
Japan Journal of Industrial and Applied Mathematics (2019) 36:699–717
https://doi.org/10.1007/s13160-019-00360-8

SPEC IAL FEATURE : OR IG INAL PAPER
International Workshop on Eigenvalue Problems: Algorithms;
Software and Applications, in Petascale Computing (EPASA2018)

Benefits from using mixed precision computations in the
ELPA-AEO and ESSEX-II eigensolver projects

Andreas Alvermann, et al. [full author details at the end of the article]

Received: 30 May 2018 / Revised: 12 January 2019 / Published online: 27 April 2019
© The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2019

Abstract
We first briefly report on the status and recent achievements of the ELPA-AEO (Eigen
value Solvers for Petaflop Applications—Algorithmic Extensions and Optimizations)
and ESSEX II (Equipping Sparse Solvers for Exascale) projects. In both collaboratory
efforts, scientists from the application areas, mathematicians, and computer scientists
work together to develop and make available efficient highly parallel methods for the
solution of eigenvalue problems. Then we focus on a topic addressed in both projects,
the use ofmixed precision computations to enhance efficiency.We give amore detailed
description of our approaches for benefiting from either lower or higher precision in
three selected contexts and of the results thus obtained.

Keywords ELPA-AEO · ESSEX · Eigensolver · Parallel · Mixed precision

Mathematics Subject Classification 65F15 · 65F25 · 65Y05 · 65Y99

1 Introduction

Eigenvalue computations are at the core of simulations in various application areas,
including quantum physics and electronic structure computations. Being able to best
utilize the capabilities of current and emerginghigh-end computing systems is essential
for further improving such simulations with respect to space/time resolution or by
including additional effects in the models. Given these needs, the ELPA-AEO and
ESSEX-II projects contribute to the development and implementation of efficient
highly parallel methods for eigenvalue problems, in different contexts.

This work has been supported by the Deutsche Forschungsgemeinschaft through the priority
programme 1648 “Software for Exascale Computing” (SPPEXA) under the project ESSEX-II and by the
Federal Ministry of Education and Research through the project “Eigenvalue soLvers for Petaflop
Applications—Algorithmic Extensions and Optimizations” (ELPA-AEO) under Grant No. 01H15001.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13160-019-00360-8&domain=pdf

700 A. Alvermann et al.

Both projects are aimed at adding new features (concerning, e.g., performance and
resilience) to previously developed methods and at providing additional functionality
with new methods. Building on the results of the first ESSEX funding phase [14,34],
ESSEX-II again focuses on iterative methods for very large eigenproblems arising,
e.g., in quantum physics. ELPA-AEO’s main application area is electronic structure
computation, and for these moderately sized eigenproblems direct methods are often
superior. Such methods are available in the widely used ELPA library [19], which had
originated in an earlier project [2] and is being improved further and extended with
ELPA-AEO.

In Sects. 2 and 3 we briefly report on the current state and on recent achievement in
the two projects, with a focus on aspects thatmay be of particular interest to prospective
users of the software or the underlying methods. In Sect. 4 we turn to computations
involving different precisions. Looking at three examples from the two projects we
describe how lower or higher precision is used to reduce the computing time.

2 The ELPA-AEO project

In the ELPA-AEO project, chemists, mathematicians and computer scientists from
the Max Planck Computing and Data Facility in Garching, the Fritz Haber Institute
of the Max Planck Society in Berlin, the Technical University of Munich, and the
University of Wuppertal collaborate to provide highly scalable methods for solving
moderately-sized (n � 106) Hermitian eigenvalue problems. Such problems arise,
e.g., in electronic structure computations, and during the earlier ELPAproject, efficient
direct solvers for them had been developed and implemented in the ELPA library [19].

This library is widely used (see https://elpa.mpcdf.mpg.de/about for a description
and pointers to the software), and it has been maintained and further improved con-
tinually since the first release in 2011. The ELPA library contains optimized routines
for the steps in the direct solution of generalized Hermitian positive eigenproblems
AX = BXΛ, that is, (i) the Cholesky decomposition B = UHU , (ii) the transforma-
tion A �→ ˜A = U−HAU−1 to a standard eigenproblem ˜AX = ˜XΛ, (iii) the reduction
of ˜A to tridiagonal form, either in one step or via an intermediate banded matrix,
(iv) a divide-and-conquer tridiagonal eigensolver, and (v) back-transformations for
the eigenvectors corresponding to steps (iii) and (ii). A typical application scenario
from electronic structure computations (“SCF cycle”) requires a sequence of a few
dozens of eigenproblems A(k)X = BXΛ to be solved, where the matrix B remains
unchanged; see Sect. 4.3 formore details. ELPA is particularly efficient in this situation
by explicitly building U−1 for steps (ii) and (v).

ELPA-AEO is aimed at further improving the performance of computations that are
already covered by ELPA routines and at providing new functionality. In the remainder
of this sectionwe highlight a few recent achievements that may be of particular interest
to current and prospective users of the library.

An alternative approach for the transformation (ii) has been developed [18], which
is based on Cannon’s algorithm [5]. The transformation is done with two matrix prod-
ucts: multiplication 1 computes the upper triangle Mu of M := A · U−1, then Mu

is transposed to obtain the lower triangle Ml of MH = U−H A, and finally multipli-

123

https://elpa.mpcdf.mpg.de/about

Mixed precision in the ELPA-AEO and ESSEX-II projects 701

1/4

1/2

 1

 2

 4

 8

 16

 128 256 512 1024 2048 3200

Ti
m

e
[s

ec
on

ds
]

Number of processes, p

Timings for multiplication 1

ScaLAPACK
ELPA

ELPA-AEO

1/4

1/2

 1

 2

 4

 8

 16

 128 256 512 1024 2048 3200

Ti
m

e
[s

ec
on

ds
]

Number of processes, p

Timings for multiplication 2

ScaLAPACK
ELPA

ELPA-AEO

Fig. 1 Timings for the two multiplications in the transformation A �→ ˜A with routines from ScaLAPACK,
current ELPA routines, and the new implementations. The runs were made on the HYDRA system at
MPCDF in Garching with 20 processes per node (two 10-core Intel Ivy bridge processors running at 2.8
GHz) and double precision real matrices of size n = 30,000. Process grids had aspect ratios 1 : 1 or 1 : 2;
e.g., a 10 × 20 grid was set up for p = 200. With p = 3200, the new codes run at ≈ 40% of the nodes’
peak performance

autotune handle = elpa autotune setup(handle, ELPA AUTOTUNE FAST,
ELPA AUTOTUNE DOMAIN REAL, &error) ;

for (i = 0 ; i < 20 ; i++) {
unfinished = elpa autotune step(handle, autotuning handle) ;
if (unfinished == 0)

printf("ELPA autotuning finished in the %d th SCF step\n", i) ;

/* Solve EV problem */
elpa eigenvectors(handle, a, ev, z, &error) ;

}
elpa autotune best set(handle, autotune handle) ;
elpa autotune deallocate(autotune handle) ;

Fig. 2 Using ELPA’s autotuning facility to adjust the algorithmic parameters during the solution of (at most)
twenty eigenvalue problems in an SCF cycle, and saving them for later use

cation 2 computes the lower triangle of Ml · U−1 = ˜A. Both routines assume that
one dimension of the process grid is a multiple of the other. They make use of the
triangular structure of their arguments to save on computation and communication.
The timing data in Fig. 1 show that the new implementations are highly competitive.

Recent ELPA releases provide extended facilities for performance tuning. The
computational routines have an argument that can be used to guide the routines in
selecting algorithmic paths (if there are different ways to proceed) and algorith-
mic parameters (such as block sizes) and to receive performance data from their
execution. An easy-to-use autotuning facility allows setting such parameters in an
automated way by screening the parameter space; see the code fragment in Fig. 2 for
an example. Note that the parameter set obtained with the coarse probing induced by
ELPA_AUTOTUNE_FAST might be improved later on.

In earlier releases, ELPA could be configured for single or double precision com-
putations, but due to the naming conventions only one of the two versions could be
linked to a calling program. Now, both precisions are accessible from one library, and
mixing them may speed up some computations; see Sect. 4.3 for an example.

123

702 A. Alvermann et al.

New functionality for addressing banded generalized eigenvalue problems will be
added. An efficient algorithm for the transformation to a banded standard eigenvalue
problem has been developed [17], and its parallelization is currently under way. This
will complement the functions for solving banded standard eigenvalue problems that
are already included in ELPA.

3 The ESSEX-II project

The ESSEX-II project is a collaborative effort of physicists, mathematicians and com-
puter scientists from the Universities of Erlangen-Nuremberg, Greifswald, Tokyo,
Tsukuba, and Wuppertal and from the German Aerospace Center in Cologne. It
is aimed at developing exascale-enabled solvers for selected types of very large
(n � 106) eigenproblems arising, e.g., in quantumphysics; see the project’s homepage
at https://blogs.fau.de/essex/ for more information, including pointers to publications
and software.

ESSEX-II builds on results from the first ESSEX funding phase, in particular the
Exascale enabled Sparse Solver Repository (ESSR), which provides a (block) Jacobi–
Davidson method, the BEAST subspace iteration-based framework, and the Kernel
Polynomial Method (KPM) and Chebyshev time propagation for determining few
extremal eigenvalues, a bunch of interior eigenvalues, and information about thewhole
spectrum and dynamic properties, respectively. The BEAST framework uses subspace
iteration with Rayleigh–Ritz extraction of approximate eigenpairs. It provides three
different basic methods for constructing the subspace and heuristic strategies for run-
ning them; more details will be given in Sect. 4.1.

Based on the versatile SELL-C-σ format for sparse matrices [13], the General,
Hybrid, and Optimized Sparse Toolkit (GHOST) [15] contains optimized kernels for
often-used operations such as sparse matrix times (multiple) vector products (option-
ally fused with other computations) and operations with block vectors, as well as a
task manager, for CPUs, Intel Xeon Phi MICs and Nvidia GPUs and combinations of
these. The Pipelined Hybrid-parallel Iterative Solver Toolkit (PHIST) [34] provides
the eigensolver algorithmswith interfaces toGHOST and other “computational cores,”
together with higher-level functionality, such as orthogonalization and linear solvers.

With ESSEX-II, the interoperability of these ESSR components will be further
improved to yield a mature library, which will also have an extended range of appli-
cability, including non-Hermitian and nonlinear eigenproblems. Again we highlight
only a few recent achievements.

The Scalable Matrix Collection (ScaMaC) provides routines that simplify the gen-
eration of test matrices. Thematrices can be chosen from several physical models, e.g.,
boson or fermion chains, and parameters allow adjusting sizes and physically moti-
vated properties of the matrices.With 32 processes, a distributed size 2.36Gmatrix for
a Hubbard model with 18 sites and 9 fermions can be set up in less than 10 minutes.

The block Jacobi–Davidson solver has been extended to non-Hermitian and gen-
eralized eigenproblems. It can be run with arbitrary preconditioners, e.g., the AMG
preconditionerML [31], and employs a robust and fast block orthogonalization scheme
that can make use of higher-precision computations; see Sect. 4.2 for more details.

123

https://blogs.fau.de/essex/

Mixed precision in the ELPA-AEO and ESSEX-II projects 703

// BEAST init (omitted)

Checkpoint beast checkpoint("BEAST", comm) ;
beast checkpoint->add("eigenvectors", &X) ;
beast checkpoint->add("eigenvalues", &e) ;
... // Some more
beast checkpoint->add("control variables", &state) ;
beast checkpoint->commit() ;

beast checkpoint->restartIfNeeded(NULL) ;

// BEAST iterations
while (!state.abort condition) {

// Compute projector, etc. (omitted)
...
beast checkpoint->update() ;
beast checkpoint->write() ;

}

Fig. 3 Using theCRAFT library to checkpoint the current eigenvector approximationsX and other quantities
in every iteration of the main loop

The BEAST framework has been extended to seamlessly integrate three different
approaches for spectral filtering in subspace iteration methods (polynomial filters,
rational filters based on plain contour integration, and a moment-based technique)
and to make use of their respective advantages with adaptive strategies. The BEAST
framework also benefits from using different precisions; see Sect. 4.1.

At various places, measures for improving resilience have been included, based on
verifying known properties of computed quantities and on checksums, combined with
checkpoint–restart. To simplify incorporating the latter into numerical algorithms,
the Checkpoint–Restart and Automatic Fault Tolerance (CRAFT) library has been
developed [30]. Figure 3 illustrates its use within the BEAST framework. CRAFT
can handle the GHOST and PHIST data types, as well as user-defined types. Check-
points may be nested to accommodate, e.g., low-frequency high-volume together with
high-frequency low-volume checkpointing in multilevel numerical algorithms, and
the checkpoints can be written asynchronously to reduce overhead. By relying on
the Scalable Checkpoint/Restart (SCR) and User-Level Failure Mitigation (ULFM-)
MPI libraries, CRAFT also provides support for fast node-level checkpointing and for
handling node failures.

4 Benefits of using a different precision

Doing computations in lower precision is attractive from a performance point of view
because it reduces memory traffic in memory-bound code and, in compute-bound
situations, allows more operations per second, due to vector instructions manipulating
more elements at a time. However, the desired accuracy often cannot be reached
in single precision and then only a part of the computations can be done in lower
precision, or a correction is needed; cf., e.g., [3] for the latter. In Sect. 4.1 we describe
an approach for reducing overall runtimes of the BEAST framework by using lower-
precision computations for early iterations.

123

704 A. Alvermann et al.

Higher precision, on the other hand, is often ameans to improve robustness. It is less
known that higher precision can also be beneficial w.r.t. runtime. This is demonstrated
in Sect. 4.2 in the context of orthogonalization.

In Sect. 4.3 we come back to using lower precision, from the perspective of an
important application area: self-consistent field (SCF) cycles in electronic structure
computations. Each iteration of such a cycle requires the solution of a generalized
eigenproblem (GEP). After briefly introducing the context, we discuss how ELPA-
AEO’s features can be used to steer the precision from the application code, targeting
either the entire solution of a GEP or particular steps within its solution.

4.1 Changing precision in subspace iteration-based eigensolvers

The BEAST framework [9,34] is aimed at finding those eigenpairs (λ, x) of a gener-
alized interior eigenproblem Ax = Bxλ (A Hermitian, B Hermitian positive definite)
with λ in a given search interval Iλ = [λ, λ], in particular for interior eigenvalues.
It is based on subspace iteration with spectral filtering and Rayleigh–Ritz extraction,
that is, a subspace U containing an approximate basis for the desired eigenvectors is
constructed from some initial vectors Y , then a Rayleigh–Ritz step is used to obtain the
approximate eigenpairs. If the desired residual threshold is not yet reached, we iterate,
using the approximate eigenvectors in our choice of Y for the following iteration; cf.
also Fig. 5 below. The main distinguishing factor of the variants BEAST-P/-C/-M in
our framework is the construction of the subspace U .

BEAST-P, which is only applicable for standard eigenproblems, implements a poly-
nomial filter [22,26], using matrix–(block) vector products to apply a polynomial in
A to Y ,

U =
N

∑

j=0

ω j A
jY .

In bothBEAST-CandBEAST-M, thefilter is applied via quadrature approximations
of contour integrals of the form

r(B−1A) ≈ 1

2π i

∫

Γ

zk(zB − A)−1B dz,

where Γ is a contour in the complex plane enclosing the sought eigenvalues and no
others. BEAST-C follows Polizzi’s FEAST algorithm [23] in computing

U =
N

∑

j=1

w j (z j B − A)−1BY

with suitable nodes z j and weightsw j . This requires N linear solves for each iteration
of the eigensolver, with an n×m block vector of right hand sides Y . BEAST-M realizes
a specific Sakurai–Sugiura method [27], Sakurai–Sugiura Rayleigh–Ritz [28]. Here,

123

Mixed precision in the ELPA-AEO and ESSEX-II projects 705

Fig. 4 Smallest residual mini ‖Axi − λi xi‖ (left picture) and geometric mean (
∏

i ‖Axi − λi xi‖)1/k of
the residuals (right picture) over BEAST-P iterations (with polynomial degree 50) for computations done
completely in double precision, completely in single precision, and with switching from single to double
precision after iterations 12, 10, and 8. The horizontal line indicates the single precision machine epsilon.
The minimum and mean, resp., are taken over those k approximate eigenpairs that are classified as lying
within the search interval

the subspace is constructed as

U = [

U0, . . . ,Us−1
]

, where Uk =
N

∑

j=1

w j z
k
j (z j B − A)−1BY .

Thus, again N linear solves must be performed as in BEAST-C, but since the overall
subspace is computed as a combination of their solution, Y needs only (1/s)th the
desired number of columns of U , which can reduce the cost of the linear solves.
It should be noted that a traditional Sakurai–Sugiura Rayleigh–Ritz implementation
requires very few, or only one iteration, with a large overall subspace size. However,
we consider it here within the context of a constrained subspace size, making it a truly
iterative method.

We first consider the effect of starting with single precision and switching to double
precision in later iterations. Since BEAST is designed to behave iteratively, we expect
that this effect should be limited. Figure 4 shows BEAST-P’s progress (smallest and
average residual of the current approximations in each iteration) in solving a standard
eigenproblem AX = XΛ for a size 3200 topological insulator matrix A from the
ESSEX repository [1] and Iλ = [−0.5, 0.5], which contains 36 eigenpairs. We see
that the residuals for single precision data and computations are very close to those
obtained with double precision, until we reach the single precision barrier. Continuing
in single precision leads to stagnation. By contrast, if we switch to double precision
data and computations sufficiently before the barrier, convergence proceeds as if the
entire run was in double precision. Even a later switch need not have dramatic effects;
we see that convergence, although stalled temporarily by the single precision barrier,
proceeds at the same rate and possibly even slightly faster when switched two and
four iterations “too late.” In the case of 10 iterations in single precision (two past the
ideal of 8), the overall residual reached after 15 total iterations is again close to that
of the full double and ideal switch computations.

123

706 A. Alvermann et al.

Choose desired subspace size m (> number of evals in Iλ) and initial vectors Y
while not converged do

Construct subspace U ← Y with BEAST-* scheme
Resize subspace based on rank(U)
Solve reduced eigenproblem AUW = BUWΛ, where AU = U∗AU , BU = U∗BU
X := UW
Y := BX (BEAST-P/-C) or Y := BXR (BEAST-M, with a random matrix R)
If single precision barrier has been reached, switch to double precision

end

Fig. 5 The mixed-precision BEAST framework. Computations are started in single precision and may be
continued in double precision

A switching strategy based on this observation is shown in Fig. 5. In Fig. 6 we
report results for using this approach to solve the problem AX = ΛX for a size
16M graphene matrix from the ESSEX repository and Iλ = [−0.0025, 0.0025]. The
computation was done on the Emmy cluster at the University of Erlangen-Nuremberg,
using 32 nodes, each with two Xeon 2660v2 chips. All methods computed an identical
number of 318 eigenpairs in Iλ to a tolerance of 10−10. BEAST-P exhibits a remarkable
similarity in convergence rates between single and double precision before the switch
threshold, and the mixed precision run was roughly 1.2 times faster than using double
precision throughout. InBEAST-C the rates are again similar; due to a fewunconverged
eigenpairs, the double precision computation required an additional iteration of the
eigensolver for this problem, enabling a higher speedup 1.4 for the mixed precision
version. In BEAST-M, we observe some stagnation before the switch threshold, and
an additional iteration was required in the mixed precision run. In this case, the mixed
precision run was slower than pure double precision, with a “speedup” of 0.9. Overall,
the reduction in time from early iterations performed in single precision shows most
clearly for BEAST-P. We note that the actual speed-up observed between single and
double precision depends on both the hardware and software used; higher optimization
of vectorized instructions or the use of accelerators such as GPUs could produce a
more dramatic time difference.

The results indicate that initial iterations in single precision may have a limited
effect on the overall convergence of the eigensolver if an appropriate switching point
to double precision is chosen, thus allowing for a reduction in cost without sacrificing
accuracy. We plan to combine this approach with relaxed stopping criteria for solving
the linear systems in BEAST-C and -M iteratively; cf. also [9,10] for related work.

4.2 Using higher precision for robust and fast orthogonalization

In contrast to the standard Jacobi–Davidson method, which determines the sought
eigenpairs one-by-one, the block Jacobi–Davison method in ESSEX [24] computes
them by groups. Here we will consider only the real standard eigenvalue problem
Avi = viλi . Then one iteration contains the following two major steps:

1. Given nb current approximations λ̃i and ṽi , i = 1, . . . , nb, and a set of previously
converged Schur vectorsW = (w1, . . . , wk) (k ≥ 0), use some steps of a (blocked)

123

Mixed precision in the ELPA-AEO and ESSEX-II projects 707

Fig. 6 Smallest residual over BEAST iterations for runs done completely in double precision (solid lines)
and for mixed precision runs (dashed lines; different markers for iterations done in single and double
precision, respectively), with algorithmic parameters set as follows. Size of U : 1.5× the estimated number
of eigenvalues in the interval; polynomial degree of BEAST-P: 10,000; 4 Gauss-Legendre integration points
for BEAST-C and 8 for BEAST-M, which is more sensitive to a low number of nodes; STRUMPACK direct
solver [25] for the linear systems in BEAST-C and -M; threshold for the switch from single to double
precision: 10−5 for BEAST-P and -C, and 10−4 for BEAST-M to prevent excessive stagnation

iterative linear solver for the correction equation

(I − W̃ W̃ T)(A − λ̃i I)(I − W̃ W̃ T)xi = −ri , i = 1, . . . , nb,

where ri = Aṽi − ṽi λ̃i are the current residuals and W̃ = (W | ṽ1, . . . , ṽnb).
2. Obtain new directions y1, . . . , ynb by orthogonalizing the xi againstW and among

themselves (the yi are then used to update the ṽi).

The block method typically requires more operations than the non-blocked one and
therefore has previously not been advocated, but in [24] it has been shown that this
drawback can be more than outweighed by allowing the use of kernels that can be
implemented to make best use of the capabilities of modern processors (in particular,
sparse matrix timesmultiple vectors), such that the blockmethod tends to run faster. In
addition, it is more robust in the presence of multiple or tightly clustered eigenvalues.

In the following we focus on the orthogonalization in step 2. It is well known that
if one first orthogonalizes the xi against W (“phase I”) and then among themselves
(“phase II”), the second phase can spoil the results of the first one; this also holds
if we reverse the order of the phases. By contrast, a robust algorithm is obtained by
iterating this process, alternating between the two phases and using a rank-revealing
technique in phase II; see [12,33] for a thorough discussion.

We follow this approach, using a plain projection Ỹ = (I − WWT)X for phase I
and SVQB [32] on Ỹ for phase II. We prefer SVQB over TSQR [8] because the bulk
of computation may be done in a highly performant matrix–matrix multiplication for
building the Gram matrix M = Ỹ T Ỹ . This would also be true for CholQR [32], but
SVQB is superior in the following sense (in practice, however, the advantage is subtle
and hard to show in experiments as we are iterating anyway).

Both methods orthogonalize Ỹ by determining a suitable matrix Z ∈ R
nb×nb such

that ZT MZ = I , and setting Y = Ỹ Z ; this yields Y T Y = I . For SVQB we take Z =

123

708 A. Alvermann et al.

UΛ−1/2, where M = UΛUT is an eigendecomposition of M , whereas a (possibly
pivoted, partial) Cholesky decomposition M = RT R is used for setting Z = R−1 in
CholQR. A sufficient condition for minimizing the amplification of rounding errors
in the final multiplication Ỹ Z , is that Z should be as close as possible to the identity
matrix. So we have to solve the optimization problem

min
Z∈Rnb×nb , ZT MZ=I

‖Z − I‖.

For the Frobenius norm, this is a special case of the orthogonal Procrustes problem
analyzedbySchönemann in [29], as it can be transformed to the following formulation:

min
Ẑ∈Rnb×nb , Ẑ T Ẑ=I

‖M−1/2 Ẑ − I‖F .

As shown in [29], a solution can be constructed as Ẑ = UUT with the eigendecom-
position M1/2 = UD1/2UT (in [29] a more general case is considered exploiting
a singular value decomposition). So the choice Z = M−1/2 Ẑ = UD−1/2, that is,
the SVQB algorithm, is optimal in the sense discussed above (for simplicity of the
presentation we have assumed M to be full-rank, thus symmetric positive definite.
The argumentation also can be extended to the rank-deficient case). This optimality
argument does not mean that CholQR cannot be competitive in practice, in particular
if it is done twice; see [35] for an error analysis of that method.

Our aim is to obtain a robust and fast overall orthogonalization method with fewer
iterations by using extended precision computations; cf. [36,37] for related ideas in
the context of CholQR and communication-avoiding GMRES.

In contrast to [36,37], we use extended precision throughout the orthogonalization,
including the orthogonalization againstW and the computation and decomposition of
the Gram matrix. Our own kernels are based on the techniques described in [20] for
working with numbers represented by two doubles (DD). Some of the kernels take
standard double precision data and return DD results, others also take DD data as
inputs. They make use of AVX2, Intel’s advanced vector extensions, with FMA (fused
multiply–add) operations; see [20, Chapter 5]. As proposed there, divisions and square
roots are computed using the Newton–Raphson method. It should be noted that DD
does not preclude the possibility of overflow or underflow in the construction of the
Gramian. We did not take special precautions for this situation.

Figure 7 shows the results of a single two-phase orthogonalization,without iteration,
for synthetic test matrices with varying condition. If X is ill-conditioned then TSQR
does a much better job on X than SVQB, but this does not carry over to orthogonality
against W , and using DD kernels can improve both orthogonalities by at least two
orders of magnitude.

On modern architectures, even the performance of matrix–matrix multiplications
such as Ṽ T Ṽ is memory-bound if the matrix Ṽ ∈ R

n×nb is only very few columns
wide. Then the additional arithmetic operations required in the DD kernels come
almost for free, and operations on small nb × nb matrices are cost negligible, even in
extended precision. Figure 8 compares timings for the overall orthogonalization with a

123

Mixed precision in the ELPA-AEO and ESSEX-II projects 709

Fig. 7 Accuracy after one iteration (phase I and phase II) for synthetic testmatricesW ∈ R
n×k , X ∈ R

n×nb ,
where n = 1000, k = 20, and nb = 4

Fig. 8 Runtime “per vector” for overall orthogonalization of X ∈ R
n×nb against W ∈ R

n×k and X
(phases I and II, iterated until convergence at ε = 10−10) on an Intel Haswell workstation. κ(X) = 10−6,
κ(X ,W) = 10−12, n = 8 · 106, k and nb are indicated on the horizontal axis

straight-forward implementation, one that uses kernel fusion (combining several basic
operations to further reduce memory accesses; not discussed here), and one with fused
DD kernels. It reveals that using DD routines can even reduce overall time because
the higher accuracy achieved in each iteration can lead to a lower number of iterations
to reach convergence.

This technique can be useful for any algorithm that requires orthogonalizing a set
X of vectors with respect to themselves and to another setW of (already orthonormal)
vectors. It also extends to B-inner products, which is important, e.g., when solving
generalized eigenvalue problems.

123

710 A. Alvermann et al.

4.3 Mixed precision in SCF cycles with ELPA-AEO

The solution of the quantum-mechanical electronic-structure problem is at the basis
of studies in computational chemistry, solid state physics, and materials science. In
density-functional theory (DFT), themostwide-spread electronic-structure formalism,
this implies finding the electronic density n(r) that minimizes (E0 = min E[n(r)])
the convex total-energy functional E[n(r)] under the constraint that the number of
electrons, N = ∫

dr n(r), is conserved. Here, the set of 3M nuclear coordinates {R}
enters E[n(r)] parametrically. Formally, this variational problem requires to find the
stationary solution of the eigenvalue problem (EVP)

H [n(r)] Ψ (r) = εΨ (r) with n(r) =
N

∑

s=1

|Ψs(r)|2 (1)

in Hilbert space by iteratively updating n(r), which depends on the N eigenstates Ψs

with the lowest eigenvalues εs . This so called self-consistent field (SCF) cycle runs
until “self-consistency” is achieved, i.e., until the mean interaction field contained
in H [nk(r)] and/or other quantities (see below) do not change substantially between
iterations anymore. In each step of the SCF cycle, the integro-differential equation
(1) has to be solved. In practice, this is done by algebraizing Eq. (1) via a basis set
expansion Ψs = ∑

i xsiϕi (r) of the so called orbitals in terms of appropriately chosen
basis functions ϕi (r), e.g., plane waves, localized functions, etc. By this means, one
obtains a generalized EVP

A[n(r)] x = λBx ,

in which the Hamiltonian A and the overlap matrix B are defined as

Ai j [n(r)] =
∫

dr ϕ∗
i (r) H [n(r)] ϕ j (r) and Bi j =

∫

dr ϕ∗
i (r) ϕ j (r) . (2)

As becomes clear from Eq. (2), the size of the EVP is thus determined by the number
K of basis functions ϕi (r) employed in the calculation. For efficient, atom-centered
basis functions the ratio N/K of required eigenstates to matrix dimension typically
ranges between 10 and 50%, rendering a direct solver competitive.

One SCF cycle yields the total energy E0({R}) for just one set of nuclear coor-
dinates {R}. Studying molecules and materials requires the exploration of the high
dimensional potential-energy surface (PES) which is given by E0({R}) as a function
of {R}, e.g., via molecular dynamics (MD), statistical (e.g. Monte Carlo) sampling,
or minimization and saddle point search algorithms. Accordingly, a typical computa-
tional study requires thousands if not millions of SCF cycles (about 10–100 SCF steps
per cycle) to be performed in a single simulation. This large number of SCF steps
makes it mandatory to investigate strategies to reduce the computational effort. Since
only the final result of each converged SCF cycle is of physical relevance at all, the
SCF procedure can be accelerated by using single precision (SP) routines instead of

123

Mixed precision in the ELPA-AEO and ESSEX-II projects 711

Fig. 9 Total time for one SCF
cycle (dashed lines) and total
time spent in ELPA-AEO (solid
lines) as function of the basis set
size using SP (orange) and DP
routines (blue) for zirconia
(ZrO2, M from 6 to 768 atoms,
N from 112 to 14,336 electrons).
The calculations were performed
with 8 Intel Xeon E5-2698v3
CPUs (4 nodes, 32 cores/node)
and 4 GB of RAM per core

double precision (DP) ones in the appropriate eigensolver steps (cf. Sect. 2), as long as
the final converged result is not altered up to the precision mandated by the problem at
hand. The eigensolver steps discussed in this section are the Cholesky decomposition
(i), the transformation to the standard eigenproblem (ii), and its standard diagonaliza-
tion, which combines tridiagonalization (iii) and the tridiagonal eigensolver (iv), as
defined in Sect. 2.

To showcase the importance of the readily available SP routines in ELPA-AEO,
we have performed DFT calculations with the all-electron, numeric atomic orbitals
based code FHI-aims [4], which supports both ELPA and ELPA-AEO through the
ELSI package [38]. For this purpose, we have run benchmark calculations for zir-
conia (ZrO2) in its tetragonal polymorph, a wide band-gap insulator often employed
as thermal insulator in aeronautic applications [6,7]. Supercells containing between
M = 6 and 768 atoms (N = 112 and 14,336 electrons) were investigated using the
PBEsol exchange-correlation functional, “light” defaults for the numerical settings,
and chemical species-specific “Tier 1” defaults for the basis functions ϕi . Accordingly,
this translates to basis sets yielding matrix dimensions from K = 1312 to 70,848 for
the investigated systems. The finite k-point grid required to sample reciprocal space
to model such extended materials using periodic boundary conditions was chosen in
such a way that the k-point density is roughly constant (between 128 and 216 k-points
in the respective primitive Brillouin zone). As an example, Fig. 9 shows the total time
for one SCF step and the total time spent in solving the EVP with SP and DP as
function of the system size. Here, SP is only used in the diagonalization [steps (iii)
and (iv) introduced in Sect. 2]. For larger system sizes (more than 104 basis func-
tions), the computational time spent in the calculation of A[n(r)], which typically
exhibits linear scaling with respect to N in FHI-aims [11], becomes increasingly
negligible compared to the EVP, which starts to dominate the computational time due
to its cubic scaling. Switching from DP to SP thus allows for computational savings
in the solution of the EVP on the order of 30–50%. Even for medium system sizes
(M = 96 with K = 2624 basis functions) that are routinely addressed in DFT calcula-
tions [7] this already translates into savings in total computational time of around 10%,
while savings of more than 20% are observed for larger systems (up to over 40% in
Fig. 12).

However, SP routines cannot be exploited during the full SCF cycle: once a
certain accuracy is reached, further SP SCF iterations do no longer approach con-

123

712 A. Alvermann et al.

Fig. 10 Change in density (left) and eigenvalues (right) as function of the number of SCF steps during a
full SCF cycle when single-(squares) or double-precision (triangles) routines are used. Calculations were
performed for zirconia (M = 162 and M = 768 atoms, N = 3024 and 14,336 electrons, respectively,
using the settings of Fig. 9)

vergence. This is demonstrated for ZrO2 in Fig. 10. In each SCF step, we monitor
two properties that are typically used for determining the convergence of such calcu-
lations: (I) the change in charge density between two subsequent steps k and k + 1,
Δn = ∫

dr |nk(r) − nk+1(r)|, and (II) the change in the sum of the N lowest eigen-

values, Δε = ∑N
s=1 ε

(k)
s − ε

(k+1)
s . For M = 162 atoms, we observe that Δn stalls

at approximately 2.5 · 10−4 electrons after the 10th SCF iteration for the calculation
using SP. Similarly,Δε stalls at a value of 5 ·10−2 eV, showing a less regular behavior,
both in SP and DP. This can be traced back to the fact that the total-energy functional is
not variational with respect to the eigenvalues. As also shown in Fig. 10 for M = 768
atoms (N = 14,336 electrons), the observed thresholds at which using SP no longer
guarantees approaching convergence is, however, system and size dependent, since
the respective quantities (energy, density, sum of eigenvalues, etc.) are extensive with
system size, i.e., they scale linearly with the number of electrons, N . For these rea-
sons, convergence criteria in DFT calculations are typically not chosen with respect to
extensive quantities as the total energy, but with respect to intensive quantities, such
as the total energy per atom. Hence the fraction of iterations for which SP routines
can be used (> 30%) are roughly independent of the system size, given that both
the target quantity and its change, e.g., n(r) and Δn(r), are extensive with system
size.

In general, not only the central steps (iii) and (iv) of solving the EVP (the diagonal-
ization comprising the reduction to tridiagonal form and the tridiagonal eigensolver;
cf. Sect. 2), but also the Cholesky decomposition (i) and the transformation to the
standard eigenproblem (ii) offer the flexibility to choose between SP and DP. Even
though the overlap-matrix B remains constant during an SCF cycle for an atom-
centered basis, the test calculations on an AB-stacked graphite system (M = 108
atoms, PBE exchange-correlation functional, “tight” numerical defaults, “Tier 2”
default basis set, K = 23,682 basis functions, N = 648 electrons) include the
Cholesky decomposition in every iteration step in order to assess the impact of SP
versus DP in step (i). Figure 11 illustrates that SP in (i) and (ii) does not noticeably
change the convergence behavior of the extensive properties (change of total energy
ΔE[n(r)] = E[n(k)(r)] − E[n(k+1)(r)], eigenvalues Δε, and density Δn) during one
SCF cycle and hence, full convergence is achieved in contrast to SP in the diagonal-

123

Mixed precision in the ELPA-AEO and ESSEX-II projects 713

Fig. 11 Convergence behavior of change in total energy (top left), change in sum of eigenvalues (top right),
and change in density (bottom left) with the number of SCF iterations for AB-stacked graphite (M = 108
atoms, N = 648 electrons, K = 23,682). SP in the Cholesky decomposition (step (i), green triangles) or
the matrix multiplication (step (ii), red triangles) show convergence identical to full DP (orange squares)
calculations and are essentially indistinguishable. SP in the diagonalization [steps (iii) and (iv), violet
triangles] corrupts the convergence behavior. A combination of SP in steps (i) through (iv) (blue dots) does
not reach convergence either. On the bottom right, the deviations in the forces per atom between SP and
DP calculations are depicted for SP in different steps of the solution of the EVP

ization (iii) and (iv). This is confirmed in the bottom right picture in Fig. 11, where
the forces on each atom, i.e., the gradients FI = −∇R I E0({R}) and their deviation
from the full double precision values |FDP

I −FSP
I | are shown. The force per atom, an

intensive quantity, is typically monitored and required to reach a certain accuracy in
calculations targeted at exploring E0({R}). The bottom right plot in Fig. 11 confirms
that SP in the Cholesky decomposition (i) influences the results only marginally; SP
transformation (ii) even yields numerically identical results (not shown on the loga-
rithmic scale). By contrast, a SP diagonalization results in force deviations of up to
0.5 meV/Å, which will still be sufficiently small for certain applications such as pre-
screening in PES exploration or statistical methods based on sampling by MD, when
interpreting the error noise in the forces as acceptable thermal noise [16]. For the
combination of SP throughout steps (i) to (iv), the convergence behavior and the force
deviations are dominated by the performance of the eigensolver steps (iii) and (iv),
and the convergence criteria for neither energy, eigenvalues, nor density are fulfilled.
However, as discussed for Figs. 9 and 10, resorting to a diagonalization (iii) and (iv)
in SP during the initial SCF steps is computationally advantageous, but switching to
DP is required in the final steps for full convergence.

Figure 12 shows that the discussed advantages of SP are preserved in massively
parallelized computations. Here, we display calculations for a slab of silicon carbide,

123

714 A. Alvermann et al.

Fig. 12 Time for solving the EVP for Zero-Layer Graphene (M = 1742, 65,346 basis functions, LDA,
Γ -point only) as function of the number of cores with DP (empty squares) and SP (filled squares). The
calculations were performed with the IBM iDataPlex HPC system HYDRA using 2.6 GHz Intel Sandy
Bridge EP nodes with 16 cores per node

where a layer of graphene is adsorbed on the surface [21]. Compared to the 2013ELPA
code base, which presents a common usage scenario before the ELPA-AEO project,
we observe a speed-up of 1.7 for DP calculations. Another factor of 1.4 is obtained
when switching to SP, which would not have been possible with earlier releases of the
library. The almost ideal strong scaling with respect to the number of cores is retained
in SP calculations.

5 Concluding remarks

The ESSEX-II and ELPA-AEO projects are collaborative research efforts targeted at
developing iterative solvers for very large scale eigenproblems (dimensions � 1M)
and direct solvers for smaller-scale eigenproblems (dimensions up to 1M), and at pro-
viding software for these methods. After briefly highlighting some recent progress
in the two projects w.r.t. auto-tuning facilities, resilience, and added functional-
ity, we have discussed several ways of using mixed precision for reducing the
runtime.

In iterative schemes such as BEAST, single precision may be used in early itera-
tions. This need not compromise the final accuracy if we switch to double precision
at the right time. Even working in extended precision may speed up the execution if
the extra precision leads to fewer iterations and is not too expensive, as seen with an
iterative orthogonalization scheme for the block Jacobi–Davison method. Additional
finer-grained control of the working precision, addressing just particular steps of the
computations can also be beneficial; this has been demonstrated with electronic struc-
ture computations, where the precision for each step was chosen directly from the
calling code.

Our results indicate that the users should be able to adapt the working precision, as
well as algorithmic parameters, to their particular needs, together with heuristics for
automatic selection. Work towards these goals will be continued in both projects.

Acknowledgements The authors thank the unknown referees for their valuable comments that helped to
improve and clarify the presentation.

123

Mixed precision in the ELPA-AEO and ESSEX-II projects 715

References

1. Alvermann, A., Basermann, A., Fehske, H., Galgon,M., Hager, G., Kreutzer, M., Krämer, L., Lang, B.,
Pieper, A., Röhrig-Zöllner, M., Shahzad, F., Thies, J., Wellein, G.: ESSEX: Equipping sparse solvers
for exascale. In: Lopes, L., et al. (eds.) Euro-Par 2014: Parallel ProcessingWorkshops, LNCS, Springer,
vol. 8806, pp. 577–588 (2014)

2. Auckenthaler, T., Blum, V., Bungartz, H.J., Huckle, T., Johanni, R., Krämer, L., Lang, B., Lederer, H.,
Willems, P.R.: Parallel solution of partial symmetric eigenvalue problems from electronic structure
calculations. Parallel Comput. 37(12), 783–794 (2011)

3. Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou, J., Luszczek, P., Tomov, S.:
Accelerating scientific computations withmixed precision algorithms. Comput. Phys. Comm. 180(12),
2526–2533 (2009)

4. Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., Reuter, K., Scheffler, M.: Ab initio
molecular simulations with numeric atom-centered orbitals. Comput. Phys. Comm. 180, 2175–2196
(2009)

5. Cannon, L.E.: A cellular computer to implement the Kalman filter algorithm. Ph.D. thesis, Montana
State University, Bozeman, MT (1969)

6. Carbogno, C., Levi, C.G., Van de Walle, C.G., Scheffler, M.: Ferroelastic switching of doped zirconia:
modeling and understanding from first principles. Phys. Rev. B 90, 144109 (2014)

7. Carbogno, C., Ramprasad, R., Scheffler, M.: Ab Initio Green–Kubo approach for the thermal conduc-
tivity of solids. Phys. Rev. Lett. 118(17), 175901 (2017)

8. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal parallel and sequential
QR and LU factorizations. SIAM J. Sci. Comput. 34(1), A206–A239 (2012)

9. Galgon, M., Krämer, L., Lang, B.: Improving projection-based eigensolvers via adaptive techniques.
Numer. Linear Algebra Appl. 25(1), e2124 (2017)

10. Gavin, B., Polizzi, E.: Krylov eigenvalue strategy using the FEAST algorithm with inexact system
solves. Numer. Linear Algebra Appl. p. e2188 (2018)

11. Havu, V., Blum, V., Havu, P., Scheffler, M.: Efficient O(N) integration for all-electron electronic
structure calculation using numeric basis functions. J. Comput. Phys. 228(22), 8367–8379 (2009)

12. Hoemmen, M.: Communication-avoiding Krylov subspace methods. Ph.D. thesis, University of Cali-
fornia, Berkeley (2010)

13. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse matrix data format
for efficient general sparse matrix-vector multiplication on modern processors with wide SIMD units.
SIAM J. Sci. Comput. 36(5), C401–C423 (2014)

14. Kreutzer, M., Thies, J., Pieper, A., Alvermann, A., Galgon, M., Röhrig-Zöllner, M., Shahzad, F.,
Basermann, A., Bishop, A.R., Fehske, H., Hager, G., Lang, B., Wellein, G.: Performance engineering
and energy efficiency of building blocks for large, sparse eigenvalue computations on heteroge-
neous supercomputers. In: Bungartz, H.J., Neumann, P., Nagel, W.E. (eds.) Software for Exascale
Computing—SPPEXA 2013–2015, LNCSE, vol. 113, pp. 317–338. Springer, Switzerland (2016)

15. Kreutzer,M., Thies, J., Röhrig-Zöllner,M., Pieper,A., Shahzad, F.,Galgon,M.,Basermann,A., Fehske,
H., Hager, G., Wellein, G.: GHOST: Building blocks for high performance sparse linear algebra on
heterogeneous systems. Int. J. Parallel Prog. 45(5), 1046–1072 (2016)

16. Kühne, T.D., Krack, M., Mohamed, F.R., Parrinello, M.: Efficient and accurate Car-Parrinello-like
approach to Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 98(6), 066401 (2007)

17. Lang, B.: Efficient reduction of banded hermitian positive definite generalized eigenvalue problems to
banded standard eigenvalue problems. SIAM J. Sci. Comput. 41(1), C52–C72 (2019)

18. Manin, V., Lang, B.: Cannon-type triangular matrix multiplication for the reduction of generalized hpd
eigenproblems to standard form (2018) (Submitted)

19. Marek, A., Blum, V., Johanni, R., Havu, V., Lang, B., Auckenthaler, T., Heinecke, A., Bungartz, H.J.,
Lederer, H.: The ELPA library: Scalable parallel eigenvalue solutions for electronic structure theory
and computational science. J. Phys.: Condens. Matter 26(21), 213201 (2014)

20. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V., Melquiond, G., Revol, N.,
Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Springer, Berlin (2010)

21. Nemec, L., Blum, V., Rinke, P., Scheffler, M.: Thermodynamic equilibrium conditions of graphene
films on SiC. Phys. Rev. Lett. 111(6), 065502 (2013)

123

716 A. Alvermann et al.

22. Pieper, A., Kreutzer, M., Alvermann, A., Galgon, M., Fehske, H., Hager, G., Lang, B., Wellein, G.:
High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue compu-
tations. J. Comput. Phys. 325, 226–243 (2016)

23. Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79(11),
115112 (2009)

24. Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager, G.,
Wellein, G., Fehske, H.: Increasing the performance of the Jacobi–Davidson method by blocking.
SIAM J. Sci. Comput. 37(6), C697–C722 (2015)

25. Rouet, F.H., Li, X.S., Ghysels, P., Napov, A.: A distributed-memory package for dense hierarchically
semi-separablematrix computations using randomization.ACMTrans.Math. Softw. 42(4), 27:1–27:35
(2016)

26. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. Society for Industrial and
Applied Mathematics, Philadelphia (2011)

27. Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using numerical
integration. J. Comput. Appl. Math. 159(1), 119–128 (2003)

28. Sakurai, T., Tadano, H.: CIRR: a Rayleigh-Ritz type method with contour integral for generalized
eigenvalue problems. Hokkaido Math. J. 36, 745–757 (2007)

29. Schönemann, P.H.: A generalized solution of the orthogonal Procrustes problem. Psychometrika 31(1),
1–10 (1966)

30. Shahzad, F., Thies, J., Kreutzer, M., Zeiser, T., Hager, G., Wellein, G.: CRAFT: A library for easier
application-level checkpoint/restart and automatic fault tolerance (2017). Preprint: arXiv:1708.02030
(Submitted)

31. Song, W., Wubs, F., Thies, J., Baars, S.: Numerical bifurcation analysis of a 3D turing-type reaction-
diffusion model. Commun. Nonlinear Sci. Numer. Simul. 60, 145–164 (2018)

32. Stathopoulos, A., Wu, K.: A block orthogonalization procedure with constant synchronization require-
ments. SIAM J. Sci. Comput. 23(6), 2165–2182 (2002)

33. Stewart, G.W.: Block Gram–Schmidt orthogonalization. SIAM J. Sci. Comput. 31(1), 761–775 (2008)
34. Thies, J., Galgon, M., Shahzad, F., Alvermann, A., Kreutzer, M., Pieper, A., Röhrig-Zöllner, M.,

Basermann,A., Fehske, H., Hager, G., Lang, B.,Wellein, G.: Towards an exascale enabled sparse solver
repository. In: Bungartz, H.J., Neumann, P., Nagel, W.E. (eds.) Software for Exascale Computing—
SPPEXA 2013–2015, LNCSE, vol. 113, pp. 295–316. Springer, Switzerland (2016)

35. Yamamoto, Y., Nakatsukasa, Y., Yanagisawa, Y., Fukaya, T.: Roundoff error analysis of the Cholesky
QR2 algorithm. Electron. Trans. Numer. Anal. 44, 306–326 (2015)

36. Yamazaki, I., Tomov, S., Dong, T., Dongarra, J.: Mixed-precision orthogonalization scheme and adap-
tive step size for improving the stability and performance of CA-GMRES on GPUs. In: Daydé,
M.J., Marques, O., Nakajima, K. (eds.) High Performance Computing for Computational Science—
VECPAR 2014—11th International Conference, Eugene, OR, USA, June 30–July 3, 2014, Revised
Selected Papers, Lecture Notes in Computer Science, vol. 8969, pp. 17–30. Springer (2014)

37. Yamazaki, I., Tomov, S., Dongarra, J.: Mixed-precision Cholesky QR factorization and its case studies
on multicore CPU with multiple GPUs. SIAM J. Sci. Comput. 37(3), C307–C330 (2015)

38. Yu, V.W., Corsetti, F., García, A., Huhn, W.P., Jacquelin, M., Jia, W., Lange, B., Lin, L., Lu, J., Mi, W.,
Seifitokaldani, A., Vázquez-Mayagoitia, Á., Yang, C., Yang, H., Blum, V.: ELSI: A unified software
interface for Kohn-Sham electronic structure solvers. Comput. Phys. Comm. 222, 267–285 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Andreas Alvermann1 · Achim Basermann2 · Hans-Joachim Bungartz3 ·
Christian Carbogno4 · Dominik Ernst5 · Holger Fehske1 ·
Yasunori Futamura6 ·Martin Galgon7 · Georg Hager5 · Sarah Huber7 ·
Thomas Huckle3 · Akihiro Ida8 · Akira Imakura6 ·Masatoshi Kawai8 ·
Simone Köcher9 ·Moritz Kreutzer5 · Pavel Kus10 · Bruno Lang7 ·

123

http://arxiv.org/abs/1708.02030

Mixed precision in the ELPA-AEO and ESSEX-II projects 717

Hermann Lederer10 · Valeriy Manin7 · Andreas Marek10 · Kengo Nakajima8 ·
Lydia Nemec9 · Karsten Reuter9 ·Michael Rippl3 ·Melven Röhrig-Zöllner2 ·
Tetsuya Sakurai6 ·Matthias Scheffler4 · Christoph Scheurer9 ·
Faisal Shahzad5 · Danilo Simoes Brambila4 · Jonas Thies2 · Gerhard Wellein5

B Bruno Lang
lang@math.uni-wuppertal.de

1 Institute of Physics, University of Greifswald, Greifswald, Germany

2 German Aerospace Center (DLR), Cologne, Germany

3 Department of Informatics, Technical University of Munich, Munich, Germany

4 Fritz Haber Institute of the Max Planck Society, Berlin, Germany

5 High Performance Computing, University of Erlangen-Nuremberg, Erlangen, Germany

6 Applied Mathematics, University of Tsukuba, Tsukuba, Japan

7 Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany

8 Computer Science, The University of Tokyo, Tokyo, Japan

9 Department of Theoretical Chemistry, Technical University of Munich, Munich, Germany

10 Max Planck Computing and Data Facility, Garching, Germany

123

	Benefits from using mixed precision computations in the ELPA-AEO and ESSEX-II eigensolver projects
	Abstract
	1 Introduction
	2 The ELPA-AEO project
	3 The ESSEX-II project
	4 Benefits of using a different precision
	4.1 Changing precision in subspace iteration-based eigensolvers
	4.2 Using higher precision for robust and fast orthogonalization
	4.3 Mixed precision in SCF cycles with ELPA-AEO

	5 Concluding remarks
	Acknowledgements
	References

