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Abstract
Researching post-quantum cryptography is now an important task in cryptography.
Although various candidates of post-quantum cryptosystems (PQC) have been con-
structed, sizes of their public keys are large. Okumura constructed a candidate of PQC
whose security is expected to be based on certain Diophantine equations (DEC). Oku-
mura analysis suggests that DEC achieves the high security with small public key
sizes. This paper proposes a polynomial time-attack on the one-way property of DEC.
We reduce the security of DEC to finding special short lattice points of some low-rank
lattices derived from public data. The usual LLL algorithm could not find the most
important lattice point in our experiments because of certain properties of the lattice
point. Our heuristic analysis leads us to using a variant of the LLL algorithm, called
a weighted LLL algorithm by us. Our experiments suggest that DEC with 128 bit
security becomes insecure by our attack.

Keywords Weighted LLL reduction · Public-key cryptosystem · Post-quantum
cryptosystem · Diophantine equation

Mathematics Subject Classification 94A60 · 11Y16

1 Introduction

Researching post-quantum cryptography is now an important task in cryptography. In
fact, National Institute of Standards and Technology published a draft of the report
on post-quantum cryptography NISTIR 8105 [23] (see also their announcement at
PQCrypto 2016 [24]). Although various cryptosystems expected to be post-quantum
cryptosystems (PQC) have been already constructed, see [7,11] for details, sizes of
their public keys are large. Thus finding computationally-hard problems which allow
us to construct PQC with public keys of small sizes is a very important task in cryp-
tography.
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A Diophantine problem is well-known to be a computationally-hard problem in
mathematics [12], and there are some cryptographic schemes based on the problem
[6,17,20,31], which are expected to have resistance to quantum algorithms. (Note that
Diophantine problem here means a problem to find integral or rational zeros of a
given multivariate polynomial with integer coefficients and high degree.) However, a
polynomial time-attack on the one-way property of the cryptosystem [20] is proposed
[10], and Proposition 2 in [17] suggests that the protocols [6,17,31] are impractical.

We can also consider the Diophantine problems over other rings. The Algebraic
Surface Cryptosystem (ASC) [4] is based on the difficulty of the section finding prob-
lem,which can be viewed as theDiophantine problem over global function fields. Such
the Diophantine problem is shown to be unsolvable in general [26,29]. The security
analysis suggests that ASC with public keys of sizes of about 500 bits achieves high
security, see [4]. However, the ideal decomposition attack [15] breaks the one-way
property of ASC.

Okumura [25] constructed a candidate of PQC of which the security is expected to
be based on the difficulty of solving a special class of Diophantine equations, called
Diophantine equations of degree increasing type, over Z (we will recall a definition
of a polynomial of degree increasing type in Sect. 3). We call this cryptosystem DEC
for short. Okumura shows that the solvability of Diophantine equations of degree
increasing type is undecidable in general, see Remark 3.2 of [25]. DEC is a number
field analogue of ASC and use the twisted plaintext, obtained from a plaintext by using
RSA-likemodular arithmetic, and some random polynomials with large coefficients in
the encryption process. These are the main ideas of DEC to resist the analogues of all
attacks [15,18,28,30] onASC and cryptosystems [1–3], which are proposed previously
asASC. In Sect. 4 of [25], Okumura points out that the above ideas increase the number
of possible parameters in DEC, and that breaking the one-way property of DEC will
become infeasible. Okumura also points out that one can decode a plaintext correctly
from the twisted plaintext by using polynomials of degree increasing type as public
keys. We will review DEC and its recommended parameters briefly in Sect. 3.

Another important property of DEC in post-quantum cryptography is that we may
use public keys with small sizes, e.g., about 1,200 bits with 128 bit security (see
Remark 9). The size (1,200 bits) is about 10 times smaller than sizes of public keys
used in cryptosystems [21,22,27], which are well-known to be efficient among the
candidates of PQC, with 128 bit security. Thus we consider that the security analysis
of DEC is an important task in cryptography.

1.1 Our contribution

In this paper, we propose a polynomial time-attack on DEC. We show a linearization
technique to transform the one-way property ofDEC tofinding appropriate solutions of
linear systems obtained from public data. The use of three polynomials as a ciphertext
enables us to use the linearization technique which constructs linear systems. This
is the first weakness of DEC. Our attack consists of three steps. In each step, we
have a linear system and need to find its appropriate solution, i.e., we need to find an
appropriate lattice point in the lattice which is the solution space of the linear system.
We use a solution obtained in the first (resp. second) step to construct a linear system in
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the second (resp. third) step. After finding appropriate solutions of the linear systems
in all the steps, it is possible to recover a plaintext with sufficiently high probability
by applying the Babai nearest plane algorithm [5] and some modular arithmetic.

Our various experiments on our attack in Sect. 6 suggest that finding a correct solu-
tion results in breaking DEC with sufficiently high probability. More precisely, after
we find a correct solution in the first step, we can solve the linear systems in the second
and third steps (note that in the third step, we may use an incorrect solution obtained
in the second step). Thus the success of the first step is most important for our attack.

The rank of the lattice occurring in the first step is low, e.g., 3-rank in almost all
cases, and a target lattice point in the first step is relatively short in the lattice. The
quality of basis reduction algorithms such as the LLL algorithm [19] depends heavily
on the rank of a lattice, and the LLL algorithm outputs a shortest lattice point in many
cases for 3-rank lattices, see [19]. Thus it seems that one can succeed in the first step
by using the LLL algorithm (or other basis reduction algorithms). However, as we will
see in Sect. 4.3, the usual LLL algorithm does not seem to work well for finding the
target lattice point in the first step, where by the “usual LLL algorithm”, we mean the

LLL algorithm in terms of p-norms (1 ≤ p ≤ ∞) ‖a‖p := (|a1|p + . . . + |an|p)
1
p .

We heuristically analyse a reason why the usual LLL algorithm is not useful in our
attack as follows: the target lattice point in the first step is not shortest, in terms of p-
norms (1 ≤ p ≤ ∞), with high probability, but some of its entries are comparatively
small. In other words, the target lattice point is a comparatively short (not neccessarily
shortest) in terms of well-known norms and has entries of unbalanced sizes.

1.2 Weighted LLL

In order to find lattice points having such properties, we find a special norm which
makes the target lattice point in the first step (nearly) shortest by a heuristic way and
apply a special LLL algorithm in terms of the special norm. We call the special norm
and the special LLL algorithm the weighted norm and the weighted LLL algorithm,
respectively. By a weighted norm for a vector a = (a1, ..., an), we mean the norm:

‖a‖ =
√

(a1w1)
2 + · · · + (anwn)

2,

where wi ’s are positive real numbers, which we call the weight factors. Note that
as we already mentioned above, using other well-known norms, e.g., the p-norms
(1 ≤ p ≤ ∞), in the LLL algorithm does not seem to be effective in finding the target
lattice point.

We also note that using the weighted LLL algorithm can be also considered as using
a re-scaling of a lattice to find lattice points with entries of unbalanced sizes in an LLL
reduced basis of the lattice. Such a method can be also found in Coppersmith’s method
[9] (see also Chapter 19 of [16]) and in Faugére et al.’s method [14]. In our method,
each entries of the weighted norm are 2-power integers to use the knowledge of the
bit length of entries of our target lattice point as in Faugére et al.’s method [14] (the
possibility of knowing the bit length of entries of our target lattice point is the second
weakness of DEC).
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1.3 Experimental verification of our attack

Our many experiments in Sect. 6 suggest that the weighted LLL algorithm can find
target lattice points in the first step of our attack with high probability (the probability
being about from 70 to 90%) for the recommended parameters in Sect. 3. These results
suggest that the weighted LLL algorithm is effective in cryptanalysis of cryptosystems
whose security are reduced to finding lattice points with special properties: they are
not shortest, but the bit length of their entries are almost known and comparatively
small among entries of lattice points in certain lattices. In addition, our experiments
also suggest that our attack breaks the one-way property of DEC with probability
being about from 20 to 40% (this probability is sufficient in practical cryptanalysis).
Our detailed complexity analysis on our attack and our experiments show that our
attack is performed in polynomial time, and thus we conclude that our attack via the
weighted LLL algorithm is practical and makes DEC insecure.

This paper is organized as follows: In Sect. 2, we give a definition of a weighted
norm and describe the weighted LLL algorithm. In Sect. 3, we give a brief review
of DEC. In Sect. 4, we describe the outline and some assumptions of our attack, and
we also give an algorithm of our attack and a toy example to illustrate our attack. In
Sect. 5, we analyse the complexity on our attack. In Sect. 6, we give some experimental
results on our attack.

Notation

Throughout this paper, we denote by R[x] := R[x1, . . . , xn] the polynomial ring with
n variables over a ring R. For every i = (i1, . . . , in) ∈ (

Z≥0
)n and a = (a1, . . . , an) ∈

Rn , we denote the element ai11 · · · ainn ∈ R, the monomial xi11 · · · xinn ∈ R[x] and the
value

∑n
k=1 ik by ai , x i and

∑
i , respectively. We can write any element f

(
x
) =

f (x1, . . . , xn) ∈ R[x] � {0} (sometimes we also write f simply) in a unique way as
a sum of terms:

f
(
x
) =

∑
i∈Λ

ci x
i ,

where Λ is the finite subset of
(
Z≥0

)n and ci ∈ R � {0} for i ∈ Λ. We then write
ci ( f ) := ci for i ∈ Λ f := Λ. We call Λ f the support of f . The total degree of f
is denoted by w f . For every element a = (a1, . . . , an) ∈ Rn and invertible element
d ∈ R×, we denote the element (a1/d, . . . , an/d) ∈ Rn by a/d. Then we denote the
value of f

(
x
)
at a/d by f (a1/d, . . . , an/d) or f

(
a/d

)
. In addition, if R = Z or Q,

then we use the following notation:

Γ f := {(i, bi
) ∈ Λ f × Z>0 ; 2bi−1 ≤ |ci ( f ) | < 2bi },

H ( f ) := max{|ci ( f ) | ; i ∈ Λ f }.

We call H ( f ) the height of f . In addition, if for a polynomial f ∈ Z[x], the support
Λ f = {i1, . . . , iq} is ordered by the order coming from the lexicographical order on
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the monomials of f , then we denote by f =
(
ci1( f ), . . . , ciq ( f )

)
the sequence of

the ordered coefficients of f .
An m-dimensional lattice is defined as a discrete additive subgroup of an m-

dimensional vector space over R. It is well-known that for any lattice L, there exist
R-linearly independent vectors generating L as a Z-module. The rank of L is its rank
as a Z-module. For any lattice in R

m and its basis {b1, . . . , br }, let U be an r × m
matrix whose i-th row vector coincides with bi for each i . Then we call U the basis
matrix of the lattice. Let 〈·, ·〉 : R

n × R
n → R be the natural inner product for some

n ∈ Z>0. For a vector v ∈ R
n , we denote the Euclidean norm of v by ‖v‖. We define

the rounding function 
·� : R → Z as 
c� := 
c + 1
2� for any c ∈ R. Let M be an

m×nmatrix overZ and ϕM the homomorphism as additive groups betweenZ
m → Z

n

defined by v 
→ vM. Then the kernel of ϕM is a lattice in R
m , and we call it the kernel

lattice of M.

2 The weighted LLL algorithm

In this section, we explain the weighted LLL algorithm, which is a key of our attack
in Sect. 4, briefly. First, we define a weighted norm and a weighted lattice. They are
useful for describing the weighted LLL algorithm.

Definition 1 Given a vectorw = (w1, . . . , wm) ∈ (R>0)
m , theweighted norm ‖ ·‖w :

R
m → R for w is defined as follows:

‖a‖w :=
√

(a1w1)
2 + · · · + (amwm)2 , wherea = (a1, . . . , am) ∈ R

m .

A weighted lattice forw in R
m is defined as a lattice endowed with the weighted norm

for w (this means that we always mean the weighted norm on the weighted lattice
when we consider a norm on the weighted lattice). Given a lattice L ⊂ R

m and a
vector w ∈ (R>0)

m , we denote L by Lw whenever we endow L with the structure of
a weighted lattice for w.

For a lattice L ⊂ R
m and a vector w = (w1, . . . , wm) ∈ (R>0)

m , set a diagonal
matrix W whose (i, i)-entry is wi for 1 ≤ i ≤ m. We consider the isomorphism
fW : R

m −→ R
m by x 
→ xW . Then, it is easy to show the equivalence of finding

shortest lattice points, related with each other, in two lattices Lw and fW (L).
The weighted LLL algorithm for w is an algorithm to compute an LLL reduced

basis (with respect to ‖ ·‖w) ofLw (we call such a basis a weighted LLL reduced basis
for w in this paper).

The most important lattice point in our attack is not necessarily shortest in a low-
rank lattice, but only some of its entries are comparatively small. This property leads
us to applying the weighted LLL algorithm to find such a lattice point by carefully
controlling the entries of a weighted LLL reduced basis, see Sect. 4.3.

Remark 2 Controlling the entries of a basis output by the LLL algorithm is used in
Coppersmith’s method [9] and Faugére et al.’s method [14], see also Chapter 19 of
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[16]. In their method, the scale of a lattice (or equivalently an inner product used in
the LLL algorithm) is changed by heuristic ways. One can conduct such changes by
changing a norm from the Euclidean norm to a weighted norm for some weight. In
particular, our method for choosing a weighted norm is the same as the method in
[14], see Step 1-2 of our algorithm in Sect. 4.2.

3 Brief review of DEC

In this section, we review DEC briefly, see Sect. 3 in [25] for details. As we mentioned
in Sect. 1, DEC is constructed as a candidate of PQC and has the property, which is
strongly desired in post-quantum cryptography, that sizes of public keys in DEC is
small, e.g., about 1,200 bits with 128 bit security, see Remark 9. Note that sizes of
public keys in cryptosystems [21,22,27], which are well-known to be efficient among
the candidates of PQC, are about 10 times larger than 1,200 bits.

3.1 Definiton of polynomials of degree increasing type

Definition 3 Let X
(
x
) ∈ Z[x] be a non-zero polynomial and define a map

σ : Z
n −→ Z≥0 ; i 
→

∑
i,

where we recall that
∑

i = ∑
1≤k≤n ik for i = (i1, . . . , in). The polynomial X is of

degree increasing type if σ |ΛX is injective.

Remark 4 Let X
(
x
)
be a non-zero polynomial of Z[x].

(1) From Definition 3, it is easy to see that X
(
x
)
is of degree increasing type if and

only if the total degrees of the monomials of X
(
x
)
are different each other.

(2) Let X be a polynomial of degree increasing type. By the following order �,
the support ΛX becomes a totally ordered set: for two elements (i1, . . . , in)
and ( j1, . . . , jn) in ΛX , we have (i1, . . . , in) � ( j1, . . . , jn) if and only if
i1 + · · · + in > j1 + · · · + jn .

Throughout this paper, whenever a polynomial X is of degree increasing type, we
endow ΛX with the total order given in Remark 4 (2).

Example 5 The polynomial X (x, y, z) := 3x3y2z − 4x2y2 − xyz + 5yz + y + 11 ∈
Z[x, y, z] is of degree increasing type.

Now, we describe DEC according to [25]. Note that Okumura did not suggest the
security parameter because his purpose was to design the encryption scheme with 128
bit security. However, we here set the security parameter λ to analyse the complexity
of our attack for each security level.

In accordance with [25], we regard the total degree of a public key polynomial as
a parameter, which we denote by wX . Note that the parameter wX is taken to be an
integer independent of the security parameter λ. In Remark 7 below, we will describe
the reason why DEC has the two independent parameters λ and wX .
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3.2 Key generation process

Secret Key: A vector a := (a1, . . . , an) ∈ Z
n .

Public Key:

(1) A positive integer d with gcd (ai , d) = 1 for all 1 ≤ i ≤ n.
(2) A positive integer e with gcd (e, ϕ (d)) = 1, where ϕ is the Euler function.
(3) A polynomial X

(
x
) ∈ Z[x] of degree increasing type such that X is irre-

ducible, X
(
a/d

) = 0 and #ΛX ≤ wX , where ΛX and wX denote the support
and the total degree of X , respectively.

Construction of X
(
x
)
:

(1) Choose Λ ⊂ (
Z≥0

)n such that 3 ≤ #{∑ i ; i ∈ Λ} = #Λ < ∞ and 0 ∈ Λ,
where 0 := (0, . . . , 0) ∈ (

Z≥0
)n .

(2) Let k denote the maximal element of Λ (note that Λ is a totally ordered set in
terms of the order given in Remark 4 (2)). Choose a random non-zero integer
ci for each i ∈ Λ � {k, 0}. For a choice of ci , see Remark 9 (2).

(3) Choose random integers ck and c0 such that

cka
k + c0d

w = −
∑

k∈Λ�{k,0}
ci aidw−∑

i , (1)

where w := max{∑ i ; i ∈ Λ}.
(4) Set ΛX := Λ and X

(
x
) := ∑

i∈ΛX
ci x i .

See Sect. 3.5 for a choice of a public key X and the sizes of the integers e, d and ai ’s.

Remark 6 There exist integers ck and c0 such that the equality (1) is satisfied because
ai and d are mutually prime for each i ∈ {1, . . . , n} from the assumption.

Remark 7 DEC has two parameters λ and wX for the following reason: The public
key of DEC is a Diophantine equation X of degree increasing type, and the secret
key is its solution. Since there is no algorithm for solving Diophantine equations of
degree increasing type, we set the security parameter, denoted by λ, which determines
the security level against the key recovery attack by the brute force search (note that
λ also determines the security level against some attacks on the one-way property of
DEC, see [25]). On the other hand, wx is an important parameter which complicates
public diophantine equations and makes solving them difficult (by any method other
than the brute force search), see also Remark 9.

3.3 Encryption process

Plaintext: A polynomial m ∈ Z[x1, . . . , xn] such that

(a) Λm = ΛX ,
(b) 1 < ci1,...,in (m) < d for all (i1, . . . , in) ∈ Λm ,
(c) gcd

(
ci1,...,in (m) , d

) = 1 for all (i1, . . . , in) ∈ Λm .
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Encryption Process:

(1) Choose a positive integer N ∈ Z>0 uniformly so that we have Nd > 2λH (X).
For a size of N , see Section 3.5 below.

(2) Construct m̃
(
x
) ∈ Z[x], called the twisted plaintext, by setting Λm̃ := Λm

and ci (m̃) := ci (m)e (mod Nd), where 0 < ci (m̃) < Nd for i ∈ Λm̃ .
(3) Choose f

(
x
) ∈ Z[x] uniformly at random such that

(a) Λ f = ΛX ,
(b) H (m̃) < ck ( f ) < Nd and gcd

(
ck ( f ) , d

) = 1, where k denotes the
maximal element of Λ f .

(4) Choose s j
(
x
)
, r j

(
x
) ∈ Z[x] uniformly at random so that we have Γs j = ΓX

and Γr j = Γ f for 1 ≤ j ≤ 3.
(5) Put Fj

(
x
) := m̃

(
x
) + s j

(
x
)
f
(
x
) + r j

(
x
)
X

(
x
)
for 1 ≤ j ≤ 3. Send

(F1, F2, F3, N ) as a ciphertext.

3.4 Decryption process

Decryption Process:

(1) By substituting a/d, a zero of X
(
x
)
, into Fj

(
x
)
, we obtain

h j := Fj
(
a/d

) = m̃
(
a/d

) + s j
(
a/d

)
f
(
a/d

)
for 1 ≤ j ≤ 3.

Compute

H1 := (h1 − h2) d
2wX = (

s1
(
a/d

) − s2
(
a/d

))
f
(
a/d

)
d2wX ,

H2 := (h1 − h3) d
2wX = (

s1
(
a/d

) − s3
(
a/d

))
f
(
a/d

)
d2wX .

(2) Compute g := gcd (H1, H2). If gcd (g, d) > 1, then let d ′ be the smallest
factor of g satisfying gcd

(
d, g/d ′) = 1 and replace g by g/d ′.

(3) Compute H := h1d2wX (mod g) and μ := Hd−wX (mod g).
(4) Obtain the plaintext polynomial m

(
x
)
from μ or μ − g by using an algorithm

described in Sects. 3.4 and 3.5 of [25].

Remark 8 In the algorithm in Sects. 3.4 and 3.5 of [25], we need to compute ϕ(d)

efficiently. From this, we should choose a prime number as d.

3.5 Parameter size

In Sect. 5 of [25], sizes of public/secret keys and ciphertexts are estimated so that DEC
can be expected to have 128 bit security under some assumptions. In the following,
we give their sizes under the same assumptions as [25] to analyse the complexity of
our attack.
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(1) The sizes of a, d, e and N :

2
λ
2 ≤ d < 2

λ
2+1, (λ + 1) +

(
λ

2
+ 1

)
wX ≤ e < 2

(
(λ + 1) +

(
λ

2
+ 1

)
wX

)
,

2

⌈
λ

n−1

⌉

ϕ (d)
d ≤ |ai | <

2

⌈
λ

n−1

⌉
+1

ϕ (d)
d (1 ≤ i ≤ n) ,

2
λ+

(
λ
2+1

)
(wX−1) ≤ N < 2

λ+1+
(

λ
2+1

)
(wX−1)

.

We assume that |ci (X) | < 2b for any i ∈ ΛX � {k, 0}, where k denotes the maximal
element of ΛX , see Sect. 5 of [25].

(2) The size of a secret key is at most

(⌈
λ

n − 1

⌉
+ 1

)
n + �log2 d − log2 ϕ (d)�

bits.
(3) The size of a public key is at most

(⌈
λ

n − 1

⌉
+

(
λ

2
+ 2 + b

)
+ �log2 d − log2 ϕ (d)�

)
wX + (λ + 1) + �log2 e�

bits.
(4) The size of a ciphertext is at most

3

2

(
w2

X + wX

) (
λ + 1 + (λ + 2)wX + �log2 wX�) + λ + 1 +

(
λ

2
+ 1

)
(wX − 1)

bits. Note that the size of each coefficient of Fi is at most

λ + 1 + (λ + 2)wX + �log2 wX�

bits for i = 1, 2, and 3.

Remark 9 (1) In Sect. 4.5 of [25], it is pointed out that we should use a polynomial X
satisfying wX ≥ 5, n ≥ 3 and some conditions as a public key in order to avoid
finding rational solutions to X = 0. However, polynomials of degree increasing
type are in a special class of polynomials, and finding rational zeros of such
polynomials may be easier than finding those of general polynomials. Moreover,
althoughfinding rational zeros of polynomials of higher degree seems to be difficult
in general, we should consider sizes of public keys and ciphertexts. Thus we
recommend to use X of degree 10 as a public key.

(2) In Sect. 5 of [25], it is pointed out that for a public key X and i ∈ ΛX � {k, 0}, we
may choose ci (X) ≤ 210, where k denotes the maximal element of ΛX . However,
since solving Diophantine equations of degree increasing type may be easier than
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solving more general Diophantine equations as we mentioned above, we should
also consider using larger ci (X) for i ∈ ΛX � {k, 0} to deal with a wide class of
polynomials of degree increasing type. In our experiments of Sect. 6, we choose
ci (X) so that the sizes of

∣∣ci (X)
∣∣ are b bits for b = 10, 50 and 100.

(3) Whenλ = 128,wX = #ΛX andb = 10,wegenerated 100public keys X randomly
andmeasured their sizes.As a result, their average size is about 1,200 bits. This size
(1,200 bits) is about 10 times smaller than sizes of public keys in cryptosystems
[21,22,27], which are well-known to be efficient among the candidates of PQC.

3.6 Toy example of DEC

In the following, we give a toy example of DEC in the case of n = 2.

Secret Key: a = (a, b) = (47, 49) ∈ Z
2.

Public Key: (d, e, X) = (5, 17, 125x3 + 675y − 110438).
(ΛX = {(3, 0) , (0, 1) , (0, 0)}, k = (3, 0), H (X) = 110438.)
Plaintext: m

(
x
) = m (x, y) = 3x3 + 3y + 2.

Objects for Encryption:

(1) N = 353408 (Nd = 1767040).
(2) m̃

(
x
) = m̃ (x, y) = 146243x3 + 146243y + 131072 (H (m̃) = 146243).

(3) f
(
x
) = f (x, y) = 949843x3 + 1324952y + 1109775.

(ck ( f ) = 949843, H (m̃) = 146243 < ck ( f ) = 949843 < 1767040 =
Nd.)

(4) s j and r j :

s1 = 115x3 + 924y + 126337, s2 = 82x3 + 962y + 89939,

s3 = 67x3 + 977y + 121816, r1 = 691019x3 + 1363650y + 1329029,

r2 = 852655x3 + 1584164y + 2007688,

r3 = 940020x3 + 2016302y + 1144882.

(5) Cipher Polynomials: Fj := m̃ + s j f + r j X .

F1 = 195609320x6 + 1666918487x3y + 43979457762x3 + 2144719398y2

+18714355042y − 6569529455,

F2 = 184469001x6 + 1795957655x3y − 8395474520x3 + 2343914524y2

−53364106711y − 121912862547,

F3 = 181141981x6 + 1903319645x3y + 12109757546x3 + 2655481954y2

−59418815676y + 8750004156.

4 Weighted LLL-based polynomial time-attack for DEC

We give in this section our attack algorithm against DEC, based on the weighted LLL.
We use the following notation described in Notation of Sect. 1: for a polynomial h =
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∑
i∈Λh

ci (h)x i ∈ Z[x], let h :=
(
ci1(h), . . . , ci#Λh

(h)
)
, where Λh = {i1, . . . , i#Λh

}
is the support of h. Note that Λh is an ordered set (see Notation in Sect. 1).

Let (d, e, X(x)) ∈ Z
2 × (Z[x]) and (F1(x), F2(x), F3(x), N ) ∈ (Z[x])3 × Z be

a public key and a ciphertext, as described in Sects. 3.2 and 3.3. Let m(x) ∈ Z[x]
be a plaintext. Each cipher polynomial is of the form Fj (x) = m̃(x) + s j (x) f (x) +
r j (x)X(x) for the twisted plaintext m̃(x) and some random polynomials f (x), s j (x)
and r j (x). For the choice of f (x), s j (x) and r j (x), see Sect. 3.3 for details. We write
ΛX = {i1, . . . , iq} with i1 � · · · � iq , where the total order � on ΛX is given in
Remark 4 (2). Recall that the supports of m, m̃, s j , r j and f (1 ≤ j ≤ 3) are the
same as ΛX , which allows attackers to suppose ΛF1 = ΛF2 = ΛF3 . Let k denote
the maximal element of ΛX . To simplify the notation, put q := #ΛX throughout this
section. For recovering m, it suffices to get the correct m̃.

4.1 Idea of our attack

Before we give an algorithm of our attack, we describe the idea of our attack. Recall
from Sect. 3 that in DEC, we use the cipher polynomials of the form

Fj := m̃ + s j f + r j X for j = 1, 2 and 3.

We reduce recovering m̃ to finding special solutions to certain linear systems derived
from X and (F1, F2, F3, N ), the public key and the ciphertext, by linearization tech-
niques described below.

We have the following equalities for j = 1 and 2 from the way to construct the
cipher polynomials:

Fj − Fj+1 = (s j − s j+1) f + (r j − r j+1)X .

Since the cipher polynomials F1
(
x
)
, F2

(
x
)
, F3

(
x
)
and the public key X

(
x
)
are

known, we may obtain f
(
x
)
if we determine s1

(
x
) − s2

(
x
)
and s2

(
x
) − s3

(
x
)
. We

set

s′
j := s j − s j+1, r ′

j := r j − r j+1,

F ′
j := Fj − Fj+1 = s′

j f + r ′
j X for j = 1 and 2,

g := s′
2r

′
1 − s′

1r
′
2.

We then have the following equalities:

F ′
1

(
x
) = s′

1

(
x
)
f
(
x
) + r ′

1

(
x
)
X

(
x
)
, (2)

F ′
2

(
x
) = s′

2

(
x
)
f
(
x
) + r ′

2

(
x
)
X

(
x
)
, (3)

g
(
x
)
X

(
x
) = s′

2

(
x
)
F ′
1

(
x
) − s′

1

(
x
)
F ′
2

(
x
)
. (4)
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4.1.1 First step: determination of s′j for j = 1 and 2

Here, we describe how to determine s′j for j = 1 and 2. (As we mentioned in Sect. 1,
the vectors s′j ( j = 1 and 2) are the most important target vectors). In the equality (4),

we regard the coefficients of s′
j

(
x
)
and g

(
x
)
as indeterminates. We then obtain the

linear system uA = 0, where A is the
((
2q + #ΛX2

) × #ΛX3
)
coefficient matrix of

the linear system.We denote byL′
1 the kernel lattice of A, where the kernel lattice of A

is defined as the nullspace of A, see Notation in Sect. 1. Let L1 be the lattice spanned
by the vectors consisting of the 1-(2q)th entries of the elements inL′

1. Experimentally,
the rank of L1 is equal to 3 in many cases, see Remark 27 in Sect. 6. Thus, we assume
the following condition:

Assumption 10 The rank of L1 is equal to 3.

Moreover, as we will see in Sect. 4.3, the correct
(
s′1, s′2

)
has the property described

in Sects. 1 and 2 so that the usual LLL reduction does not work well to find
(
s′1, s′2

)
.

Note that this is true in many cases because of the construction of X (cf. Sect. 3.2).
Thus, we use the weighted LLL reduction for a weight w described below. Put w′ =(
w′
1, . . . , w

′
q

)
as follows:

w′
j := 2

⌊
log2

(
H(X)
ci j

)⌋

,

where X := (ci1(X), . . . , ciq (X)) denotes the vector of the coefficients of X
(
x
)
. We

set w :=
(
w′
1, . . . , w

′
q , w

′
1, . . . , w

′
q

)
. Assume the following condition.

Assumption 11 The
(
s′1, s′2

)
is a shortest vector in Lw

1 .

Let fW be the isomorphismdescribed in Sect. 2 fromR
2q toR

2q asR-vector spaces.
From Assumption 10, the rank of fW (L1) is equal to 3. This means that we can expect
the weighted LLL reduction for the weight w to output a shortest vector in Lw

1 with
high probability. Thus it is expected to find the correct

(
s′1, s′2

)
via the weighted LLL

reduction for the weight w, see Sect. 2 and Assumption 11.

Remark 12 Aswewill see in Sect. 4.3, one may fail in determining (s′1, s′2) even if one
adopts the LLL reduction in terms of the p-norm (1 ≤ p ≤ ∞) as a lattice reduction
for L1. Thus, the above assumptions and applying the weighted LLL reduction to L1
are crucial for our attack.

4.1.2 Second step: obtaining a candidate of f

Here, we describe how to determine a candidate of f . We substitute s′
1

(
x
)
and s′

2

(
x
)

obtained in Step 1 into (2) and (3). In a similar way to Step 1, by regarding the
coefficients of f

(
x
)
and r ′

j

(
x
)
for j = 1 and 2 as indeterminates, we have the

linear system. We then fix f ′ (x) such that (2) and (3) hold and that f ′ (x) is close
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to the correct f
(
x
)
, i.e., the absolute values of all coefficients of the polynomial

f ′ (x) − f
(
x
)
are small. Note that f ′ (x) does not necessarily coincide with the

correct f
(
x
)
to recover m̃ (cf. Remark 18 and Steps 3-3 and 3-4 in Sect. 4.2).

Remark 13 In Step 2, any solution
(
f ′, r ′′

1

)
to the linear system can be written as

f ′ = f + aX and r ′′
1 = r ′

1 − as′
1, respectively (a ∈ Z) if gcd

(
X , s′

1

) = 1 and if
the solution in Step 1 is the correct

(
s′1, s′2

)
. In fact, by putting p := f ′ − f and

q := r ′′
1 − r ′

1, we have

F ′
1 = s′

1 f
′ + r ′′

1 X

= s′
1 ( f + p) + (

r ′
1 + q

)
X

= (
s′
1 f + r ′

1X
) + (

s′
1 p + qX

)

= F ′
1 + (

s′
1 p + qX

)
.

It follows that s′
1 p = −qX . Thus if gcd

(
X , s′

1

) = 1, there exists an integer a ∈ Z such
that p = aX and q = −as′

1 since deg p ≤ deg X and deg q ≤ deg s′
1. This fact implies

that the rank of the kernel lattice in Step 2 is equal to 1 if gcd
(
X , s′

1

) = 1. If the solution
obtained in Step 1 is

(−s′
1,−s′

2

)
, then

(
f ′, r ′′

1

)
can be written as f ′ = − f + aX and

r ′′
1 = r ′

1 + as′
1, respectively (a ∈ Z) by the same argument. Note that since X is

irreducible from the construction of X in Sect. 3.2, we have gcd(X , s′
1) = 1 with high

probability.

4.1.3 Third step: recovery of m̃

Here, we describe how to recover m̃. It is sufficient for recovering m̃
(
x
)
to find s1,

see Remark 18 and Steps 3-3 and 3-4 in Sect. 4.2. From the form of the ciphertext (see
Sect. 3.3), consider the following equality:

F1 = m̃ + s1 f
′ + r1X , (5)

where f ′ (x) is the polynomial obtained in Step 2 and other polynomials m̃
(
x
)
, s1

(
x
)

and r1
(
x
)
are unknown. Note that if we have the correct solution in Step 1 and

gcd
(
X , s′

1

) = 1, then there exists a unique polynomial r
(
x
)
such that the correct

m̃
(
x
)
, s1

(
x
)
and f ′ (x) (not necessarily f

(
x
)
) satisfy the equality F1 = m̃ + s1 f ′ +

r X , see Remark 18. In a similar way to Steps 1 and 2, by regarding the coefficients of
m̃

(
x
)
, s1

(
x
)
and r1

(
x
)
as indeterminates, we have the linear system wC = c, where

C is the
(
3q × #ΛX2

)
coefficient matrix of the linear system and c ∈ Z

#ΛX2 . We
denote byL3 the kernel lattice of C. The rank ofL3 is equal to 3 with high probability,
see Remark 27. From this, we assume the following:

Assumption 14 The rank of L3 is equal to 3.

Let w0 be one solution to wC = c and {w1,w2,w3} a basis of L3. Note that
every integral solution to the system is represented as w0 + a1w1 + a2w2 + a3w3
(ai ∈ Z, i = 1, 2 and 3). The 1-#ΛX -th entries of w0, w1, w2 and w3 correspond to
the coefficients of m̃. As we will see in Remark 17, the systemwC = 0 has a solution
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w′ whose 1-#ΛX -th entries equal zero. We choose such a solution as w3. Assume the
following condition:

Assumption 15 The entries in s1 coincide with the (#ΛX + 1)-2#ΛX -th entries in
w0 + w3 − z, where z is a closest lattice point in L′

3 := 〈w1,w2〉Z to w0 + w3. In
other words, s1 is embedded in w0 + w3 − z as its (#ΛX + 1)-2#ΛX -th entries.

The latticeL′
3 has rank 2, and thuswe can expect to find s1 in polynomial time by the

Babai nearest plane algorithm [5] for solving CVP with sufficiently high probability
under Assumption 15.

Remark 16 The reason why we assume Assumption 15 is the following: From the
choice of s1, the absolute values of the entries of s1 are sufficiently smaller than those
of m̃ and r1. Thus we can expect that the value of ‖w0 + w3 − (a1w1 + a2w2) ‖ is
sufficiently small if certain entries of the vector w0 + w3 − (a1w1 + a2w2) coincide
with those of s1.

Remark 17 In Step 3, the linear system wC = 0 has a solution w′ whose 1-#ΛX -th
entries equal zero. Let

(
m′, s′, r ′) be one solution to wC = c, i.e., F1 = m′ + s′ f ′ +

r ′X . The vector
(
m′, s′, r ′) + (

0, X,− f ′) is also a solution to wC = c. In fact, we
have

(
m′ + 0

) + (
s′ + X

)
f ′ + (

r ′ − f ′) X = (
m′ + s′ f ′ + r ′X

) + X f ′ − f ′X = F1.

Thus
(
0, X,− f ′) is an element of L3.

Remark 18 If we succeed in finding the correct s1 in Step 3 and gcd(X , s′
1) = 1, there

exists r satisfying the equality F1 − s1 f ′ = m̃ + r X . In fact, f ′ obtained in Step 2
can be written as f ′ = f + aX or f ′ = − f + aX (a ∈ Z) from Remark 13. We may
assume that f ′ = f + aX . Then we have

F1 − m̃ − s1 f
′ = s1 f + r1X − s1 f

′

= s1
(
f ′ − aX

) + r1X − s1 f
′

= (r1 − as1) X .

Thus we have F1 − s1 f ′ = m̃ + r X by putting r := r1 − as1.

4.2 Algorithm of our attack

Based on the idea in Sect. 4.1, wewrite down our attack algorithm against DEC inwhat
follows. Let (d, e, X(x)) ∈ Z

2 × Z[x] and (F1(x), F2(x), F3(x), N ) ∈ (Z[x])3 × Z

be a public key and a ciphertext, as described in Sects 3.2 and 3.3. Let m(x) ∈ Z[x]
be a plaintext. Each cipher polynomial is of the form Fj (x) = m̃(x) + s j (x) f (x) +
r j (x)X(x) for the twisted plaintext m̃(x) and some random polynomials f (x), s j (x)
and r j (x). We also recall thatΛX andwX denote the support of X and the total degree
of X , respectively, see Notation in Sect. 1. Let k be the maximal element of ΛX , see
Remark 4 (2) for the ordering.
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Attack Algorithm

Input:
(
d, e, X(x)

)
and

(
F1(x), F2(x), F3(x), N

)
, a public key and a ciphertext.

Output: m̃
(
x
)
, a twisted plaintext.

Step 1: Determination of s′
j := s j − s j+1 for j = 1 and 2

Step 1-1: Put F ′
j := Fj − Fj+1, r ′

j := r j − r j+1 (1 ≤ j ≤ 2) and put
g := s′

2r
′
1−s′

1r
′
2. Compute a basis of the kernel lattice of A, i.e., solve uA = 0.

This system is derived from unknown coefficients in

s′
2F

′
1 − s′

1F
′
2 = gX , (6)

where A is the
(
2#ΛX + #ΛX2

)×#ΛX3 coefficient matrix of the linear system
obtained from the Eq. (6). Let {u′

1, u
′
2, u

′
3} be the set of basis vectors for the

kernel lattice.
Step 1-2: We denote by ui the vector embedded in u′

i as its 1-(2#ΛX )-th
entries for i = 1, 2 and 3. Execute the weighted LLL reduction for the weight
described in Sect. 4.1 to the lattice L1 := 〈u1, u2, u3〉, and then get (s′1, s′2).

Step 2: Obtaining a candidate of f

Step 2-1: Compute a solution to vB = b. This system is derived from unknown
coefficients in

F ′
1 = s′

1 f + r ′
1X , F ′

2 = s′
2 f + r ′

2X , (7)

where B is the
(
3#ΛX × #ΛX2

)
coefficient matrix obtained from the Eq. (7).

Let v0 be a solution, and let {v1} be a basis of the kernel lattice L2 of B. If
gcd(X , s′

1) = 1 in Z[x], then the lattice L2 always has rank 1, see Remark 13.
Step 2-2: Compute v′

0 := v0 − 
〈v0, v1〉/〈v1, v1〉�v1, another solution to
vB = b. Let v′′

0 be the vector embedded in v′
0 as its 1-(#ΛX )-th entries.

Let f ′ (x) ∈ Z[x] be a polynomial with f ′ = v′′
0. Experimentally v′

0 gives in
many cases a polynomial closer to f than v0, see Step 2 in Sect. 4.3.

Step 3: Recovery of m̃

Step 3-1: Compute a solution to wC = c and a basis of the kernel lattice of C.
This system is derived from unknown coefficients in

F1 = m̃ + s1 f
′ + r1X , (8)

where C is the (3#ΛX ×#ΛX2) coefficient matrix oftained from the Eq. (8) and
f ′ is the polynomial obtained inStep2-2.Letw0 be a solution and {w1,w2,w3}
a basis of the kernel lattice, denoted by L3.
Step 3-2: Apply the Babai nearest plane algorithm to compute a closest lattice
point z in L′

3 := 〈w1,w2〉Z to w0 + w3. Let s1 be the vector embedded in
w0 + w3 − z as its (#ΛX + 1)-2#ΛX -th entries.
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Step 3-3: Compute a solution to xH = h, the linear system derived from
unknown coefficients in

F1 − m̃ − s1 f
′ = r X , (9)

where H is the
(
2#ΛX × #ΛX2

)
coefficient matrix obtained from the Eq. (9)

and the coefficients of m̃ and r are indeterminates. Let x be a solution to
xH = h. Let r ′ be the vector consisting of the entries corresponding to r of
x. Then we obtain a polynomial r ′ whose coefficients coincide with those of
r except the constant part, i.e., r = r ′ + t for some t ∈ Z.
Step 3-4: Compute

e′ := e−1 (mod ϕ (d)),

H1 := F1 − s1 f
′ − r ′X ,

μ := ck (H1) ,

ck
(
m′) := μe′

(mod d)
(
0 < ck

(
m′) < d

)
,

ck (m̃) := (
ck

(
m′))e (mod Nd)

(
0 < ck (m̃) < Nd

)
,

t := (
μ − ck (m̃)

)
/ck (X) ,

m̃ := F1 − s1 f
′ − (

r ′ + t
)
X .

Output m̃
(
x
)
.

Remark 19 Onemay consider that applying the Babai nearest plane algorithm in terms
of a weighted norm, or searching a desired vector s1 by adding some elements in L′

3
are effective. However, the one-way property of DEC can be broken with sufficiently
high probability without such operations. We will see the details in Sect. 6. Hence in
our attack let us omit these procedures.

Remark 20 In Step 3-4 of the above algorithm, we use the fact that ck(X) is divisible
by d to compute an integer t , see (1) for the divisibility of ck(X).

4.3 Cryptanalysis of toy example

We break the one-way property of the instance in Sect. 3.6 of DEC. We use
the same notations as in Sect. 3.6. In this case, we have Λg = ΛX2 =
{(6, 0) , (3, 1) , (3, 0) , (0, 2) , (0, 1) , (0, 0)}.

4.3.1 First step: determination of s′j = sj − sj+1

Here, we determine s′
j = s j − s j+1 for j = 1 and 2. Compute

F ′
1 := F1 − F2 = 11140319x6 − 129039168x3y + 52374932282x3 − 199195126y2

+72078461753y + 115343333092,

F ′
2 := F2 − F3 = 3327020x6 − 107361990x3y − 20505232066x3 − 311567430y2

+6054708965y − 130662866703.
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We put

s′
j := c( j)

1 x3 + c( j)
2 y + c( j)

3 for j = 1 and 2,

g := c(g)
1 x6 + c(g)

2 x3y + c(g)
3 x3 + c(g)

4 y2 + c(g)
5 y + c(g)

6 ,

where c( j)
i ’s and c(g)

i ’s are indeterminates. By comparing the coefficient of x i for each
i ∈ ΛX3 in the Eq. (4), we have the linear system uA′ = 0, where A′ is a (9 × 9)
matrix.

The rank of the kernel lattice L′
1 of A

′ is equal to 3. Compute a basis {u′
1, u

′
2, u

′
3}

of L′
1. Let u j be the vector of the 1-6th entries consisting of u′

j for j = 1, 2 and 3.
We then have

⎛
⎝
u1
u2
u3

⎞
⎠ =

⎛
⎝
1 11464 −3475226 80 5520 916415
0 27025 −8194204 0 12000 2328055
0 0 0 125 675 −110438

⎞
⎠ .

By applying the LLL reduction to the lattice L1 spanned by u1, u2, u3, we have an
LLL reduced basis

⎛
⎝
a1
a2
a3

⎞
⎠ =

⎛
⎝

1568 3927 −8708 −435 −4365 −6789
−1792 −4488 9952 515 5085 −8018
3841 9499 15250 −1095 −10905 −1034

⎞
⎠ .

However, actually, the target vector (s′1, s′2) defined by the coefficients of s′
1 and s

′
2 is

(
s′1, s′2

) = (33,−38, 36398, 15,−15,−31877) .

Thus ai does not coincide with both of (s′1, s′2) and −(s′1, s′2) for any 1 ≤ i ≤
3. Note that 1-2nd and 4-5th entries of the correct (s′1, s′2) are much smaller than
its other entries. This is true in many cases from the constructions of X , s′

1 and s′
2

described in Sect. 3 of [25] and Sect. 4.2 in this paper. On the other hand, the absolute
values of all entries of ai have almost the same sizes for 1 ≤ i ≤ 3. Moreover,
it is easy to see

∥∥(s′1, s′2)
∥∥
p > max{‖a1‖p , ‖a2‖p , ‖a3‖p} for any 1 ≤ p ≤ ∞,

where ‖ · ‖p denotes the p-norm. For example, we have ‖(s′1, s′2)‖2 ≈ 48383.47 >

max{‖a1‖2, ‖a2‖2, ‖a3‖2} ≈ 21418.08. This means that our target vector (s′1, s′2) is
not shortest in L1 of 3-rank in terms of ‖ · ‖p for any 1 ≤ p ≤ ∞. Thus, it seems
that the LLL lattice basis reduction in terms of well-known norms , e.g., ‖ · ‖p for
1 ≤ p ≤ ∞, does not work well for finding (s′1, s′2).

To obtain
(
s′1, s′2

)
, we apply the weighted LLL reduction for the weightw described

below to L1 since the above situation is good for the weighted LLL reduction, see
Sect. 4 in [14]. Recall that X = (125, 675,−110438). We have

(
H (X)

125
,
H (X)

675
,
H (X)

110438

)
=

(
110438

125
,
110438

675
, 1

)
.

123



1140 J. Ding et al.

Put

w =
(
2

⌊
log2

(
110438
125

)⌋
, 2

⌊
log2

(
110438
675

)⌋
, 1, 2

⌊
log2

(
110438
125

)⌋
, 2

⌊
log2

(
110438
675

)⌋
, 1

)

=
(
29, 27, 1, 29, 27, 1

)
.

We obtain the following weighted LLL reduced basis of Lw
1 :

⎛
⎝
b1
b2
b3

⎞
⎠ =

⎛
⎝

33 −38 36398 15 −15 −31877
−33 38 −36398 110 690 −78561
−158 −637 74040 −15 15 31877

⎞
⎠ .

Note that b1 just coincides with
(
s′1, s′2

)
.

4.3.2 Second step: obtaining a candidate of f

Here, we obtain a candidate of f . We set

f := c( f )
1 x3 + c( f )

2 y + c( f )
3 ,

r ′
j := c( j)

1 x3 + c( j)
2 y + c( j)

3 ( j = 1 and 2) ,

where c( f )
i ’s and c( j)

i ’s are indeterminates. By substituting s′
1 and s

′
2 obtained in Step 1

into the equalities (2) and (3), and by comparing the coefficient of x i for each i ∈ ΛX2 ,
we have the linear system vB = b, where B is a (9 × 6)matrix. The rank of the kernel
lattice L2 of B is equal to 1. We obtain a solution v0 to vB = b and a basis {v1} of
L2 as follows:

(
v0
v1

)
=

( −32 −3804373 840328137 89131 −509276 275909743 26620 −546123 −241370517
125 675 −110438 −33 38 −36398 −15 15 31877

)
.

Compute another solution v′
0 := v0 − 
〈v0, v1〉/〈v1, v1〉�v1 to vB = b. Let v′′

0 be
the vector consisting of the 1-3rd entries of v′

0. We then have

v′′
0 = (950468, 1328327, 557585) ,

and set

f ′ := 950468x3 + 1328327y + 557585.

Note that the polynomial f ′ obtained from v′′
0 is closer to the correct f than the one

obtained from v0. We also note that it is possible to proceed to the next step even if
f ′ does not coincide with f , see Remark 18.
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4.3.3 Third Step: Recovery of m̃

Finally, we recover m̃ (x, y). We find s1 (x, y) before recovering m̃ (x, y). Put

m̃ := c1x
3 + c2y + c3,

s1 := c4x
3 + c5y + c6,

r1 := c7x
3 + c8y + c9,

where ci ’s are indeterminates. By substituting f ′ obtained in Step 2 into the equalities
(5), and by comparing the coefficient of x i for each i ∈ ΛX2 , we have the linear
system wC = c, where C is a (9 × 6) matrix. The rank of the kernel lattice L3 of C
is equal to 3. We fix a solution w0 to the system and a basis {w1,w2,w3} of L3 as
follows:

⎛
⎜⎜⎝

w0
w1
w2
w3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

225204073068 315361848743 −6569529455 −10 249 0 1640912 2687357 0
1 163580614 −36132895073 0 0 43 0 0 −326961
0 475525025 −105037483109 0 0 125 0 0 −950468
0 0 0 125 675 −110438 −950468 −1328327 −557585

⎞
⎟⎟⎠ .

We find a vector z in the lattice 〈w1,w2〉Z close to w0 + w3 by applying the Babai
nearest plane algorithm. We then have the matrix

(
225203926700 315361701825 −6569550089 0 0 −236775 0 0 −1254928

146368 146918 20634 115 924 126337 690444 1359030 697343

)
,

where 1st and 2nd rows are the vectors z and w0 + w3 − z, respectively. The vector
embedded in w0 + w3 − z as its 4–6th entries is equal to the correct s1.

Next,we compute r satisfying F1−m̃−s′
1 = r X . Note that there exists a polynomial

r satisfying the above equality, and that we can recover m̃ if we obtain such an r (cf.
Remark 18 and Step 3-4 in Sect. 4.2). We set

r := c1x
3 + c2y + c3,

m̃ := c4x
3 + c5y + c6,

where ci ’s are indeterminates. In the equality F1 − s1 f ′ = m̃ + r X , by comparing the
coefficient of x i for each i ∈ ΛX2 , we have the linear system xH = h, where H is a
(6 × 6) matrix. The rank of the kernel lattice L4 of H is equal to 1. We fix a solution
x0 to xH = h and a basis {x1} of L4 as follows:

(
x0
x1

)
=

(
2591380 4015684 0 226710493 1223593193 −200170290060

0 0 1 −125 −675 110438

)
.

We set

r ′ := 2591380x3 + 4015684y + 1.
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There exists a unique t ∈ Z such that r = r ′ + t . Our aim is to find such an integer t ,
see Steps 3-3 and 3-4 in Sect. 4.2. Let k be the maximal element in ΛX . Put

e′ := e−1 (mod ϕ (d))

= 1,

H1 := F1 − s1 f
′ − r ′X

= 226710368x3 + 1223592518y − 200170179622,

μ := ck (H1)

= −200170179622,

ck
(
m′) := μe′

(mod d)
(
0 < ck

(
m′) < d

)

= 3,

ck (m̃) = (
ck

(
m′))e (mod Nd)

(
0 < ck (m̃) < Nd

)

= 146243,

t = (
μ − ck (m̃)

)
/ck (X)

= 1812513,

m̃ = F1 − s1 f
′ − (

r ′ + t
)
X

= 146243x3 + 146243y + 131072.

We succeeded in recovering m̃ (x, y) in Sect. 3.6.

5 Complexity analysis

In this section, we investigate the complexity of the algorithm in Sect. 4.2. We analyse
our attack in accordance with the parameter sizes in Sect. 3.5 (cf. Sect. 5 in [25]).
Let X ∈ Z[x] be a public key of DEC. Let wX and ΛX denote the total degree and
the support of X , respectively. To simplify the notations, we set w := wX , assume
w = #ΛX and fix b, where b is the maximum of the bit length of the coefficients of X
except its leading and constant terms. We show that the attack performs in polynomial
time in terms of the parameters w and λ. Here note that w and λ are independent
of each other, see Remark 7 in Sect. 3. In our complexity analysis, we use the same
notation as in Sect. 4.2. The parameters d and e are O

(
2λ

)
and O (wλ), respectively.

Note that the size of each coefficient of Fj is O (wλ) bits for j = 1, 2 and 3, see
Sect. 3.5 for the representation of the parameters by w and λ. Assume that the size of
each coefficient of s1 f ′ is bounded by O(wλ) bits.

Remark 21 First, let us determine the bit complexity of the computation of polynomials
with integer coefficients in the algorithm. We suppose the arithmetic operations of
addition and subtraction of two polynomials F,G ∈ Z[x] are O (min{qF , qG}) in Z,
where qF and qG are the number of the terms of F and G, respectively. Moreover,
the arithmetic operations of multiplication of them are O

(
(max{qF , qG})2) in Z. We

compute F1′ := F1 − F2 and F2′ := F2 − F3 at the beginning of the algorithm. Note
that the number of the terms of Fj is at most w2 for each 1 ≤ j ≤ 3. The sizes of the

123



Cryptanalysis via weighted LLL reduction 1143

coefficients of Fj are O (wλ) for j = 1, 2 and 3. Thus the arithmetic complexity of
computing F ′

1 and F ′
2 is O

(
w2

)
, and its bit complexity is

O
(
w2 (wλ)

)
= O

(
w3λ

)
. (10)

We do such computations in (6)–(9). The arithmetic complexity of (6)–(9) is O(w4)

and thus the bit complexity is

O
(
w4 (wλ)2

)
= O

(
w6λ2

)
(11)

since the sizes of the coefficients of the polynomials appearing in (6)–(9) are O (wλ)

bits. Note that we regard the coefficients of certain polynomials as indeterminates.
(For example, in (6), we regard the coefficients of s1′, s2′ and g as indeterminates.) On
the other hand, we compute H1 := F1 − s1 f ′ − r X in Step 3-4. In this case, we do not
regard any coefficient as indeterminates. Since for each of s1, f ′, r and X , the number
of its terms is w, we require O

(
w2

)
arithmetic operations for computing s1 f ′ and

r X . In addition, for each of F1, s1 f ′ and r X , the number of its terms is O(w2). Here
recall that the size of each coefficient of the polynomials F1, s1 f ′ and r X is O (wλ)

bits. Thus the bit complexity of computing H1 is

O
(
w2 (wλ)2

)
= O

(
w4λ2

)
. (12)

Remark 22 Second, we solve one or two linear systems in each step of our attack.
Then, we obtain one solution and the kernel lattice for each linear system. We assume
that the bit complexity of solving a non-homogeneous linear system is equivalent to the
bit complexity of computing the (row) Hermite Normal Form (HNF) of the augmented
matrix of the system. According to Chapter 2 in [16], we assume that the computation
of the HNF of an n × m matrix M = (Mi, j )i, j requires O(nm4(log(‖M‖∞))2) bit
operations, where ‖M‖∞ := maxi, j {|Mi, j |}. On the other hand, we assume that a
homogeneous linear system is solved by the Gaussian elimination.

To simplify the notations, we assume the sizes of the entries of one solution and an
output basis of the kernel lattice of each linear system are O (�) bits if the sizes of the
entries of its augmented matrix are O (�) bits.

Remark 23 Third, we discuss the size of the norm of a vector with integer entries. Let
a = (a1, . . . , ak) ∈ Z

k be a vector with |ai | ≤ 2l for 1 ≤ i ≤ k. Since ‖a‖ ≤ √
k22l ,

the size of ‖a‖ is bounded by log
(√

k22l
)

= log
(
k1/2

) + l = O (log (k) + l) bits.

Similarly, the size of ‖a‖2 is O (log (k) + l) bits.

5.1 The complexity of first step

Step 1-1 We estimate the bit complexity for solving the linear system uA = 0 with
at most 2w + w2 indeterminates and w3 equations. Since this linear system is homo-
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geneous, the arithmetic complexity in Z of solving the linear system is O
(
w6

)
, see

Remark 22. The size of each entry of A is O (wλ) bits, and thus Step 1-1 requires

O
(
w8λ2

)
(13)

bit operations. In addition, we note that the sizes of the entries of u′
1, u

′
2 and u′

3, that
are basis vectors of the kernel lattice L′

1 of A, are O (wλ) bits from Remark 22.
Step 1-2 In the beginning of this step, we compute UW , where U is a basis matrix

of L1 with 3 × 2w entries and W is a (2w × 2w) diagonal matrix. The arithmetic
complexity of multiplying these matrices is 3× (2w) = O (w). Since the size of each
entry of U and W is O (wλ) bits, the multiplying runs in

O
(
w × (wλ)2

)
= O

(
w3λ2

)
(14)

bit operations. We note that the size of each entry of UW is O (wλ) bits. After the
multiplying, we execute the LLL reduction to the 2w-dimensional lattice fW (L1) of
3-rank with the basis matrix UW . According to [19], the computation of the LLL
reduction requires

O

(
35 (2w)

(
log

(
2w × 22wλ

))3)

bit operations in this case because the norms of the row vectors of UW are

O
(√

2w × 22wλ
)
. Thus the LLL reduction of this step runs in

O
(
w4λ3

)
(15)

bit operations. Th size of any entry of the vectors of the LLL reduced basis is

O
(√

3
(
w × 22wλ

))
because the rankof fW (L1) is equal to 3, andbecause‖uiW‖2 =

O
(
w × 22wλ

)
for i = 1, 2 and 3, and row vectors ui ofU . Thus the size of any entry of

the LLL-reduced basis matrix ofUW is O (wλ) bits. We multiple the diagonal matrix
W−1 by the LLL reduced basis matrix. The arithmetic complexity of the multiplying
is 3 × 2w = O (w). Thus the multiplying runs in

O
(
w (wλ)2

)
= O

(
w3λ2

)
(16)

bit operations.

5.2 The complexity of second step

Step 2-1 In this step, we solve the linear system vB = bwith 3w indeterminates and at
most w2 equations. From Remark 22, the bit complexity of this step can be estimated
as
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O
(
w11λ2

)
. (17)

Every entry of a solution and basis vectors of the kernel lattice L2 has the size of
O (wλ) bits from the same reason as Step 1-1. Note that L2 is a 3w-dimensional

lattice of 1-rank. Hence the sizes of the norms of v0 and v1 are O
(√(

3w × 22wλ
))
.

Step 2-2 In this step, we compute v′
0 := v0 − 
〈v0, v1〉/〈v1, v1〉�v1. This com-

putation requires O
(
24 (3w)

(
log

(
3w × 22wλ

))2)
bit operations in accordance with

Chapter 17 in [16]. Hence Step 2-2 requires

O
(
w3λ2

)
(18)

bit operations.

5.3 The complexity of third step and the total complexity of our attack

Step 3-1 In this step, we compute a solution to the system wC = c, and a basis of the
kernel lattice of C with 3w indeterminates and at most w2 equations. In a similar way
to Step 2-1, the computation requires

O
(
w11λ2

)
(19)

bit operations. Every entry of a solution w0 and basis vectors w1,w2 and w3 of the
kernel lattice L3 has the size of O (wλ) bits. Note that the norms of w0, w1, w2 and

w3 are O
(√(

3w × 22wλ
))
.

Step 3-2 In this step, we apply the Babai nearest plane algorithm to the 3w-
dimensional latticeL′

3 := 〈w1,w2〉 of 2-rank and the vectorw0+w3. Before executing
the Babai nearest plane algorithm, we execute the LLL reduction to L′

3. Since L′
3 has

2-rank and 3w-dimension, the LLL reduction requires

O

(
25 (3w)

(
log

(
3w × 22wλ

))3)

bit operations. Thus the LLL reduction in Step 3-2 requires O
(
w4λ3

)
bit operations.

The norm of any vector of the LLL reduced basis is

O

(√
2

(
3w × 22wλ

))

(cf. Chapter 17 in [16]). In a similar way to deriving the bit complexity of Gram-
Schmidt algorithm (see Theorem 17.3.4 in [16]), one can verify that the Babai
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nearest plane algorithm requires O

(
(3w)523

(
log

(√
2

(
3w × 22wλ

)))2)
bit opera-

tions. From this, the bit complexity of the Babai nearest plane algorithm is O
(
w7λ2

)
in this case. Hence Step 3-2 runs in

O
(
w4λ3

)
+ O

(
w7λ2

)
(20)

bit operations.
Step 3-3 We compute a solution to xH = h with 2w indeterminates and at most

w2 equations. The size of any entry of H and h is O (wλ) bits. Hence Step 3-3 runs
in

O
(
w11λ2

)
(21)

bit operations.
Step 3-4At the beginning of this step, we compute e′ := e−1 mod ϕ (d) by using the

extended Euclid’s algorithm. According to Remark 3.5 in [25], the integer d should be
chosen so that one can compute ϕ (d) efficiently because the computation is needed
in the decryption process (see [25], Sect. 3.4). In Remark 3.5 of [25], the integer d is
expected to be a prime number as such an example. From this, we assume d is a prime
number, and then we have ϕ (d) = d − 1.

Next, we compute ck
(
m′) := μe′

(mod d)
(
0 < ck

(
m′) < d

)
, where e′ := e−1

(mod ϕ(d)) and μ is a certain coefficient of H1
(
x
)
(cf. Step 3-4 in Sect. 4.2). Recall

that the bit sizes of e′, μ and d are O (λ), O (wλ) and O (λ), respectively. Thus this
computation can be done in O

(
wλ2 + λ3

)
bit operations by the square-and-multiply

algorithm for modular exponentiation.
Third, we compute ck (m̃) := (

ck
(
m′))e (mod Nd)

(
0 < ck (m̃) < Nd

)
. Recall

from Sect. 3.5 that the size of N is O(wλ) bits. Note that the sizes of ck
(
m′), e

and Nd are O (λ), O (log (wλ)) and O (wλ) bits, respectively. Thus, the square-
and-multiply algorithm requires O

(
(wλ)2 log (wλ)

)
bit operations to compute

ck (m̃). As a consequence, those modular exponential arithmetic can be per-
formed in O

(
λ3 + w2λ2 log (wλ)

)
bit operations. Finally, the computation of t :=(

μ − ck (m̃)
)
/ck (X) runs in O

(
w2λ2

)
bit operations. The total bit complexity of

Step 3-4 is

O
(
λ3 + w2λ2log (wλ)

)
. (22)

Putting all the steps together, namely considering (10)–(22), we can determine the
complexity of our attack.

Theorem 24 The total bit complexity of the attack in Sect. 4.2 is

O
(
w11λ2

)
+ O

(
w4λ3

)
.
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Consequently, our attack performs in polynomial time for all the parameters λ and
wX , where λ and wX are independent of each other.

Remark 25 The estimated complexity in Theorem 24 shows that the computation of
our attack may become expensive for large w = wX and #ΛX ≤ w. Thus, to secure
DEC, one can think of increasing the parameters w and #ΛX . However, DEC is
impractical for large wX and #ΛX since ciphertexts of DEC have exceedingly large
sizes. For example, when wX = #ΛX = 45, b = 10 and λ = 128, we generated 100
ciphertexts (F1, F2, F3, N ) in accordance with Sects. 3.2 and 3.3, and measured their
sizes. As a result, their average size is about 10,086,237 bits.

Remark 26 From the above reason, the dominant term of the estimated complexity in
Theorem 24 is O(w4λ3) in practice.

6 Experimental verification

In this section, we demonstrate with experimental results that our attack algorithm
enables one to break the one-wayproperty ofDEC inpractical time. In our experiments,
we generated DEC instances of n = 4, where n is the number of indeterminates of a
public key X(x). The PC used in our experiments is as follows: The OS is Mac OS X,
64 bit. The processor is 2.60GHz CPU (Intel Corei5). The memory is 16GB. Authors
implemented the attack algorithm over Magma V2.21-3 [8]. For the parameters, we
adopted recommended ones in Remark 9 (such parameters shall make DEC instances
λ = 128 bit level secure).

Procedures ofOur ExperimentsFor three parameterswX , #ΛX and b, each ofwhich
is independent of the security parameter λ, we conduct the following procedure 100
times:

1. Construct secret/public keys in accordance with Section 3.2.
2. With the public key, we generate a ciphertext in accordance with Sect. 3.3.
3. For the above public key and the ciphertext, recover the twisted plaintext by Attack

Algorithm given in Sect. 4.2.

In our experiments, we generated each public key X so that its coefficients have b bit
sizes except the terms of its maximal degree and constant., i.e., 2b−1 ≤ |ci (X) | < 2b

for all i ∈ ΛX with i �= k, 0. Here k denotes the maximal element of ΛX , see
Remark 4 (2) for the ordering. For each DEC instance generated as above, we also
apply a variant of AttackAlgorithm in order to show the effectiveness ofweighted LLL
reduction for our cryptanalysis. Here the variant adopts the LLL reduction in terms
of the Euclidean norm in the first step of the original attack instead of the weighted
LLL reduction. We measure the number of successes and time performance only if
our attack succeeds, i.e., m̃ or −m̃ is recovered in the final step.

Table 1 indicates results of our experiments on our cryptanalysis of DEC instances.
In Step 1 of the table, the number of successes is shown only if the target lattice
point

(
s′1, s′2

)
or − (

s′1, s′2
)
is found. For the target lattice point, see Step 1 of Attack

Algorithm in Sect. 4.2. In Step 3 of the table, the number of successes is shown only
if we succeeded in finding a twisted plaintext m̃ (or −m̃).

123



1148 J. Ding et al.

We see from the results of Step 1 in Table 1 that the weighted LLL reduction
recovered our target lattice point in Step 1 with high probability, being about from 70
to 90%. On the other hand, we could not find the target lattice point with the usual
LLL reduction in any case of our experiments (we omit to show the experimental
results on the attack with the usual LLL reduction). We see from the results of Step
3 in Table 1 that our attack algorithm with the weighted LLL reduction could find
the twisted plaintext m̃ (or −m̃) with sufficiently high probability, being about from
20 to 40%. We, however, could not succeed in finding the twisted plaintext at all
by another one with the usual LLL reduction. From this, we infer that to adopt the
weighted LLL reduction is quit important for our attack to succeed, and that our attack
with the weighted LLL reduction has sufficiently high success probability for practical
cryptanalysis.

From the point of view on the efficiency of generating keys and encryp-
tion/decryption, we consider that the parameters of Table 1 are practical. We also
refer to Tables 4, 5 and 6 given in Sect. 6 of the designer’s paper [25]. We conclude
from these experimental results that the attack algorithm can break, with sufficiently
high probability, the one-way property of DEC in practical time.

Remark 27 The ranks of lattices occurring in Step 1 are equal to 3 in many cases. In
fact, this is true for 100 instances of DEC constructed in our experiments. The LLL
reduction finds shortest vectors in such lattices of low rank with high probability. In
Step 1, a weighted norm is determined so that the target vector becomes a (nearly)
shortest vector in terms of the norm. Thus the most important vector for our attack (the
target vector in Step 1) is found by the weighted LLL reduction with high probability.

Remark 28 The existence of some failures of our attack suggests that there may exist
a method to resist our attack. We analyzed some failure cases and found a reason why
our attack failed in finding target lattice points in Steps 1 and 3. In Step 1 of each failure
case, the weighted LLL algorithm found a shortest vector, but our target lattice point
was not shortest. Similarly, in Step 3 of each failure case, our target lattice point was
not a closest vector, while the Babai nearest plane algorithm found a closest vector.
Therefore one may resist our attack if it is possible to choose random polynomials
or public/secret keys such that our target lattice points are not shortest or closest in
lattices ocurring in Steps 1 and 3. However, special choices of polynomials may lead
us to another attack, and adding brute force methods to our attack seems to find target
lattices points in such cases (see below). In order to resist our attack, we conclude
that a major improvement of DEC is required. For example, the number of ciphertexts
(polynomials) should be reduced from 3 to 2 or 1 because using 3 ciphertexts is
essential to our attack.

On the other hand, we consider whether there is room for improving our attack or
not. A simple improvement is to add steps of brute force search (with small range)
to Steps 1 and 3. Our analysis in Sect. 4.1 suggests that our target vectors in Steps 1
and 3 are nearly shortest and nearly closest vectors, respectively, and thus our target
vectors seem to be found by brute force methods with small range. However, we omit
to conduct experiments on our attack with brute force methods. As mentioned above,
we believe that our attack has already provided a practical solution to a problem of
breaking DEC which is a candidate of PQC with small key sizes.
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Table 1 Experimental results on Attack Algorithm given in Sect. 4.2 for DEC of 128 bit level security with
4 indeterminates

Parameters recommended in Sect. 3.5 Experimental results

Value of b Number of monomials of X Number of successes of (1st
and 3rd Steps in) the attack /
100

1st Step 3rd Step Ave. Time (s)

10 3 71 23 0.02

4 81 33 0.03

5 86 29 0.04

6 86 35 0.06

7 85 29 0.07

8 92 33 0.09

9 88 41 0.21

10 91 32 0.25

50 3 68 21 0.02

4 82 39 0.03

5 77 30 0.04

6 83 33 0.07

7 88 41 0.08

8 93 32 0.10

9 92 36 0.21

10 91 34 0.28

100 3 75 29 0.02

4 78 26 0.03

5 80 36 0.04

6 83 31 0.07

7 82 34 0.08

8 95 40 0.11

9 87 36 0.20

10 91 38 0.27

The total degree of each public key is wX = 10. The authors conducted experiments in accordance with
Procedures of Our Experiments, which is given at the first part of Sect. 6. The parameter b is the bit length
of the coefficients of a public key X except the terms of its maximal degree and constant. “Ave. Time”
denotes the average of time which it took to perform the attack algorithm. (Time performance is shown for
successful cases.)

7 Conclusion

Wepresent in this paper a polynomial time-attack based on theweightedLLL reduction
against the one-way property of a Diophantine Equation-based Cryptosystem (DEC),
which was proposed in 2015 by the third author of this paper as one of the candidates
of Post-QuantumCryptosystems (PQC). Compared with other well-known candidates
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of PQC, sizes of public keys in DEC are much smaller, e.g., about 1,200 bits for 128
bit level security. This is a strongly desired characteristic for candidates of PQC.

Diophantine equations are generally unsolvable, and thus it is expected to be a base
of the security of PQC. However, we showed that DEC’s security does not rely on the
computational hardness to solve Diophantine equations, and that moreover DEC is no
longer secure. Concretely, with linearlization technique, one can reduce breaking the
one-way property of DEC to computing certain (comparatively) shorter points in low
rank-lattices. Our most crucial target lattice point has the following special property: it
is not necessarily a shortest lattice point whereas most of the entries are comparatively
small. In our attack, even with the LLL reduction in terms of well-known norms, e.g.,
p-norms for 1 ≤ p ≤ ∞, one seems to fail in finding such lattice points.

The most (heuristically-)technical point in our attack is changing the norm in the
LLL reduction from the Euclidean norm to an appropriate weighted one. One can
see from our analysis that the most important target lattice point becomes a (nearly)
shortest lattice point in terms of a weighted norm, where the weight is determined by
our heuristic method. Furthermore, the most important target lattice point is embed-
ded in a (weighted) lattice of 3-rank, which implies the weighted LLL reduction can
output with high probability such a target point. From this, we applied the weighted
LLL reduction, which is the LLL reduction in terms of a weighted norm to our crypt-
analysis. Our experimental results and complexity analysis suggest that for all the
recommended parameters, the one-way property of DEC can be broken with suffi-
ciently high probability by our polynomial time-attack based on the weighted LLL
reduction.

We also demonstrated with our experimental results that the weighted LLL reduc-
tion gives an effective computational tool to find lattice points of special characteristic:
the sizes of entries are almost known and most of them are small. Hence the weighted
LLL reduction can provide a tool to investigate the security of cryptosystems whose
security are transformed to the problem of computing such lattice points.
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