be reduced by utilizing the idea of the DEIM while keeping the skew-gradient
structure.

Let S(t) := S(V z(t)) to simplify the notation. Using constant skew-symmetric
matrices Uj ∈ R

n×n ( j = 1, . . . ,m), and a time-dependent vector c(t) ∈ R
m , we

approximate S(t) by S(t) ≈ ∑m
j=1Ujc j (t). This relation can be written as s(t) ≈

U c(t), where s(t) = vec(S(t)) andU = [vec(U1), vec(U2), . . . , vec(Um)] ∈ R
n2×m .

Following the discussion in Sect. 2.3, we require that s(t) and U c(t) are equal
for m variables out of n2 variables, i.e. we require that P�s(t) = P�U c(t) with
P = [eρ1, . . . , eρm ] ∈ R

n2×m . Let us assume that P�U ∈ R
m×m is nonsingular.

Then, c(t) is given by

c(t) = (P�U )−1P�s(t),

and thus V�S(t)V can be approximated by

V�S(t)V = vec−1
(
(V ⊗ V )� vec(S(t))

)

≈ vec−1
(
(V ⊗ V )�U c(t)

)

= vec−1

⎛
⎜⎝(V ⊗ V )�U (P�U )−1︸ ︷︷ ︸

r2×m

P�s(t)︸ ︷︷ ︸
m×1

⎞
⎟⎠. (12)

Since (V ⊗ V )�U (P�U )−1 can be computed in the off-line stage, the computa-
tional complexity of evaluating the right hand side of (12) is independent of n if the
complexity for P�s(t) is independent of n.

The matrices U and P are constructed as follows. Let S1, . . . , Ss and s1 =
vec(S1), . . . , ss = vec(Ss) be snapshot data for S(t). Applying the SVD to the matrix
[s1, . . . , ss] yields the POD basis vectors u1, . . . , um , and then the construction of U
and P follows the DEIM procedure summarized in Algorithm 1.

We need to show that if the snapshot matrices S1, . . . Ss are skew-symmetric, the
approximation vec−1

(
(V ⊗ V )�U (P�U )−1P�s(t)

)
is also skew-symmetric.

Proposition 1 If S1, . . . , Ss are skew-symmetric. Then vec−1
(
(V ⊗ V )�U (P�U )−1

P�s(t)
)
is also skew-symmetric.

Proof Since each Ui is a linear combination of the snapshot matrices Si , all of which
are skew-symmetric, it follows that if S1, . . . , Ss are skew-symmetric,U1, . . . ,Um are
also skew-symmetric. Further, since S(t) is approximated by a linear combination of
Ui , vec−1

(
(V ⊗ V )�U (P�U )−1P�s(t)

)
is also skew-symmetric. �
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1030 Y. Miyatake

5 Numerical experiments

In this section, we check the performance of the structure-preserving model reduction
methods presented in Sects. 3 and 4 . Themain aimof this section is to check the preser-
vation of a first integral and the stability for the reduced-order system. We employ the
KdV equation and themodifiedKdV equation as our toy problems. For both equations,
an appropriate finite difference semi-discretization yields skew-gradient systems.

All the computations are performed in a computation environment: 3.5 GHz Intel
Core i5, 8GB memory, OS X 10.1035. We use MATLAB (R2015a). Nonlinear equa-
tions are solved by the matlab function fsolve with tolerance 10−16. The singular
value decomposition is performed by svd. Note that this function computes all sin-
gular values and the corresponding singular vectors, which is not always necessary
for practical applications. We employ this function just to observe the distribution of
singular values for the test problems.

5.1 KdV equation

As an illustrative example, we consider the KdV equation

yt + 6yyx + yxxx = 0, y(t0, ·) = y0, x ∈ T, (13)

whereT denotes the torus of length L . This equation is completely integrable, and thus
has infinitely many conservation laws. Among them, we here consider the L2-norm
preservation:

d

dt
H[y] = 0, H[y] =

∫
T

y2

2
dx . (14)

We shall call this quantity and its discrete version the energy. The KdV equation can
be formulated as

yt = −
(
2(y∂x + ∂x y) + ∂3x

)δH
δy

, (15)

where the variational derivative of H is given by δH/δy = y.
We here discretize the KdV Eq. (13) in space as follows. Let y(t) :=

[y1(t), . . . , yn(t)]�, where Δx = L/n and yi (t) denotes the approximation to
y(t, iΔx). We use the central difference operators in a matrix form:

D1 := 1

2Δx

⎡
⎢⎢⎢⎣

0 1 −1
−1 0 1

. . .
. . .

. . .

1 −1 0

⎤
⎥⎥⎥⎦ ∈ R

n×n,

D2 := 1

(Δx)2

⎡
⎢⎢⎢⎣

−2 1 1
1 −2 1

. . .
. . .

. . .

1 1 −2

⎤
⎥⎥⎥⎦ ∈ R

n×n
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Structure-preserving model reduction for dynamical systems 1031

and D3 := D1D2 ∈ R
n×n . An appropriate discretization of the variational form (15)

yields the skew-gradient system

ẏ = S( y)∇ yH( y), H( y) := 1

2
y� y (16)

with

S( y) = −(2(Y D1 + D1Y ) + D3), (17)

where Y = diag( y). Note that ∇H( y) = y is linear. Due to the structure of (17),
the approach discussed in Sect. 3 is applicable. For additional details on the spatial
discretization based on variational structure, see, e.g. [4,10,11] and references therein.

For the temporal discretization, applying themid-point rule to (16) yields an energy-
preserving integrator: for the solution to

yn+1 − yn
Δt

= S

(
yn+1 + yn

2

)
∇ yH

(
yn+1 + yn

2

)
,

whereΔt denotes the time stepsize and yn ≈ y(nΔt) (n = 0, 1, 2, . . . ), it follows that
H( yn+1) = H( yn). Note that any Runge–Kutta methods with the property biai j +
b ja ji = bib j (i, j = 1, . . . , s), where ai j and bi are Runge–Kutta coefficients and s
denotes the number of stages, preserve any linear and quadratic invariants [15]. The
simplest example is the mid-point rule, which is the second order method.

Remark 2 Runge–Kutta methods cannot be energy-preserving in general. For more
general forms of the energy function, applying the discrete gradient method yields an
energy-preserving integrator [8,13,14,21,22,27].

In the full order simulation, we set L = 20, n = 500,Δx = L/n = 0.04. The initial
vale is set to u(0, x) = 4.5 sech2(3x/2). The corresponding solution is a solitary wave
if the spatial domain is (−∞,∞), but in the bounded domain, the solution behaves
almost periodically if L is sufficiently large. We set T = 3 and Δt = T /600, which
means we collect 601 snapshot data: Y = [ y0, y1, . . . , y600] ∈ R

500×601 (note that
∇ yH( y) = y in this case, cf. (10)).

Figure 1 plots the singular values of the snapshotmatrixY . Fast decay of the singular
values indicates that a few modes can express the data with reasonable accuracy. Fig-
ure 2 shows the error growth of the energy H(V z). The energy is well preserved with
considerable accuracy.We plot the solution in Fig. 3. Due to the structure-preservation,
the numerical solution seems stable even for small r . We observe that the solution
becomes smooth as r gets large, and note that the solution of the full-order model,
which is not displayed, is almost identical to the result for r = 60. Global errors mea-
sured by the discrete version of the L2-norm are plotted in Fig. 4, where the solution
to the reduced-order system is compared with that to the full-order system yfull. We
observe that the error gets small as r gets large. When r = 60, the error remains small
for t > T = 3.

In this example, it should be noted that the DEIM (or other techniques to reduce the
complexity for nonlinear terms) was not used, and that only the standard POD matrix
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Fig. 1 Singular values
corresponding to the POD
modes for the matrix Y for the
KdV equation

Fig. 2 Error of the energy for
the case r = 20 for the KdV
equation: |H(V zn) − H(V z0)|
are plotted

Fig. 3 Numerical solutions V z
at t = 3 for r = 20, 40, 60 for
the KdV equation

Fig. 4 Global errors measured
by the discrete L2-norm:√

Δx
∑n

i=1

(
yfulli − (V z)i

)2
are plotted for the KdV equation
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was used to find the efficient reduced-order system despite the fact that the KdV is a
nonlinear PDE. The idea of inheriting the skew-gradient structure made this possible.

5.2 Modified KdV equation

We next consider the modified KdV (mKdV) equation

yt + 6y2yx + yxxx = 0, y(t0, ·) = y0, x ∈ T.

The L2-norm preservation (14) also holds for this equation, which can be easily
checked based on the variational structure

yt = −
(
3

2

(
y2∂x + ∂x y

2
)

+ ∂3x

)
δH
δy

. (18)

As is the case with the previous subsection, we discretize the variational form (18) as

ẏ = S( y)∇H( y), H( y) := 1

2
y� y

with

S( y) = −
(
3

2

(
Y 2D1 + D1Y

2
)

+ D3

)
,

where Y = diag( y). In this case, since S( y) depends nonlinearly on y, we apply the
approach presented in Sect. 4.

We note that the direct application of the SVD to the snapshot matrix [vec(S( y1)),
vec(S( y2)), . . . , vec(S( ys))] ∈ R

n2×s can be quite time-consuming. Since the matrix
S( y) ∈ R

n×n has only 4n nonzero entries and their positions are independent of y,
only 4n row vectors in the snapshot matrix are nonzero vectors and other (n2 − 4n)

row vectors are zero vectors. Hence, the application of the SVD to a 4n-by-s matrix
that consists of the 4n nonzero row vectors significantly reduces the computational
cost.

In the full-order simulation,we set L = 10, n = 500,Δx = L/n = 0.02. The initial
vale is set to u(0, x) = √

c sech(
√
cx) with c = 4. The corresponding solution is a

solitary wave in the unbounded spatial domain (−∞,∞), but in the bounded domain,
the solution behaves almost periodically if L is sufficiently large. We set T = 3 and
Δt = T /750, which means we collect 751 snapshot data: Y = [ y0, y1, . . . , y750] ∈
R
500×751.
Figure 5 plots the singular values of the snapshot matrices Y and [vec(S( y0)),

vec(S( y1)), . . . , vec(S( y750))]. Fast decay of the singular values is observed, which
indicates that a few modes can express the solution y and the skew-symmetric matrix
S( y) with good accuracy. Figure 6 shows the error growth of the energy H(V z). The
energy is well preserved with considerable accuracy. We plot the solution in Fig. 7.
The result with r = 50 is almost identical to the solution of the full-order model,
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1034 Y. Miyatake

Fig. 5 Singular values corresponding to the POD modes for the matrices (left) Y and (right)
[vec(S( y0)), vec(S( y1)), . . . , vec(S( y750))] for the mKdV equation

Fig. 6 Error of the energy for
the case r = m = 50 for the
mKdV equation:
|H(V zn) − H(V z0)| are plotted

Fig. 7 Numerical solutions V z
at t = 3 for r = m = 40, 50 for
the mKdV equation

which is not displayed here. But the solution differs substantially when r = 40, which
indicates the number of basismatrices for the skew-symmetricmatrix is sensitive to the
qualitative behaviour. Global errors measured by the discrete version of the L2-norm
are plotted in Fig. 8. For r = 50, the global error remains small even for t > T = 3.

123



Structure-preserving model reduction for dynamical systems 1035

Fig. 8 Global errors measured
by the discrete L2-norm:√

Δx
∑n

i=1

(
yfulli − (V z)i

)2
are plotted for the mKdV
equation

6 Concluding remarks

In this paper, structure-preservingmodel reductionmethods for skew-gradient systems
of the form (1) have been studied. We have shown that if S( y) has a specific structure,
the previous approach proposed by Gong et al. [12] can efficiently reduce the size of
the full-order system, and also proposed a new approach for general cases that is based
on the approach by Gong et al. [12] and the discrete empirical interpolation method
(DEIM). Since the reduced-order systems keep the skew-gradient structure and thus
have the energy-preservation law, energy-preserving integrators can be easily applied
and one could expect the good qualitative behaviour.

The example for the KdV equation indicates that, by focusing on the underlying
structure, an efficient surrogatemodel could be constructed even if the original problem
is nonlinear. As an example of the second (general) case, we employed the modified
KdV equation. While the skew-symmetric matrix S( y) appearing in the semi-discrete
scheme depends nonlinearly on y, its sparsity is the same as that for the KdV equa-
tion. Therefore, one might expect that an efficient structure-preserving reduced-order
system could somehow be obtained without employing the idea of DEIM. We are
now trying to figure out the class of nonlinear problems for which an efficient energy-
preserving surrogate model can be obtained without using DEIM or other techniques
to reduce the complexity for nonlinear terms.

We note that extending the proposed method to preserve multiple first integrals
might contribute to enhance the quality of the solution to reduced-order models.
Although the extension is possible in principle, spacial care must be taken for the
computational costs because we need to treat a skew-symmetric tensor, instead of a
skew-symmetric matrix, and such a tensor is usually dense [26]. We are now working
on this issue as well.
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