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Abstract
We propose a stable and structure-preserving finite difference scheme for a non-local
Allen–Cahn equation which describes a process of phase separation in a binary mix-
ture. The proposed scheme inherits characteristic properties, the conservation of mass
and the decrease of the global energy from the equation. We show the stability and
unique existence of the solution of the scheme. We also prove the error estimate for
the scheme. Numerical experiments demonstrate the effectiveness of the proposed
scheme.
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1 Introduction

Allen and Cahn introduced the Allen–Cahn equation as a model for antiphase domain
coarsening in a binary alloy [1]. It has been applied to various problems, for example,
phase transition [1,8], image analysis [4,11,21] and motion by mean curvature [2,3,
12,13,17,18,22].

Let T > 0 be a finite time, and let L > 0 be the length of the one-dimensional
material. In this paper, we study the following initial-boundary value problem for a
non-local Allen–Cahn equation introduced by Rubinstein and Sternberg [23]:

⎧
⎪⎪⎨

⎪⎪⎩

ut = uxx + 2u

ε2
(1 − u2) + λε in (0, L) × (0, T ),

λε = − 1

L

∫ L

0

2u

ε2
(1 − u2)dx in (0, T ),

(1)
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under the Neumann boundary conditions:

ux (0, t) = ux (L, t) = 0 (2)

for all t > 0. The unknown function u is an order parameter, which is the concentration
of one of two components in a binary mixture. The parameter 0 < ε � 1 is related
to the thickness of the interface layer which can develop in parts of the solution with
a steep gradient.

Rubinstein and Sternberg introduced the Eq. (1) as a model for a process of phase
separation in a binarymixturewhich conserves the totalmass of two species [23]. They
introduced the non-local term λε, which is a Lagrange multiplier, to ensure the mass
conservation (6). Here, we remark that the classical Allen–Cahn equation, in which
the non-local term λε in (1) is absent, does not have the mass conservation. Bronsard
and Stoth proved that the Eq. (1) converges, as ε → 0, to the volume preserving mean
curvature flow in a radial symmetry case [7]. Golovaty obtained a similar result to
[7] for the Allen–Cahn equation with a different non-local term [14]. Chen et al. [9]
obtained the convergence in the general case. Moreover, the Eq. (1) has been studied
analytically and numerically [5,6,10,24,26,27]. However, compared with the number
of studies of the classical Allen-Cahn equation, there are not many numerical results
of the non-local Allen–Chan equation.

Brassel and Bretin [6] concluded that the following another non-local Allen–Cahn
equation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = uxx + 2u

ε2
(1 − u2) + 1

ε2
λ̃ε(1 − u2) in (0, L) × (0, T ),

λ̃ε =
−
∫ L

0
2u(1 − u2)dx

∫ L

0
(1 − u2)dx

in (0, T ),

(3)

has better volume-preserving properties than (1) in the sense that an error for the
conservation of the volume is smaller. However, as Takasao [25] mentioned, (3) does
not have the dissipative property of J such as (7). Kim et al. [19] proposed a practically
unconditionally stable scheme for (3), and yet they did not give the proof of the stability
and the error estimate for the scheme. Zhai et al. [27] compared three methods to
approximate (3), including the Crank–Nicolson (CN) finite difference method, the
finite difference operator splitting (OS) method, and the Fourier spectral operator
splitting (FSOS) method. They checked that the convergence rates of the CN scheme
and theOS scheme approach second as themesh size becomes small and that the FSOS
scheme is second order accurate in time through numerical experiments. Nevertheless,
Lee [20] commented that their proposed scheme are not second-order accurate in time
and/or do not satisfy the conservation of mass. In addition, Lee [20] discretized (3)
by a Fourier spectral method in space and first-, second-, third-order implicit–explicit
Runge–Kutta schemes in time. Although he checked the convergence of the schemes,
the convergence rate and that the schemes are first-, second-, third-order accurate in
time respectively through numerical experiments, he did not give the proof of them.
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Then, we propose a structure-preserving scheme for (1) based on the discrete varia-
tional derivativemethod (DVDM) proposed by Furihata [15,16]. Our proposed scheme
inherits characteristic properties, the conservation of mass (6) and the decrease of the
global energy (7) from the original equation, whereas DVDM scheme inherits just one
property in general. Furthermore, we prove that the solution of the scheme converges
to the one of the target equation in the sense of discrete L2-norm and that the con-
vergence rate is O(Δx2 + Δt2). Moreover, we prove the stability of the scheme, the
unique existence of the solution of the scheme. Also, based on this study, we expect
that we can design a structure-preserving scheme for another non-local Allen–Chan
equation such as (3) by using DVDM. Here, we remark that there are not that many
results of the application of DVDM to partial differential equations (PDEs) with a
non-local term to the best of our knowledge.

In this paper, as mentioned above, we design a finite difference scheme for (1) based
on DVDM so that the scheme inherits the conservative and dissipative properties such
as (6) and (7) from the original Eq. (1) in the discrete sense. Here, let us define the
“local energy” G and the “global energy” J , which characterize the Eq. (1):

G(u, ux ) := |ux |2
2

+ 1

ε2

(1 − u2)2

2
, (4)

J (u) :=
∫ L

0
G(u, ux )dx . (5)

Then, the Eq. (1) has following properties:

d

dt

∫ L

0
udx = 0, (6)

d

dt
J (u) ≤ 0. (7)

DVDM is a numerical method for designing numerical schemes for PDEswith conser-
vative and dissipative properties such as (6) and (7), and the DVDM schemes inherit
conservative/dissipative property from the original PDEs in a discrete sense. From the
perspective of numerical computation, the properties often lead us to stable computa-
tion. Hence, if the designed schemes retain the properties in a discrete sense, then the
schemes are expected stable.

Also, the following property holds for the global energy J :

d

dt
J (u) =

∫ L

0

δG

δu
utdx (8)

under the boundary conditions (2). The notation δG/δu is the (first) variational deriva-
tive of G concerning u. From the integration by parts and the boundary conditions (2),
we can show

d

dt
J (u) =

∫ L

0

{

−uxx − 2

ε2
u(1 − u2)

}

utdx .
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Therefore, we have

δG

δu
= −uxx − 2

ε2
u(1 − u2) (9)

from (8). We can rewrite (1) as follows by using (9):

ut = −δG

δu
+ λε in (0, L) × (0, T ). (10)

Furthermore,

λε =− 1

L

∫ L

0

(

−δG

δu
− uxx

)

dx= 1

L

(∫ L

0

δG

δu
dx + [ux ]

L
0

)

= 1

L

∫ L

0

δG

δu
dx in (0, T ),

(11)

by the boundary conditions (2). Namely, we can rewrite (1) as

⎧
⎪⎪⎨

⎪⎪⎩

ut = −δG

δu
+ λε in (0, L) × (0, T ),

λε = 1

L

∫ L

0

δG

δu
dx in (0, T ).

(12)

Therefore, we can use DVDM and prove the conservative property (6) and the dissi-
pative property (7) easily. In fact,

d

dt

∫ L

0
udx =

∫ L

0

(

−δG

δu
+ λε

)

dx = −
∫ L

0

δG

δu
dx + λε

∫ L

0
dx

= −
∫ L

0

δG

δu
dx + 1

L

∫ L

0

δG

δu
dx · L = 0,

where we have used (10) in the first equality, and (11) in the third equality. Moreover,
from (8), (10) and the conservation of mass (6), we can show

d

dt
J (u) =

∫ L

0

δG

δu
utdx =

∫ L

0

(−ut + λε
)
utdx = −

∫ L

0
(ut )

2dx + λε

∫ L

0
utdx

= −
∫ L

0
(ut )

2dx ≤ 0.

The rest of this paper proceeds as follows. In Sect. 2, we propose a finite difference
scheme for (12), whose solution satisfies the discrete version of the conservation
property (6) and the dissipative property (7). In Sect. 3, we prove that the solution of
the proposed scheme satisfies the global boundedness. In Sect. 4, we prove that the
scheme has a unique solution under a specific condition. In Sect. 5, we prove the error
estimate for the scheme. In Sect. 6, we show that the numerical examples demonstrate
the effectiveness of the scheme.
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2 Proposed scheme

In this section, we propose a scheme for (12) and show that it has two properties
corresponding to (6) and (7).

We define U (m)
k (k = −1, 0, 1, . . . , K , K + 1,m = 0, 1, 2, . . .) to be the approxi-

mation to u(x, t) at location x = kΔx and time t = mΔt , where Δx is a space mesh
size, i.e., Δx := L/K and Δt is a time mesh size. We define some basic operators, the
shift operators s+

k , s
−
k , the average operators μ+

k , μ
−
k and the difference operators δ+

k ,

δ−
k , δ

〈1〉
k , δ〈2〉

k concerning subscript k.

s+
k fk := fk+1, s−

k fk := fk−1,

μ+
k fk := fk + fk+1

2
, μ−

k fk := fk + fk−1

2
,

δ+
k fk := fk+1 − fk

Δx
, δ−

k fk := fk − fk−1

Δx
,

δ
〈1〉
k fk := fk+1 − fk−1

2Δx
, δ

〈2〉
k fk := fk+1 − 2 fk + fk−1

Δx2

for all { fk}Kk=0 ∈ R
K+1. As a discretization of the integral, we adopt the summation

operator
∑K

k=0
′′ defined by

K∑

k=0

′′ fk := 1

2
f0 +

K−1∑

n=1

fk + 1

2
fK for all { fk}Kk=0 ∈ R

K+1.

The concrete form of the proposed scheme for (12) is, for m = 0, 1, . . .,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

U (m+1)
k −U (m)

k

Δt
=− δGd

δ
(
U (m+1),U (m)

)

k

+λε
d

(
U (m+1),U (m)

)
(k=0, . . . ,K ),

λε
d

(
U (m+1),U (m)

)
= 1

L

K∑

k=0

′′ δGd

δ
(
U (m+1),U (m)

)

k

Δx,

(13)

where

δGd

δ(U, V )k
=−δ

〈2〉
k

(
Uk+Vk

2

)

− 2

ε2

(
Uk+Vk

2

)(

1−U 2
k +V 2

k

2

)

(k = 0, . . . , K ).

(14)

The discrete boundary conditions are

δ
〈1〉
k U (m)

k = 0 (k = 0, K ,m = 0, 1, . . .). (15)
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1250 M. Okumura

Note that the discrete boundary conditions (15) mean

U (m)
−1 = U (m)

1 , U (m)
K+1 = U (m)

K−1 (m = 0, 1, . . .).

Let us define a discrete local energy Gd: RK+1 → R
K+1 by

Gd,k(U) := 1

2

(δ+
k Uk)

2 + (δ−
k Uk)

2

2
+ (1 −U 2

k )2

2ε2
(k = 0, . . . , K ). (16)

The relation between Gd of (16) and δGd/δ(·, ·) of (14) is given by

K∑

k=0

′′Gd,k (U) Δx −
K∑

k=0

′′Gd,k (V ) Δx

=
K∑

k=0

′′ δGd

δ(U, V )k
(Uk − Vk)Δx

+

⎡

⎢
⎢
⎣

δ+
k

(
Uk + Vk

2

)

μ+
k (Uk − Vk) + δ−

k

(
Uk + Vk

2

)

μ−
k (Uk − Vk)

2

⎤

⎥
⎥
⎦

K

0

.

In the calculation above, we have used the following general identity (second-order
summation by parts formula):

K∑

k=0

′′
(
δ+
k fk

) (
δ+
k gk

) + (
δ−
k fk

) (
δ−
k gk

)

2
Δx

= −
K∑

k=0

′′ (δ〈2〉
k fk

)
gkΔx +

[(
δ+
k fk

) (
μ+
k gk

) + (
δ−
k fk

) (
μ−
k gk

)

2

]K

0

(17)

for all { fk}Kk=0, {gk}Kk=0 ∈ R
K+1. Hence,

K∑

k=0

′′Gd,k

(
U (m+1)

)
Δx −

K∑

k=0

′′Gd,k

(
U (m)

)
Δx

=
K∑

k=0

′′ δGd

δ(U (m+1),U (m))k

(
U (m+1)
k −U (m)

k

)
Δx

+ 1

4

[
δ+
k

(
U (m+1)
k +U (m)

k

)
μ+
k

(
U (m+1)
k −U (m)

k

)

+δ−
k

(
U (m+1)
k +U (m)

k

)
μ−
k

(
U (m+1)
k −U (m)

k

)]K

0
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A stable and structure-preserving scheme for a non-local Allen–Cahn equation 1251

for m = 0, 1, . . .. Here, we show

[
δ+
k

(
U (m+1)
k +U (m)

k

)
μ+
k

(
U (m+1)
k −U (m)

k

)

+δ−
k

(
U (m+1)
k +U (m)

k

)
μ−
k

(
U (m+1)
k −U (m)

k

)]K

0
= 0 (m = 0, 1, . . .). (18)

Since

(
δ+
k + δ−

k

2

)

U (m)
k = δ

〈1〉
k U (m)

k = 0 (m = 0, 1, . . .)

from the discrete boundary conditions (15), δ+
k U

(m)
k = −δ−

k U
(m)
k (m = 0, 1, . . .).

Namely, δ+
k (U (m+1)

k +U (m)
k ) = −δ−

k (U (m+1)
k +U (m)

k ) (m = 0, 1, . . .). Furthermore,

(
μ+
k − μ−

k

Δx

)

U (m)
k = δ

〈1〉
k U (m)

k = 0 (m = 0, 1, . . .),

since

μ+
k − μ−

k

Δx
= 1 + s+

k − (1 − s−
k )

2Δx
= s+

k − s−
k

2Δx
= δ

〈1〉
k .

That is, μ+
k U

(m)
k = μ−

k U
(m)
k , i.e., μ+

k (U (m+1)
k + U (m)

k ) = μ−
k (U (m+1)

k + U (m)
k ) for

m = 0, 1, . . .. Hence, (18) holds. Therefore,

K∑

k=0

′′Gd,k

(
U (m+1)

)
Δx −

K∑

k=0

′′Gd,k

(
U (m)

)
Δx

=
K∑

k=0

′′ δGd

δ(U (m+1),U (m))k

(
U (m+1)
k −U (m)

k

)
Δx

for m = 0, 1, . . . The proposed scheme (13) has properties corresponding to (6) and
(7), i.e.,

Theorem 1 The solution of the scheme (13) under the discrete boundary conditions
(15) satisfies the following equality and inequality.

K∑

k=0

′′U (m)
k Δx =

K∑

k=0

′′U (0)
k Δx (m = 0, 1, . . .), (19)

Jd
(
U (m+1)

)
≤ Jd

(
U (m)

)
(m = 0, 1, . . .), (20)
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1252 M. Okumura

where

Jd
(
U (m)

)
:=

K∑

k=0

′′Gd,k

(
U (m)

)
Δx

for m = 0, 1, . . .

We call (19) the discrete conservation of mass and (20) the discrete decrease of the
total energy.

Proof First, we can show the discrete conservation of mass (19) as follows:

1

Δt

{
K∑

k=0

′′U (m+1)
k Δx −

K∑

k=0

′′U (m)
k Δx

}

=
K∑

k=0

′′
{

− δGd

δ
(
U (m+1),U (m)

)

k

+ λε
d

(
U (m+1),U (m)

)
}

Δx

= −
K∑

k=0

′′ δGd

δ
(
U (m+1),U (m)

)

k

Δx + λε
d

(
U (m+1),U (m)

) K∑

k=0

′′Δx

= −
K∑

k=0

′′ δGd

δ
(
U (m+1),U (m)

)

k

Δx + 1

L

K∑

k=0

′′ δGd

δ
(
U (m+1),U (m)

)

k

Δx · L = 0

for m = 0, 1, . . ..
Next, the discrete decrease of the global energy (20) can be shown as

Jd(U (m+1)) − Jd(U (m))

Δt

= 1

Δt

K∑

k=0

′′ {Gd,k

(
U (m+1)

)
− Gd,k

(
U (m)

)}
Δx

=
K∑

k=0

′′ δGd

δ
(
U (m+1),U (m)

)

k

U (m+1)
k −U (m)

k

Δt
Δx

=
K∑

k=0

′′
{

−U (m+1)
k −U (m)

k

Δt
+ λε

d

(
U (m+1),U (m)

)
}
U (m+1)
k −U (m)

k

Δt
Δx

= −
K∑

k=0

′′
(
U (m+1)
k −U (m)

k

Δt

)2

Δx + λε
d

(
U (m+1),U (m)

) K∑

k=0

′′
(
U (m+1)
k −U (m)

k

Δt

)

Δx

= −
K∑

k=0

′′
(
U (m+1)
k −U (m)

k

Δt

)2

Δx ≤ 0 (m = 0, 1, . . .),

where we have used (19) in the fifth equality. 	
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3 Stability of the proposed scheme

In this section, we show that, if the proposed scheme has a solution, then the maximum
norm of it is bounded. The proof consists of two lemmas. The first lemma shows that
the discrete Sobolev norm of the solution of the proposed scheme is bounded. The
second (the discrete Sobolev lemma) shows that if the discrete Sobolev norm of a
discrete function is bounded, then the maximum norm of the function is bounded.

Lemma 1 The solution of the scheme (13) under the discrete boundary conditions (15)
satisfies the following inequality.

∥
∥
∥U (m)

∥
∥
∥
2

H1
≤ 1

min

{
2

ε2
,
1

2

}

{
K∑

k=0

′′Gd,k

(
U (0)

)
Δx + 4

ε2
L

}

(m = 0, 1, . . .), (21)

where ‖ · ‖H1 is a discrete Sobolev norm which is defined as

‖ f ‖H1 :=
(

K∑

k=0

′′| fk |2Δx +
K−1∑

k=0

|δ+
k fk |2Δx

) 1
2

for all f = { fk}Kk=0 ∈ R
K+1.

Proof From the decrease of the global energy (20), we can show

K∑

k=0

′′Gd,k

(
U (0)

)
Δx ≥

K∑

k=0

′′Gd,k

(
U (m)

)
Δx

=
K∑

k=0

′′

⎧
⎪⎨

⎪⎩

1

2ε2
− 1

ε2

(
U (m)
k

)2+ 1

2
· 1

ε2
·
(
U (m)
k

)4+ 1

2

(
δ+
k U

(m)
k

)2+
(
δ−
k U

(m)
k

)2

2

⎫
⎪⎬

⎪⎭
Δx

≥
K∑

k=0

′′

⎧
⎪⎨

⎪⎩

1

2ε2
+ 2

ε2

(
U (m)
k

)2 − 9

2
· 1

ε2
+ 1

2

(
δ+
k U

(m)
k

)2 +
(
δ−
k U

(m)
k

)2

2

⎫
⎪⎬

⎪⎭
Δx

≥ min

{
2

ε2
,
1

2

} K∑

k=0

′′

⎧
⎪⎨

⎪⎩

(
U (m)
k

)2+
(
δ+
k U

(m)
k

)2+
(
δ−
k U

(m)
k

)2

2

⎫
⎪⎬

⎪⎭
Δx +

(
1

2ε2
− 9

2ε2

)

·L

= min

{
2

ε2
,
1

2

}∥
∥
∥U (m)

∥
∥
∥
2

H1
− 4

ε2
L (m = 0, 1, . . .),

where we have used the following inequality:

−rY 2 + 1

2
rY 4 ≥ 2rY 2 − 9

2
r
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1254 M. Okumura

for all Y ∈ R and r > 0, in the second inequality, and the following equality in the
last equality.

K∑

k=0

′′
(
δ+
k U

(m)
k

)2 +
(
δ−
k U

(m)
k

)2

2
Δx =

K−1∑

k=0

(
δ+
k U

(m)
k

)2
Δx (22)

In fact, we show the equality (22) by using the discrete boundary conditions (15).
Therefore, (21) holds. 	

Lemma 2 (Discrete Sobolev Lemma)

max
0≤k≤K

| fk | ≤ 2max

{
1√
L

,

√
L

2

}

‖ f ‖H1 for all f = { fk}Kk=0 ∈ R
K+1. (23)

Proof We can obtain the inequality (23) from the proof by Furihata and Matsuo [16].
	


Applying Lemma 2 to (21), we can obtain the following inequality.

Theorem 2 The solution of the scheme (13) under the discrete boundary conditions
(15) satisfies

max
0≤k≤K

∣
∣
∣U

(m)
k

∣
∣
∣≤2

⎡

⎢
⎢
⎣

max

{
1

L
,
L

2

}

min

{
2

ε2
,
1

2

}

{
K∑

k=0

′′Gd,k

(
U (0)

)
Δx + 4

ε2
L

}
⎤

⎥
⎥
⎦

1
2

(m=0, 1, . . .).

4 Unique existence of the solution of the proposed scheme

In this section, we prove, through the fixed-point theorem for a contraction mapping,
that the proposed scheme (13) has a unique solution under a specific condition on Δt
and Δx .

To prove the unique existence of the solution of the proposed scheme, we rewrite
the scheme (13) as follows:

U (m+1)
k −U (m)

k

Δt

= δ
〈2〉
k

(
U (m+1)
k +U (m)

k

2

)

+ 1

ε2

(
U (m+1)
k +U (m)

k

)

⎧
⎪⎨

⎪⎩
1−

(
U (m+1)
k

)2+
(
U (m)
k

)2

2

⎫
⎪⎬

⎪⎭

− 1

L

K∑

k=0

′′

⎡

⎢
⎣δ

〈2〉
k

(
U (m+1)
k +U (m)

k

2

)

+ 1

ε2

(
U (m+1)
k +U (m)

k

)

⎧
⎪⎨

⎪⎩
1−

(
U (m+1)
k

)2+
(
U (m)
k

)2

2

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦Δx

123



A stable and structure-preserving scheme for a non-local Allen–Cahn equation 1255

= δ
〈2〉
k

(
U (m+1)
k +U (m)

k

2

)

+ 1

ε2

(
U (m+1)
k +U (m)

k

)

⎧
⎪⎨

⎪⎩
1 −

(
U (m+1)
k

)2+
(
U (m)
k

)2

2

⎫
⎪⎬

⎪⎭

− 1

L

[

δ
〈1〉
k

(
U (m+1)
k +U (m)

k

2

)]K

0

− 1

L

K∑

k=0

′′

⎡

⎢
⎣

1

ε2

(
U (m+1)
k +U (m)

k

)

⎧
⎪⎨

⎪⎩
1 −

(
U (m+1)
k

)2 +
(
U (m)
k

)2

2

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦Δx

= δ
〈2〉
k

(
U (m+1)
k +U (m)

k

2

)

+ 1

ε2

(
U (m+1)
k +U (m)

k

)
− 1

2ε2

(
U (m+1)
k +U (m)

k

){(
U (m+1)
k

)2 +
(
U (m)
k

)2
}

− 1

L

K∑

k=0

′′
[
1

ε2

(
U (m+1)
k +U (m)

k

)
− 1

2ε2

(
U (m+1)
k +U (m)

k

){(
U (m+1)
k

)2+
(
U (m)
k

)2
}]

Δx,

where we have used the following general identity (summation of a difference) in the
second equality.

K∑

k=0

′′δ〈2〉
k fkΔx =

[
δ
〈1〉
k fk

]K

0

for all { fk}Kk=0 ∈ R
K+1. Namely,

1

Δt
U (m+1)
k − 1

2
δ
〈2〉
k U (m+1)

k

= 1

Δt
U (m)
k + 1

2
δ
〈2〉
k U (m)

k + 1

ε2
U (m+1)
k + 1

ε2
U (m)
k +

{
FU (m)U (m+1)

}

k

− 1

Lε2

K∑

k=0

′′U (m+1)
k Δx − 1

Lε2

K∑

k=0

′′U (m)
k Δx − 1

L

K∑

k=0

′′{FU (m)U (m+1)
}

k
Δx,

where the mapping FU (m) : RK+1 → R
K+1 is defined as

{
FU (m)V

}

k := − 1

2ε

(
Vk +U (m)

k

){

(Vk)
2 +

(
U (m)
k

)2
}

(k = 0, . . . , K )
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1256 M. Okumura

for all V = {Vk}Kk=0 ∈ R
K+1, i.e.,

(
1

Δt
− 1

2
δ
〈2〉
k

)

U (m+1)
k =

(
1

Δt
+ 1

ε2
+ 1

2
δ
〈2〉
k

)

U (m)
k − 1

Lε2

K∑

k=0

′′U (m)
k Δx

+ 1

ε2

(

U (m+1)
k − 1

L

K∑

k=0

′′U (m+1)
k Δx

)

+
{
FU (m)U (m+1)

}

k

− 1

L

K∑

k=0

′′ {FU (m)U (m+1)
}

k
Δx . (24)

In connection with the scheme (24), we define a mapping TU (m) : RK+1 → R
K+1

using the following equation:

(
1

Δt
− 1

2
δ
〈2〉
k

)
{
TU (m)V

}

k =
(

1

Δt
+ 1

ε2
+ 1

2
δ
〈2〉
k

)

U (m)
k − 1

Lε2

K∑

k=0

′′U (m)
k Δx

+ 1

ε2

(

Vk − 1

L

K∑

k=0

′′VkΔx

)

+ {
FU (m)V

}

k

− 1

L

K∑

k=0

′′ {FU (m)V
}

k Δx (k = 0, . . . , K )

for all V = {Vk}Kk=0 ∈ R
K+1. Here, the operator in the equation above is defined under

the discrete boundary conditions (15), i.e., {TU (m)V }−1 = {TU (m)V }1, {TU (m)V }K+1 =
{TU (m)V }K−1, U

(m)
−1 = U (m)

1 , and U (m)
K+1 = U (m)

K−1. If the mapping TU (m) has a fixed-
point V ∗, then V ∗ is the solution U (m+1) of the proposed scheme (13) under the
discrete boundary condition (15).

The matrix expression of TU (m) is given by

(
1

Δt
I − 1

2
D2

)

TU (m)V =
{(

1

Δt
+ 1

ε2

)

I + 1

2
D2

}

U (m) − 1

Lε2
SU (m)

+ 1

ε2

(

I − 1

L
S

)

V +
(

I − 1

L
S

)

FU (m)V

for all V ∈ R
K+1, where I is the identity matrix of order K + 1, further, S and D2

are square matrices of order K + 1 as
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S := Δx

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2 1 · · · 1 1

2
1
2 1 · · · 1 1

2

...
... · · · ...

...

1
2 1 · · · 1 1

2
1
2 1 · · · 1 1

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

D2 := 1

Δx2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−2 2 0
1 −2 1

. . .
. . .

. . .

1 −2 1
0 2 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

under the discrete boundary conditions (15).
The following lemma implies that the mapping TU (m) is well-defined for allU (m) ∈

R
K+1.

Lemma 3 The (K + 1) × (K + 1) matrix (1/Δt)I − (1/2)D2 is nonsingular.

Proof Eigenvalues of D2 are

λk := 2

Δx2

{

cos

(
k

K
π

)

− 1

}

(k = 0, . . . , K ), (25)

and the eigenvector xk corresponding to the eigenvalue λk is

xk =
(

cos

(
0 · k
K

π

)

, cos

(
1 · k
K

π

)

, . . . , cos

(
K · k
K

π

))�
(k = 0, . . . , K ).

(26)

Since D2xk = λkxk (k = 0, . . . , K ),

(
1

Δt
I − 1

2
D2

)

xk = 1

Δt
xk − 1

2
D2xk = 1

Δt
xk − 1

2
λkxk =

(
1

Δt
− 1

2
λk

)

xk

for k = 0, . . . , K . Hence, eigenvalues of (1/Δt)I − (1/2)D2 are

1

Δt
− 1

2
λk = 1

Δt
+ 1

Δx2

{

1 − cos

(
k

K
π

)}

≥ 1

Δt
> 0 (k = 0, . . . , K ).

Therefore, the positiveness of the eigenvalues implies the nonsingularity of (1/Δt)I −
(1/2)D2. 	


Next, we prove the existence and uniqueness of the solution of the proposed scheme
by the fixed-point theorem for a contraction mapping.
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1258 M. Okumura

Theorem 3 If

Δt <
Lε2Δx

(
L +√

(K+1)(2K−1)Δx
) min

{
1

9
(
Δx +65M2

d

) ,
1

4
(
Δx +209M2

d

)

}

, (27)

then the mapping TU (m) has a unique fixed-point in the closed ball B, where

Md :=
∥
∥
∥U (m)

∥
∥
∥
L2
d

,

B :=
{
v ∈ R

K+1; ‖v‖L2
d

≤ 8Md

}
,

‖v‖L2
d

:=
√
√
√
√

K∑

k=0

′′ |vk |2 Δx .

Proof By the fixed-point theorem for a contraction mapping, it suffices to show that
TU (m) is a contraction mapping on B.

First, we prove that TU (m) B ⊆ B. By Lemma 3, we have

TU (m)V =
(

1

Δt
I − 1

2
D2

)−1 {( 1

Δt
+ 1

ε2

)

I + 1

2
D2

}

U (m)

+
(

1

Δt
I− 1

2
D2

)−1{

− 1

Lε2
SU (m)+

(

I− 1

L
S

)(
1

ε2
V+FU (m)V

)}

for all V ∈ B. We diagonalize the matrix D2 as

D2 = XΛX−1,

where X and Λ are square matrices of order K + 1 as

X := (x0, x1, . . . , xK ),

Λ := diag(λ0, λ1, . . . , λK ),

with xk given by (26) and λk given by (25). Since I = XX−1 = X I X−1,

1

Δt
I − 1

2
D2 = 1

Δt
X I X−1 − 1

2
XΛX−1 = X

(
1

Δt
I − 1

2
Λ

)

X−1. (28)

Similarly,

(
1

Δt
+ 1

ε2

)

I + 1

2
D2 = X

{(
1

Δt
+ 1

ε2

)

I + 1

2
Λ

}

X−1.

123



A stable and structure-preserving scheme for a non-local Allen–Cahn equation 1259

By (28), we have

(
1

Δt
I − 1

2
D2

)−1

=
(
X−1

)−1
(

X

(
1

Δt
I − 1

2
Λ

))−1

= X

(
1

Δt
I − 1

2
Λ

)−1

X−1.

Then, the matrix expression of TU (m) is given by

TU (m)V = X

(
1

Δt
I − 1

2
Λ

)−1 {( 1

Δt
+ 1

ε2

)

I + 1

2
Λ

}

X−1U (m)

+ X

(
1

Δt
I − 1

2
Λ

)−1

X−1
{

− 1

Lε2
SU (m) +

(

I − 1

L
S

)(
1

ε2
V + FU (m)V

)}

(29)

for all V ∈ B. Hence,

∥
∥TU (m)V

∥
∥
L2
d

≤ ‖X‖L2
d

∥
∥
∥
∥
∥

(
1

Δt
I − 1

2
Λ

)−1 {( 1

Δt
+ 1

ε2

)

I + 1

2
Λ

}∥∥
∥
∥
∥
L2
d

∥
∥
∥X−1

∥
∥
∥
L2
d

∥
∥
∥U (m)

∥
∥
∥
L2
d

+ ‖X‖L2
d

∥
∥
∥
∥
∥

(
1

Δt
I − 1

2
Λ

)−1
∥
∥
∥
∥
∥
L2
d

∥
∥
∥X−1

∥
∥
∥
L2
d

·
{

1

Lε2
‖S‖L2

d

∥
∥
∥U (m)

∥
∥
∥
L2
d

+
∥
∥
∥
∥I − 1

L
S

∥
∥
∥
∥
L2
d

(
1

ε2
‖V‖L2

d
+ ∥
∥FU (m)V

∥
∥
L2
d

)}

≤ 4

(

1 + Δt

ε2

)∥
∥
∥U (m)

∥
∥
∥
L2
d

+ 4Δt

{
1

Lε2

√
(K + 1)(2K − 1)Δx

∥
∥
∥U (m)

∥
∥
∥
L2
d

+
(

1 + 1

L

√
(K + 1)(2K − 1)Δx

)(
1

ε2
‖V‖L2

d
+ ∥
∥FU (m)V

∥
∥
L2
d

)}

≤ 4

(

1 + Δt

ε2

)

Md + 4Δt

{
1

Lε2

√
(K + 1)(2K − 1)Δx · Md

+
(

1 + 1

L

√
(K + 1)(2K − 1)Δx

)(
8

ε2
Md + 585

ε2Δx
M3

d

)}

=
[(

1 + Δt

ε2

)

+ Δt

ε2

{
1

L

√
(K + 1)(2K − 1)Δx

+
(

1 + 1

L

√
(K + 1)(2K − 1)Δx

)(

8 + 585

Δx
M2

d

)}]

· 4Md

=
[

1+ 9Δt

ε2

(

1+ 65

Δx
M2

d

){

1+ 1

L

√
(K+1)(2K−1)Δx

}]

·4Md (30)
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for all V ∈ B. Now, note that for all (K + 1) × (K + 1) matrix A,

‖A‖L2
d

= sup
x �=0

‖Ax‖L2
d

‖x‖L2
d

.

Here we have used the following estimates:

‖diag(d0, d1, . . . , dK−1, dK )‖L2
d

= max
0≤k≤K

|dk |,

max
0≤k≤K

∣
∣
∣
∣
∣
∣
∣

1
1

Δt
− 1

2
λk

∣
∣
∣
∣
∣
∣
∣

= Δt, (31)

max
0≤k≤K

∣
∣
∣
∣
∣
∣
∣

1

Δt
+ 1

ε2
+ 1

2
λk

1

Δt
− 1

2
λk

∣
∣
∣
∣
∣
∣
∣

≤ 1 + 1

ε2
Δt, (32)

‖S‖L2
d

≤ √
(K + 1)(2K − 1)Δx, (33)

∥
∥
∥
∥I − 1

L
S

∥
∥
∥
∥
L2
d

≤ 1 + 1

L

√
(K + 1)(2K − 1)Δx, (34)

‖X‖L2
d

≤ 2
√
K , (35)

‖X−1‖L2
d

≤ 2√
K

, (36)

∥
∥FU (m)V

∥
∥
L2
d

≤ 585

ε2Δx
M3

d (37)

that hold under the conditions
∥
∥U (m)

∥
∥
L2
d

= Md and ‖V‖L2
d

≤ 8Md. We show how

to obtain the estimates above. Firstly, we obtain the equality (31), since λk ≤ 0 (k =
0, . . . , K ) and λ0 = 0. In addition, by using (31), the estimate (32) holds. Secondly,
we show the evaluation of the matrix norm (33). From the definition of S, we have

S�S = Δx2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K + 1

4

K + 1

2
· · · K + 1

2

K + 1

4
K + 1

2
K + 1 · · · K + 1

K + 1

2
...

... · · · ...
...

K + 1

2
K + 1 · · · K + 1

K + 1

2
K + 1

4

K + 1

2
· · · K + 1

2

K + 1

4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= K + 1

4
Δx2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 2 · · · 2 1
2 4 · · · 4 2
...

... · · · ...
...

2 4 · · · 4 2
1 2 · · · 2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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Let P be the matrix of order K + 1 as

P :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 2 · · · 2 1
2 4 · · · 4 2
...

... · · · ...
...

2 4 · · · 4 2
1 2 · · · 2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Then,

S�S = K + 1

4
Δx2P.

Let μ be an eigenvalue of P . The characteristic polynomial of P is

det(P − μI ) = (−1)K−1μK (μ − 4K + 2).

Then, we obtain the eigenvalues μ = 0, 4K − 2. So, the largest eigenvalue of S�S is

K + 1

4
Δx2 · (4K − 2) = (K + 1)(2K − 1)

2
Δx2,

since K ≥ 1. Hence, we have

‖S‖L2
d

≤ √
2‖S‖2 = √

2 ·
√

(K + 1)(2 − 1)

2
Δx2 = √

(K + 1)(2K − 1)Δx

by using the following inequality.

‖A‖L2
d

≤ √
2 ‖A‖2 for all (K + 1) × (K + 1) matrix A, (38)

where ‖ · ‖2 is the matrix 2-norm induced by the euclidean vector. Moreover, by using
the estimate (33) and the triangle inequality, we obtain the inequality (34). Thirdly,
we show the estimates (35) and (36). Let Q be the diagonal matrix of order K + 1 as

Q :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
2

0

1
. . .

1
0 1√

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Z be the square matrix of order K + 1 as

Z :=
√

2

K
QXQ.
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Then, Z is an orthogonal matrix, i.e., Z−1 = Z�. In fact, let Z = (z0, . . . , zK ), then

zk =

⎧
⎪⎪⎨

⎪⎪⎩

1√
K

yk, (k = 0, K ),
√

2

K
yk, (k = 1, . . . , K − 1),

where

yk :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
2
cos

( k
K π · 0)

cos

(
k

K
π · 1

)

...

cos

(
k

K
π · (K − 1)

)

1√
2
cos

(
k

K
π · K

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(k = 0, . . . , K ).

Since for all m, n ∈ Z such that 0 ≤ m, n ≤ K ,

y�
m · yn =

K∑

k=0

′′cos
(m

K
π · k

)
cos

( n

K
π · k

)
=

⎧
⎪⎪⎨

⎪⎪⎩

K , (m = n = 0,m = n = K ),
1

2
K , (1 ≤ m = n ≤ K − 1),

0 (m �= n),

{zk}Kk=0 is an orthonormal basis of RK+1. Thus, Z is an orthogonal matrix. Hence,
‖Z‖2 = 1, since Z�Z = Z−1Z = I . Also, ‖Q−1‖2 = √

2. Therefore, we obtain

‖X‖L2
d

≤ √
2 · ‖X‖2 = √

2 ·
√

K

2

∥
∥
∥Q−1ZQ−1

∥
∥
∥
2

≤ 2
√
K .

by using the inequality (38). Similarly, we have

‖X−1‖L2
d

≤ √
2 · ‖X−1‖2 = √

2 ·
√

2

K

∥
∥
∥QZ�Q

∥
∥
∥
2

≤ 2√
K

from the equalities ‖Z�‖2 = 1 and ‖Q‖2 = 1. Finally, we show the evaluation of the
nonlinear term (37). By using the following inequality:

K∑

k=0

′′akbkΔx ≤ 2

Δx

K∑

k=0

′′akΔx
K∑

k=0

′′bkΔx
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for all {ak}Kk=0, {bk}Kk=0 such that ak, bk ≥ 0 (k = 0, . . . , K ), we have

∥
∥FU (m)V

∥
∥2
L2
d

=
(

1

2ε2

)2 K∑

k=0

′′ (Vk+U (m)
k

)2
{

V 2
k +

(
U (m)
k

)2
}2

Δx

≤
(

1

2ε2

)2 2

Δx

K∑

k=0

′′ (Vk +U (m)
k

)2
Δx

K∑

k=0

′′
{

V 2
k +

(
U (m)
k

)2
}2

Δx

≤
(

1

2ε2

)2 ( 2

Δx

)2 K∑

k=0

′′
{

V 2
k +

(
U (m)
k

)2
}

Δx
K∑

k=0

′′
{

V 2
k +

(
U (m)
k

)2
}

Δx

·
K∑

k=0

′′
{

V 2
k + 2VkU

(m)
k +

(
U (m)
k

)2
}

Δx

=
(

1

2ε2

)2( 2

Δx

)2(

‖V‖2
L2
d
+
∥
∥
∥U (m)

∥
∥
∥
2

L2
d

)2
(

‖V‖2
L2
d
+
∥
∥
∥U (m)

∥
∥
∥
2

L2
d

+2
K∑

k=0

′′VkU (m)
k Δx

)

for all V ∈ B. Moreover, by using Schwarz inequality, we obtain

∣
∣
∣
∣
∣

K∑

k=0

′′VkU (m)
k Δx

∣
∣
∣
∣
∣
≤
√
√
√
√

K∑

k=0

′′V 2
k Δx

√
√
√
√

K∑

k=0

′′
(
U (m)
k

)2
Δx = ‖V‖L2

d

∥
∥
∥U (m)

∥
∥
∥
L2
d

for all V ∈ B. Hence, we have the following estimate:

∥
∥FU (m)V

∥
∥2
L2
d

≤
(

1

2ε2

)2 ( 2

Δx

)2 (

‖V‖2
L2
d
+
∥
∥
∥U (m)

∥
∥
∥
2

L2
d

)2

·
(

‖V‖2
L2
d
+
∥
∥
∥U (m)

∥
∥
∥
2

L2
d

+ 2‖V‖L2
d

∥
∥
∥U (m)

∥
∥
∥
L2
d

)

≤
(

1

2ε2

)2 ( 2

Δx

)2 {
(8Md)

2 + M2
d

}2 {
(8Md)

2 + M2
d + 2 · 8Md · Md

}

=
(

1

2ε2

)2 ( 2

Δx

)2

652 · 81 · M6
d .

that holds under the conditions
∥
∥U (m)

∥
∥
L2
d

= Md and ‖V‖L2
d

≤ 8Md. Therefore, we

obtain the estimate (37).
If

Δt ≤ Lε2Δx

9
(
Δx + 65M2

d

) (
L + √

(K + 1)(2K − 1)Δx
) ,
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then

1 + 9Δt

ε2

(

1 + 65

Δx
M2

d

){

1 + 1

L

√
(K + 1)(2K − 1)Δx

}

≤ 2, (39)

since

Lε2Δx

9
(
Δx +65M2

d

)(
L +√

(K+1)(2K−1)Δx
)

= ε2

9

(

1 + 65

Δx
M2

d

){

1 + 1

L

√
(K + 1)(2K − 1)Δx

} .

From (30) and (39), we see that
∥
∥TU (m)V

∥
∥
L2
d

≤ 8Md, i.e., TU (m)V ∈ B. Hence,

TU (m)B ⊆ B.
Next, we prove that TU (m) is contractive. Using (29) and the estimates above, we

can show

∥
∥TU (m)V − TU (m)V ′∥∥

L2
d

≤ ‖X‖L2
d

∥
∥
∥
∥
∥

(
1

Δt
I − 1

2
Λ

)−1
∥
∥
∥
∥
∥
L2
d

∥
∥
∥X−1

∥
∥
∥
L2
d

∥
∥
∥
∥I − 1

L
S

∥
∥
∥
∥
L2
d

·
(

1

ε2

∥
∥V − V ′∥∥

L2
d
+ ∥
∥FU (m)V − FU (m)V ′∥∥

L2
d

)

≤ 4Δt

(

1+ 1

L

√
(K+1)(2K−1)Δx

)(
1

ε2

∥
∥V−V ′∥∥

L2
d
+∥
∥FU (m)V−FU (m)V ′∥∥

L2
d

)

≤ 4Δt

ε2

(

1 + 209M2
d

Δx

)(

1 + 1

L

√
(K + 1)(2K − 1)Δx

)
∥
∥V − V ′∥∥

L2
d
,

because

∥
∥FU (m)V − FU (m)V ′∥∥

L2
d

≤ 209M2
d

ε2Δx

∥
∥V − V ′∥∥

L2
d

(40)

for all V , V ′ ∈ B. In fact, we show the estimate (40). For all V , V ′ ∈ B,

∥
∥FU (m)V−FU (m)V ′∥∥2

L2
d

=
(

1

2ε2

)2 K∑

k=0

′′
{

V 3
k + Vk

(
U (m)
k

)2 + V 2
k U

(m)
k +

(
U (m)
k

)3

− (
V ′
k

)3 − V ′
k

(
U (m)
k

)2 − (
V ′
k

)2
U (m)
k −

(
U (m)
k

)3
}2

Δx
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=
(

1

2ε2

)2 K∑

k=0

′′
[{

V 3
k − (

V ′
k

)3
}

+ (
Vk − V ′

k

)(
U (m)
k

)2+
{
V 2
k − (

V ′
k

)2
}
U (m)
k

]2

Δx

=
(

1

2ε2

)2 K∑

k=0

′′
{

V 2
k + VkV

′
k + (

V ′
k

)2+
(
U (m)
k

)2+(
Vk + V ′

k

)
U (m)
k

}2(
Vk − V ′

k

)2
Δx .

(41)

Moreover,

max
0≤k≤K

|Vk | ≤
√

2

Δx

√
√
√
√

K∑

k=0

′′V 2
k Δx =

√
2

Δx
‖V‖L2

d
≤
√

2

Δx
· 8Md (42)

for all V ∈ B. Similarly,

max
0≤k≤K

∣
∣
∣U

(m)
k

∣
∣
∣ ≤

√
2

Δx
· Md. (43)

Therefore, by using (41), (42) and (43),

∥
∥FU (m)V − FU (m)V ′∥∥2

L2
d

≤
(

1

2ε2

)2 K∑

k=0

′′
{

2

Δx
· 64M2

d + 2

Δx
· 64M2

d + 2

Δx
· 64M2

d + 2

Δx
M2

d

+
(√

2

Δx
· 8Md +

√
2

Δx
· 8Md

)√
2

Δx
Md

}2
(
Vk − V ′

k

)2
Δx

=
(

1

2ε2

)2 K∑

k=0

′′
(

2

Δx
· 192M2

d + 2

Δx
M2

d + 2

Δx
· 16M2

d

)2 (
Vk − V ′

k

)2
Δx

=
(
209M2

d

ε2Δx

)2
∥
∥V − V ′∥∥2

L2
d

for all V , V ′ ∈ B.

Hence, the estimate (40) holds.
If

Δt <
Lε2Δx

4
(
Δx + 209M2

d

) (
L + √

(K + 1)(2K − 1)Δx
)

then

0 ≤ 4Δt

ε2

(

1 + 209M2
d

Δx

)(

1 + 1

L

√
(K + 1)(2K − 1)Δx

)

< 1,
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since

Lε2Δx

4
(
Δx + 209M2

d

) (
L + √

(K + 1)(2K − 1)Δx
)

= ε2

4

(

1 + 209M2
d

Δx

)(

1 + 1

L

√
(K + 1)(2K − 1)Δx

) .

Therefore, TU (m) is contractive. This completes the proof. 	


5 Error estimate for the proposed scheme

In this section, we show an error estimate of the numerical solution of the proposed
scheme. Let Δt := T /M . We define the error as

e(m)
k := U (m)

k − u(m)
k (k = −1, 0, . . . , K , K + 1,m = 0, 1, . . . , M),

where u(m)
k := u(kΔx,mΔt) and u is the solution of the target Eq. (12). We define an

extension of u by

u(−Δx, t) := u(Δx, t), u((K + 1)Δx, t) := u((K − 1)Δx, t) (44)

for all t ∈ [0, T ]. In what follows, we use the following special time-difference and
-averaging operators:

δ〈1〉
m f (m) := f

(
m+ 1

2

)

− f

(
m− 1

2

)

Δt
, s〈1〉

m f (m) := f

(
m+ 1

2

)

+ f

(
m− 1

2

)

2
.

Moreover, for simplicity, we use the expression:

∂

∂x
f (a) = ∂

∂x
f (x)

∣
∣
∣
∣
x=a

.

Lemma 4 For m = 0, 1, . . . , M − 1, the error e(m) satisfies

1

Δt

(∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

−
∥
∥
∥e(m)

∥
∥
∥
2

L2
d

)

≤ 1

2

(∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

+
∥
∥
∥e(m)

∥
∥
∥
2

L2
d

)

+
∥
∥
∥
∥
∥
ξ

(
m+ 1

2

)

1

∥
∥
∥
∥
∥

2

L2
d

+
∥
∥
∥
∥
∥
ξ

(
m+ 1

2

)

2

∥
∥
∥
∥
∥

2

L2
d

+ 4

∥
∥
∥
∥φ̃(U (m+1),U (m)) − φ

(
m+ 1

2

)∥
∥
∥
∥

2

L2
d

+ 4L

{

λε
d(U

(m+1),U (m)) − λ
ε,
(
m+ 1

2

)}2

.
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where

λ
ε,
(
m+ 1

2

)

:= λε

((

m + 1

2

)

Δt

)

= − 1

L

∫ L

0

2

ε2
(u − u3)dx

∣
∣
∣
∣
t=

(
m+ 1

2

)
Δt

,

φ̃( fk, gk) := 2

ε2

{
fk + gk

2
− ( fk)3 + ( fk)2gk + fk(gk)2 + (gk)3

4

}

,

φ

(
m+ 1

2

)

k := 2

ε2

⎧
⎨

⎩
u

(
m+ 1

2

)

k −
(

u

(
m+ 1

2

)

k

)3
⎫
⎬

⎭
,

ξ

(
m+ 1

2

)

1,k := 2

(
∂

∂t
− δ〈1〉

m

)

u

(
m+ 1

2

)

k ,

ξ

(
m+ 1

2

)

2,k := 2

(

δ
〈2〉
k s〈1〉

m − ∂2

∂x2

)

u

(
m+ 1

2

)

k

for k = 0, 1, . . . , K.

Proof For m = 0, 1, . . . , M − 1, subtracting the following original equation:

∂

∂t
u

(
m+ 1

2

)

k = ∂2

∂x2
u

(
m+ 1

2

)

k + φ

(
m+ 1

2

)

k + λ
ε,
(
m+ 1

2

)

from the following proposed scheme:

δ〈1〉
m U

(
m+ 1

2

)

k = δ
〈2〉
k s〈1〉

m U

(
m+ 1

2

)

k + φ̃
(
U (m+1)
k ,U (m)

k

)
+ λε

d(U
(m+1),U (m))

at t = (m + 1/2)Δt for k = 0, 1, . . . , K , we obtain

δ〈1〉
m e

(
m+ 1

2

)

k = δ
〈2〉
k s〈1〉

m e

(
m+ 1

2

)

k + 1

2
ξ

(
m+ 1

2

)

1,k + 1

2
ξ

(
m+ 1

2

)

2,k

+
(

φ̃
(
U (m+1)
k ,U (m)

k

)
− φ

(
m+ 1

2

)

k

)

+
(

λε
d(U

(m+1),U (m))− λ
ε,
(
m+ 1

2

))

.

(45)

Hence, we obtain the following equality from (45):

1

Δt

K∑

k=0

′′
{(

e(m+1)
k

)2 −
(
e(m)
k

)2
}

Δx

=
K∑

k=0

′′
(

δ〈1〉
m e

(
m+ 1

2

)

k

)(

s〈1〉
m e

(
m+ 1

2

)

k

)

Δx
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=
K∑

k=0

′′
(

δ
〈2〉
k s〈1〉

m e

(
m+ 1

2

)

k

)(

s〈1〉
m e

(
m+ 1

2

)

k

)

Δx +
K∑

k=0

′′
(

s〈1〉
m e

(
m+ 1

2

)

k

){
1

2
ξ

(
m+ 1

2

)

1,k + 1

2
ξ

(
m+ 1

2

)

2,k

+
(

φ̃
(
U (m+1)
k ,U (m)

k

)
− φ

(
m+ 1

2

)

k

)

+
(

λε
d(U

(m+1),U (m)) − λ
ε,
(
m+ 1

2

))}

Δx .

Here, we obtain the following inequality from the summation by parts (17):

K∑

k=0

′′
(

δ
〈2〉
k s〈1〉m e

(
m+ 1

2

)

k

)(

s〈1〉m e

(
m+ 1

2

)

k

)

Δx

=
[(

δ
〈1〉
k s〈1〉m e

(
m+ 1

2

)

k

)(

s〈1〉m e

(
m+ 1

2

)

k

)]K

0

− 1

2

K∑

k=0

′′
⎧
⎨

⎩

(

δ+
k s〈1〉m e

(
m+ 1

2

)

k

)2

+
(

δ−
k s〈1〉m e

(
m+ 1

2

)

k

)2
⎫
⎬

⎭
Δx

≤ 0

since δ
〈1〉
k s〈1〉

m e

(
m+ 1

2

)

k = 0 (k = 0, K ) under the discrete boundary conditions (15)
and the definition of the extension (44). From the above, we obtain the following
inequality:

1

Δt

K∑

k=0

′′
{(

e(m+1)
k

)2 −
(
e(m)
k

)2
}

Δx

≤
K∑

k=0

′′
(

s〈1〉
m e

(
m+ 1

2

)

k

){
1

2
ξ

(
m+ 1

2

)

1,k + 1

2
ξ

(
m+ 1

2

)

2,k

+
(

φ̃
(
U (m+1)
k ,U (m)

k

)
− φ

(
m+ 1

2

)

k

)

+
(

λε
d(U

(m+1),U (m)) − λ
ε,
(
m+ 1

2

))}

Δx

≤ 1

2

K∑

k=0

′′
(

s〈1〉
m e

(
m+ 1

2

)

k

)2

Δx + 1

2

K∑

k=0

′′
{
1

2
ξ

(
m+ 1

2

)

1,k + 1

2
ξ

(
m+ 1

2

)

2,k

+
(

φ̃
(
U (m+1)
k ,U (m)

k

)
− φ

(
m+ 1

2

)

k

)

+
(

λε
d(U

(m+1),U (m)) − λ
ε,
(
m+ 1

2

))}2

Δx

≤ 1

4

K∑

k=0

′′
{(

e(m+1)
k

)2 +
(
e(m)
k

)2
}

Δx + 2
K∑

k=0

′′
⎧
⎨

⎩

1

4

(

ξ

(
m+ 1

2

)

1,k

)2

+ 1

4

(

ξ

(
m+ 1

2

)

2,k

)2

+
(

φ̃
(
U (m+1)
k ,U (m)

k

)
− φ

(
m+ 1

2

)

k

)2

+
(

λε
d(U

(m+1),U (m)) − λ
ε,
(
m+ 1

2

))2
⎫
⎬

⎭
Δx

≤ 1

4

K∑

k=0

′′ (e(m+1)
k

)2
Δx + 1

4

K∑

k=0

′′ (e(m)
k

)2
Δx + 1

2

K∑

k=0

′′
(

ξ

(
m+ 1

2

)

1,k

)2

Δx
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+ 1

2

K∑

k=0

′′
(

ξ

(
m+ 1

2

)

2,k

)2

Δx + 2
K∑

k=0

′′
(

φ̃
(
U (m+1)
k ,U (m)

k

)
− φ

(
m+ 1

2

)

k

)2

Δx

+ 2L

(

λε
d(U

(m+1),U (m)) − λ
ε,
(
m+ 1

2

))2

where we have used the inequality ab ≤ (1/2)(a2 + b2) for all a, b ∈ R in the second
inequality and the inequality

(a1 + · · · + an)
2 ≤ n(a21 + · · · + a2n) for all a1, . . . , an ∈ R (46)

in the third inequality. This completes the proof. 	

Lemma 5

{

λε
d(U

(m+1),U (m)) − λ
ε,
(
m+ 1

2

)}2

≤ 2

L

∥
∥
∥
∥φ̃(U (m+1),U (m)) − φ

(
m+ 1

2

)∥
∥
∥
∥

2

L2
d

+ C2

8ε4
Δx4,

(47)

where

C := sup
0≤x≤L
0≤t≤T

∣
∣
∣
∣

∂2

∂x2
(u − u3)

∣
∣
∣
∣ .

Proof By using the inequality (46), we have

{

λε
d(U

(m+1),U (m)) − λ
ε,
(
m+ 1

2

)}2

=
⎧
⎨

⎩
− 1

L

K∑

k=0

′′φ̃
(
U (m+1)
k ,U (m)

k

)
Δx + 1

L

∫ L

0

2

ε2
(u − u3)dx

∣
∣
∣
∣
t=

(
m+ 1

2

)
Δt

⎫
⎬

⎭

2

= 1

L2

[{
K∑

k=0

′′
(

φ̃
(
U (m+1)
k ,U (m)

k

)
− φ

(
m+ 1

2

)

k

)

Δx

}

+
⎧
⎨

⎩

K∑

k=0

′′φ
(
m+ 1

2

)

k Δx −
∫ L

0

2

ε2
(u − u3)dx

∣
∣
∣
∣
t=

(
m+ 1

2

)
Δt

⎫
⎬

⎭

⎤

⎦

2

≤ 2

L2

{
K∑

k=0

′′
(

φ̃
(
U (m+1)
k ,U (m)

k

)
− φ

(
m+ 1

2

)

k

)

Δx

}2

+ 2

L2

⎧
⎨

⎩

K∑

k=0

′′φ
(
m+ 1

2

)

k Δx −
∫ L

0

2

ε2
(u − u3)dx

∣
∣
∣
∣
t=

(
m+ 1

2

)
Δt

⎫
⎬

⎭

2

.
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Since

(
K∑

k=0

′′ fkΔx

)2

≤ L
K∑

k=0

′′ f 2k Δx

for all { fk}Kk=0 ∈ R
K+1, we obtain

2

L2

{
K∑

k=0

′′
(

φ̃
(
U (m+1)
k ,U (m)

k

)
− φ

(
m+ 1

2

)

k

)

Δx

}2

≤ 2

L2 ·L
K∑

k=0

′′
(

φ̃(U (m+1)
k ,U (m)

k )− φ

(
m+ 1

2

)

k

)2

Δx= 2

L

∥
∥
∥
∥φ̃(U (m+1),U (m))− φ

(
m+ 1

2

)∥
∥
∥
∥

2

L2
d

.

Here, we define

Φ

(
m+ 1

2

)

(x) := u

(

x,

(

m + 1

2

)

Δt

)

−
{

u

(

x,

(

m + 1

2

)

Δt

)}3

for all x ∈ [0, L].

Since u(·, t) ∈ C2([0, L]) for any fixed t ∈ [0, T ], we obtain Φ

(
m+ 1

2

)

∈ C2([0, L]).
Therefore, we have

∣
∣
∣
∣
∣
∣

K∑

k=0

′′φ
(
m+ 1

2

)

k Δx −
∫ L

0

2

ε2
(u − u3)dx

∣
∣
∣
∣
t=

(
m+ 1

2

)
Δt

∣
∣
∣
∣
∣
∣

= 2

ε2

∣
∣
∣
∣
∣

K∑

k=0

′′Φ
(
m+ 1

2

)

(kΔx)Δx −
∫ L

0
Φ

(
m+ 1

2

)

(x)dx

∣
∣
∣
∣
∣

≤ 2

ε2
· 1
8
Δx2

∫ L

0

∣
∣
∣
∣

∂2

∂x2
Φ

(
m+ 1

2

)

(x)

∣
∣
∣
∣ dx

= 1

4ε2
Δx2

∫ L

0

∣
∣
∣
∣
∣
∣

∂2

∂x2
(u − u3)

∣
∣
∣
∣
t=

(
m+ 1

2

)
Δt

∣
∣
∣
∣
∣
∣
dx ≤ CL

4ε2
Δx2

from the Euler–Maclaurin summation formula. Thus, we obtain

2

L2

⎧
⎨

⎩

K∑

k=0

′′φ
(
m+ 1

2

)

k Δx −
∫ L

0

2

ε2
(u − u3)dx

∣
∣
∣
∣
t=

(
m+ 1

2

)
Δt

⎫
⎬

⎭

2

≤ 2

L2 · C
2L2

16ε4
Δx4= C2

8ε4
Δx4.

From the above, we have (47). 	
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Lemma 6

∥
∥
∥
∥φ̃(U (m+1),U (m)) − φ

(
m+ 1

2

)∥
∥
∥
∥

2

L2
d

≤ 4

ε4

(
1 + 3C2

2

)2
(∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

+
∥
∥
∥e(m)

∥
∥
∥
2

L2
d

)

+ 1

12

∥
∥
∥
∥
∥
ξ

(
m+ 1

2

)

3

∥
∥
∥
∥
∥

2

L2
d

+ 1

12

∥
∥
∥
∥
∥
ξ

(
m+ 1

2

)

4

∥
∥
∥
∥
∥

2

L2
d

,

where

C2 := max
0≤l≤M

{

max
0≤k≤K

∣
∣
∣U

(l)
k

∣
∣
∣ , sup

x∈[0,L]
|u(x, lΔt)|

}

,

ξ

(
m+ 1

2

)

3,k := 2
√
3

ε2
C2

(
u(m+1)
k − u(m)

k

)2
,

ξ

(
m+ 1

2

)

4,k := 8
√
3

ε2

(
1 + 3C2

2

)
{
(
s〈1〉
m − 1

)
u

(
m+ 1

2

)

k

}

,

for k = 0, 1, . . . , K.

Remark 1 Note that C2 is finite since the proposed scheme is numerically stable and
the solution u(·, t) ∈ C0([0, L]) for any fixed t ∈ [0, T ].
Proof We denote

φ̃(U (m+1),U (m)) − φ

(
m+ 1

2

)

=
4∑

i=1

I i

where I i = {Ii,k}Kk=0 with

I1,k := φ̃
(
U (m+1)
k ,U (m)

k

)
− φ̃

(
u(m+1)
k ,U (m)

k

)
,

I2,k := φ̃
(
u(m+1)
k ,U (m)

k

)
− φ̃

(
u(m+1)
k , u(m)

k

)
,

I3,k := φ̃
(
u(m+1)
k , u(m)

k

)
− 2

ε2

⎧
⎨

⎩
s〈1〉
m u

(
m+ 1

2

)

k −
(

s〈1〉
m u

(
m+ 1

2

)

k

)3
⎫
⎬

⎭
,

I4,k := 2

ε2

⎧
⎨

⎩
s〈1〉
m u

(
m+ 1

2

)

k −
(

s〈1〉
m u

(
m+ 1

2

)

k

)3
⎫
⎬

⎭
− φ

(
m+ 1

2

)

k .

Then, we obtain the following estimates:

|I1,k | ≤ 1

ε2

(
1 + 3C2

2

) ∣
∣
∣e

(m+1)
k

∣
∣
∣ ,
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|I2,k | ≤ 1

ε2

(
1 + 3C2

2

) ∣
∣
∣e

(m)
k

∣
∣
∣ ,

|I4,k | ≤ 2

ε2

(
1 + 3C2

2

)
∣
∣
∣
∣
∣
(s〈1〉

m − 1)u

(
m+ 1

2

)

k

∣
∣
∣
∣
∣
.

The estimate for I3:

|I3,k | ≤ 1

2ε2
C2

(
u(m+1)
k − u(m)

k

)2

is obtained by

a3 + a2b + ab2 + b3

2
− (a + b)3

4
= (a + b)(a − b)2

4
for all a, b ∈ R.

From the above estimates, we obtain

∥
∥
∥
∥φ̃(U (m+1),U (m)) − φ

(
m+ 1

2

)∥
∥
∥
∥

2

L2
d

≤ 4
4∑

i=1

‖I i‖2L2
d

≤ 4

⎧
⎨

⎩

1

ε4
(1 + 3C2

2 )
2
(∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

+
∥
∥
∥e(m)

∥
∥
∥
2

L2
d

)

+ 1

4ε4
C2
2

∥
∥
∥
∥

(
u(m+1)
k − u(m)

k

)2
∥
∥
∥
∥

2

L2
d

+ 4

ε4

(
1 + 3C2

2

)2
∥
∥
∥
∥
∥
(s〈1〉

m − 1)u

(
m+ 1

2

)

k

∥
∥
∥
∥
∥

2

L2
d

⎫
⎬

⎭

= 4

ε4

(
1 + 3C2

2

)2
(∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

+
∥
∥
∥e(m)

∥
∥
∥
2

L2
d

)

+ 1

12

∥
∥
∥
∥
∥

2
√
3

ε2
C2

(
u(m+1)
k −u(m)

k

)2
∥
∥
∥
∥
∥

2

L2
d

+ 1

12

∥
∥
∥
∥
∥

8
√
3

ε2

(
1 + 3C2

2

) (
s〈1〉
m − 1

)
u

(
m+ 1

2

)

k

∥
∥
∥
∥
∥

2

L2
d

= 4

ε4

(
1 + 3C2

2

)2
(∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

+
∥
∥
∥e(m)

∥
∥
∥
2

L2
d

)

+ 1

12

∥
∥
∥
∥
∥
ξ

(
m+ 1

2

)

3

∥
∥
∥
∥
∥

2

L2
d

+ 1

12

∥
∥
∥
∥
∥
ξ

(
m+ 1

2

)

4

∥
∥
∥
∥
∥

2

L2
d

.

This completes the proof. 	

Lemma 7

(1 − ΔtC3)

∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

≤
∥
∥
∥e(m)

∥
∥
∥
2

L2
d

+ Δt

⎧
⎨

⎩

⎛

⎝
4∑

i=1

∥
∥
∥
∥
∥
ξ

(
m+ 1

2

)

i

∥
∥
∥
∥
∥

2

L2
d

⎞

⎠ + C2L

2ε4
Δx4

⎫
⎬

⎭
,
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where C3 := 1 + (96/ε4)(1 + 3C2
2 )

2.

Proof From Lemmas 4, 5 and 6, we have

1

Δt

(∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

−
∥
∥
∥e(m)

∥
∥
∥
2

L2
d

)

≤ 1

2

(∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

+
∥
∥
∥e(m)

∥
∥
∥
2

L2
d

)

+
∥
∥
∥
∥
∥
ξ

(
m+ 1

2

)

1

∥
∥
∥
∥
∥

2

L2
d

+
∥
∥
∥
∥
∥
ξ

(
m+ 1

2

)

2

∥
∥
∥
∥
∥

2

L2
d

+ 12

∥
∥
∥
∥φ̃(U (m+1),U (m)) − φ

(
m+ 1

2

)∥
∥
∥
∥

2

L2
d

+ C2L

2ε4
Δx4

≤
{
1

2
+ 48

ε4

(
1+3C2

2

)2
}(∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

+
∥
∥
∥e(m)

∥
∥
∥
2

L2
d

)

+
⎛

⎝
4∑

i=1

∥
∥
∥
∥
∥
ξ

(
m+ 1

2

)

i

∥
∥
∥
∥
∥

2

L2
d

⎞

⎠+C2L

2ε4
Δx4.

Hence, we obtain the following inequality:

1

Δt

(∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

−
∥
∥
∥e(m)

∥
∥
∥
2

L2
d

)

≤
{
1

2
+ 48

ε4

(
1 + 3C2

2

)2
}

· 2
∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

+
⎛

⎝
4∑

i=1

∥
∥
∥
∥
∥
ξ

(
m+ 1

2

)

i

∥
∥
∥
∥
∥

2

L2
d

⎞

⎠ + C2L

2ε4
Δx4

= C3

∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

+
⎛

⎝
4∑

i=1

∥
∥
∥
∥
∥
ξ

(
m+ 1

2

)

i

∥
∥
∥
∥
∥

2

L2
d

⎞

⎠ + C2L

2ε4
Δx4.

This completes the proof. 	

Theorem 4 Assume that the target Eq. (12) has a solution such that u ∈ C4([0, L] ×
[0, T ]). If Δt satisfies the condition (27) and Δt < 1/(2C3), then there exists a
constant C4 such that

{
K∑

k=0

′′ (U (m)
k − u(kΔx,mΔt)

)2
Δx

} 1
2

≤ C4
√
LT eC3T (Δx2 + Δt2)

for m = 1, . . . , M.

This theorem means that the solution of the scheme (13) converges to the solution of
the target Eq. (12) in the sense of discrete L2-norm and that the convergence rate is
O(Δx2 + Δt2).

Proof If the target Eq. (12) has a solution such that u ∈ C4([0, L] × [0, T ]), then by
using Taylor’s theorem,

ξ

(
m+ 1

2

)

1,k = −Δt2

12

∂3u

∂t3

∣
∣
∣
∣
(x,t)=(kΔx,t1)

,
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ξ

(
m+ 1

2

)

2,k = Δx2

6

∂4u

∂x4

∣
∣
∣
∣
(x,t)=(x1,

(
m+ 1

2

)
Δt)

+ Δt2

4

∂4u

∂x2∂t2

∣
∣
∣
∣
(x,t)=(x2,t2)

,

ξ

(
m+ 1

2

)

3,k = 2
√
3

ε2
C2Δt2

(
∂u

∂t

∣
∣
∣
∣
(x,t)=(kΔx,t3)

)2

,

ξ

(
m+ 1

2

)

4,k =
√
3

ε2
(1 + 3C2

2 )Δt2
∂2u

∂t2

∣
∣
∣
∣
∣
(x,t)=(kΔx,t4)

,

where t1, t2, t3, t4 ∈ [mΔt, (m + 1)Δt] and x1, x2 ∈ [(k − 1)Δx, (k + 1)Δx] for
m = 0, 1, . . . , M − 1 and k = 0, . . . , K . From these results, we obtain

4∑

i=1

∥
∥
∥
∥
∥
ξ

(
m+1

2

)

i

∥
∥
∥
∥
∥

2

L2
d

+C2L

2ε4
Δx4≤C2

4 L(Δx2+Δt2)2 (m = 0, 1, . . . , M − 1), (48)

where

C4 := sup
0≤x≤L
0≤t≤T

max

{
1

12

∣
∣
∣
∣
∂3u

∂t3

∣
∣
∣
∣ ,

1

6

∣
∣
∣
∣
∂4u

∂x4

∣
∣
∣
∣ ,

1

4

∣
∣
∣
∣

∂4u

∂t2∂x2

∣
∣
∣
∣ ,

2
√
3

ε2
C2

(
∂u

∂t

)2

,

√
3

ε2
(1 + 3C2

2 )

∣
∣
∣
∣
∂2u

∂t2

∣
∣
∣
∣ ,

1

2ε4

∣
∣
∣
∣

∂2

∂x2
(u − u3)

∣
∣
∣
∣

}

.

If Δt < 1/(2C3), then 0 < 1 − 2ΔtC3 ≤ 1 − ΔtC3 ≤ 1 and

1

1 − ΔtC3
≤ 1 + 2ΔtC3 =: C̃3. (49)

Hence, by using Lemma 7, (48) and (49), we have

∥
∥
∥e(m+1)

∥
∥
∥
2

L2
d

≤ C̃3

∥
∥
∥e(m)

∥
∥
∥
2

L2
d

+ C̃3 · ΔtC2
4 L(Δx2 + Δt2)2

for m = 0, 1, . . . , M − 1. Therefore, by using this inequality iteratively, for m =
0, 1, . . . , M ,

∥
∥
∥e(m)

∥
∥
∥
2

L2
d

≤ C̃3

∥
∥
∥e(m−1)

∥
∥
∥
2

L2
d

+ C̃3 · ΔtC2
4 L(Δx2 + Δt2)2

≤ (C̃3)
2
∥
∥
∥e(m−2)

∥
∥
∥
2

L2
d

+ ((C̃3)
2 + C̃3) · ΔtC2

4 L(Δx2 + Δt2)2

≤ · · · · · · · · ·

≤ (C̃3)
m
∥
∥
∥e(0)

∥
∥
∥
2

L2
d

+ ΔtC2
4 L(Δx2 + Δt2)2

m∑

j=1

(C̃3)
j .
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Here, ‖e(0)‖2
L2
d

= 0 since e(0)
k = 0 (k = 0, . . . , K ). Moreover, by using 1 + x ≤ ex

for all x ≥ 0,

m∑

j=1

(C̃3)
j =

m∑

j=1

(1 + 2ΔtC3)
j ≤

m∑

j=1

exp( j · 2ΔtC3) ≤ exp(M · 2ΔtC3)

M∑

j=1

1

= M exp

(

M · 2 T

M
C3

)

= M exp(2C3T ).

Hence, we obtain

∥
∥
∥e(m)

∥
∥
∥
2

L2
d

≤ ΔtC2
4 L(Δx2 + Δt2)2 · Me2C3T = C2

4 LT e
2C3T (Δx2 + Δt2)2

for m = 1, . . . , M . This completes the proof. 	


6 Numerical experiments

In this section, we demonstrate through numerical experiments that the proposed
scheme is stable and that the numerical solution of the proposed scheme is efficient.
Moreover, we compare the proposed scheme with the Crank–Nicolson (CN) scheme.
The concrete form of the CN scheme for (12) is, for m = 0, 1, . . .,

U (m+1)
k −U (m)

k

Δt
= δ

〈2〉
k

(
U (m+1)
k +U (m)

k

2

)

+ F̃
(
U (m+1)
k ,U (m)

k

)

− 1

L

K∑

k=0

′′ F̃
(
U (m+1)
k ,U (m)

k

)
Δx (k = 0, . . . , K ),

where

F̃
(
U (m+1)
k ,U (m)

k

)
:= 2

ε2

⎡

⎢
⎣

(
U (m+1)
k +U (m)

k

2

)

−

⎧
⎪⎨

⎪⎩

(
U (m+1)
k

)3+
(
U (m)
k

)3

2

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦ .

We simulate all our numerical computations by using Julia language.

6.1 Numerical solutions

The left figures show the numerical solution obtained by the proposed scheme. The
right ones show that obtained by the CN scheme.
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Fig. 1 Numerical solutions of (1) (ε = 0.02) obtained by the proposed scheme and the CN scheme with
Δx = 1/100 and Δt = 1/5000

Fig. 2 Numerical solutions of (1) (ε = 0.02) obtained by the proposed scheme and the CN scheme with
Δx = 1/200 and Δt = 1/5000

• Case 1
Fig. 1 shows numerical results for ε = 0.02 obtained byDVDMand the CNmethod

with Δx = 1/100 and Δt = 1/5000. The initial data in Fig. 1 is

u(x, 0) = 0.26 + 0.07 cos(8πx) + 0.41 sin

(
11

2
πx

)

+ 0.24 cos(7πx). (50)

The solution by the proposed scheme arrives at the steady state around at t = 1.5,
whereas the one by the CN scheme is stable around at t = 4, namely, a little late time.
In order to analyze the difference of these results, we refine the space mesh size.
• Case 2
In Fig. 2, we takeΔx by half, i.e.,Δx = 1/200. The result of the CN scheme improves.
Both solutions arrive at the steady state around at t = 1.5. Furthermore, when we take
smaller spacemesh size, both solutions also arrive at the steady state around at t = 1.5.
Hence, we expect that the solution by the proposed scheme is more reliable than that
by the CN scheme when the space mesh size is coarse.

When we change the initial data into another one, the results are also different from
each other. We remark that the direction of the time evolution is reverse to the previous
one.

123



A stable and structure-preserving scheme for a non-local Allen–Cahn equation 1277

Fig. 3 Numerical solutions of (1) (ε = 0.03) obtained by the proposed scheme and the CN scheme with
Δx = 1/100 and Δt = 1/1000

Fig. 4 Numerical solutions of (1) (ε = 0.03) obtained by the proposed scheme and the CN scheme with
Δx = 1/100 and Δt = 1/2000

• Case 3
Figure 3 shows numerical results for ε = 0.03 obtained by DVDMand the CNmethod
with Δx = 1/100 and Δt = 1/1000. The initial data in Fig. 3 is

u(x, 0) = 0.01 + 0.3 cos(4πx)+0.08 sin

(
13

2
πx

)

(cos(4πx) − 1)+0.11 cos(18πx).

(51)

Both solutions arrive at the steady state around at t = 80. However, the steady state of
the solution by the CN scheme is different from that by the proposed scheme. As with
previous numerical experiments, in order to analyze the difference of these results, we
refine the time mesh size.
• Case 4
In Fig. 4, we take Δt by half, i.e., Δt = 1/2000. The result of the CN scheme
improves. The steady state of the solution by the CN scheme coincides with that by
the proposed scheme. In addition, when we take smaller time mesh size, the steady
state of the solution by theCN scheme also coincideswith that by the proposed scheme.
Therefore, we also expect that the solution by the proposed scheme is more reliable
than that by the CN scheme when the time mesh size is coarse.
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Fig. 5 The difference between the volume of the numerical solution in Fig. 1 and one of the initial data
(50)

Fig. 6 The difference between the volume of the numerical solution in Fig. 3 and one of the initial data
(51)

6.2 Conservative property

Next, we check the conservative property. The left figures show the results obtained
by the proposed scheme. The right ones show those obtained by the CN scheme.
• Case 1
Figure 5 shows the following discrepancies:

K∑

k=0

′′U (m)
k Δx −

K∑

k=0

′′U (0)
k Δx (m = 0, 1, . . .).

in Fig. 1. Theoretically, this value should be conserved. These graphs show that the
mass is conserved numerically.
• Case 3
Figure 6 shows the discrepancies in Fig. 3. These graphs also show that the mass is
conserved numerically.
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Fig. 7 The discrete global energy of the numerical solution in Fig. 1. The time axis is in log-scale

Fig. 8 The discrete global energy of the numerical solution in Fig. 3. The time axis is in log-scale

6.3 Dissipative property

Lastly, we check the dissipative property of energy. The left figures show the results
obtained by the proposed scheme. The right ones show those obtained by the CN
scheme.
• Case 1
Figure 7 shows the discrete global energies:

Jd
(
U (m)

)
=

K∑

k=0

′′Gd,k

(
U (m)

)
Δx (m = 0, 1, . . .).

in Fig. 1. Theoretically, this value should decrease. These graphs show that the energy
decreases numerically.
• Case 3
Figure 8 shows the discrete global energies in Fig. 3. In analogy with the Case 1, these
graphs show that the decrease of the global energy is preserved numerically.

From the above, we can obtain the expected results. Additionally, the results of our
scheme are better than those of the CN scheme when the mesh size is coarse.
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7 Conclusion

We proposed a finite difference scheme to obtain numerical solutions of a non-local
Allen–Cahn equation. The solution of the proposed scheme satisfies the discrete con-
servation of mass and the discrete decrease of the global energy.Moreover, the scheme
is stable and has a unique solution. We also prove the error estimate for the scheme.
Numerical experiments demonstrated that the proposed scheme is efficient and that
our proposed scheme is more reliable than the Crank–Nicolson schemewhen themesh
size is coarse.
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