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1 Introduction

Since the pioneering work of Kermack and McKendrick [19], mathematical models
of epidemics have been studied by many researchers. The SIS epidemic model is one
of the most basic epidemic models, and assumes that recovered individuals become
susceptible again immediately without immunity (see, e.g., Diekmann and Heester-
beek [8]). Many kinds of SIS epidemic models have been studied by researchers (see,
e.g., [2–4,10–13,20,24–26,28,29,31,33,37,38]).

In this paper, as an additional structure of the system, we focus on the spatial
heterogeneity of the population. This is a key factor in considering the geographical
spread of infectious diseases (see, e.g., [32]). We are concerned with two kinds of
spatial heterogeneity: the patch structure and spatial diffusion. Inmodelswith the patch
structure, each region is regarded as a patch and individuals canmove between patches
(see, e.g., [2,13,37]). In contrast, models with spatial diffusion allow individuals to
move to adjacent positions through a random walk process (see, e.g., [3,31,38]).
Therefore, patch structuremodels are suitable for the global spread of diseases through
transportation such as airplanes, whereas spatial diffusion models are suitable for
diseases like rabies, which are spread by wild vectors (see, e.g., [18]).

In this paper, we consider SIS epidemic models with an age structure and the
aforementioned spatial heterogeneity, which are generalizations of the model studied
in [4]. To the best of our knowledge, relatively few studies have considered epidemic
models with both an age structure and spatial heterogeneity. In [28], Langlais and
Busenberg studied an SIS epidemic model with an age structure, spatial diffusion, and
time periodicity. They proved that if a nontrivial endemic equilibrium (or a periodic
solution) exists, then it is globally stable; however, the threshold condition for the
existence of such an endemic equilibriumwas not obtained. In [21],Kim studied anSIS
epidemic model with an age structure and spatial diffusion. The model was discretized
using the Galerkinmethod and the backward Euler method, and the nontrivial endemic
equilibrium was shown to be globally asymptotically stable when it exists. However,
similar to [28], the threshold condition for the existence of such an endemic equilibrium
was not obtained. In [9], Ducrot studied an SI epidemic model with an age structure
and spatial diffusion, and proved the existence of travelling waves. In this model, the
transmission rate was normalized to 1 and assumed to be independent of age, and the
infected individuals could only give birth to infective children. In [25], Kuniya and
Oizumi studied an SIS epidemic model with an age structure and spatial diffusion.
They obtained the threshold condition for the existence of the endemic equilibrium by
using the Feynman–Kac formula from probability theory. However, the global stability
of such an endemic equilibrium was not proven.

The purpose of this study is to investigate the global asymptotic behavior of
solutions to two kinds of SIS epidemic models with an age structure and spatial
heterogeneity. As mentioned above, one is the SIS epidemic model with age and patch
structures, and the other is the SIS epidemic model with an age structure and spatial
diffusion. For both models, we use the monotone dynamical system approach devel-
oped by Busenberg et al. [4] to prove that the global attractivity of each equilibrium
is completely determined by a threshold value: the disease-free equilibrium is glob-
ally attractive if the threshold value is less than 1, whereas the endemic equilibrium
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SIS epidemic models with age structure and spatial heterogeneity 671

uniquely exists and is globally attractive if the threshold value is greater than 1. In
particular, we show that this threshold value is a surrogate index of the basic reproduc-
tion number, which is defined by the spectral radius of the next generation operator.
This is a naturally expected result, but it has never been stated with respect to the
monotone dynamical system method. By virtue of this perspective, we can perform
numerical simulations to verify the validity of our theoretical results, which is an
important improvement in terms of applications.

The organization of this paper is as follows: In Sect. 2, we summarize the general
monotone dynamical system approach that we will use in the analysis. In Sect. 3,
we first formulate the SIS epidemic model with age and patch structures. Next, we
define the monotone and concave semiflow using the approach in [4]. We then prove
the existence and uniqueness of the endemic equilibrium when the threshold value
is greater than 1. Finally, we investigate the global attractivity of each equilibrium
in terms of the threshold value and show that the threshold value can be replaced by
the basic reproduction number. In Sect. 4, we formulate the SIS epidemic model with
an age structure and spatial diffusion and perform a similar analysis as in Sect. 3. In
Sect. 5, we conduct numerical simulations to illustrate the validity of our theoretical
results. In Sect. 6, we summarize our results and discuss future problems.

2 Monotone dynamical system approach

First, we summarize a monotone dynamical system approach to solve the global sta-
bility problem for structured population dynamics [4]. Let E be a Banach lattice and
E+ be its positive cone. Let z(t) be a population vector that takes a value in a closed
convex subset C ⊂ E+. Suppose that the dynamics of the population vector z(t) are
written as a semilinear Cauchy problem:

d

dt
z(t) = Az(t) + F(z(t)), t > 0, z(0) = z0, (2.1)

where A is a linear operator describing the survival process and F is a nonlinear per-
turbation describing the production of new individuals.We assume that the differential
operator A is the infinitesimal generator of a strongly continuous positive semigroup
{et A}t≥0 on E that satisfies

et A(C) ⊂ C. (2.2)

In addition, we assume that there exists a positive constant α > 0 such that

(I − αA)−1 (C) ⊂ C, (I + αF) (C) ⊂ C. (2.3)

Furthermore, we assume that the following monotonicity and concavity hold:

(I − αA)−1 ϕ ≤ (I − αA)−1 ψ for all ϕ, ψ ∈ C such that ϕ ≤ ψ, (2.4)

(I + αF) ϕ ≤ (I + αF) ψ for all ϕ, ψ ∈ C such that ϕ ≤ ψ, (2.5)

ξ (I + αF) ϕ ≤ (I + αF) ξϕ for all ϕ ∈ C and ξ ∈ (0, 1), (2.6)
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672 T. Kuniya et al.

where I denotes the identity operator.
The basic Eq. (2.1) can then be rewritten as a positively perturbed equation:

d

dt
z(t) =

(
A − 1

α

)
z(t) + 1

α
(I + αF) z(t), t > 0, z(0) = z0, (2.7)

and hence, its mild solution can be obtained as a solution of the integral equation

z(t) = e− 1
α
tet Az0 + 1

α

∫ t

0
e− 1

α (t−σ)e(t−σ)A (I + αF) z(σ )dσ.

Under conditions (2.2)–(2.6), we can adopt a positive iterative procedure to obtain the
following lemma (see the proof of Theorem 3.2 in [4]).

Lemma 2.1 Suppose that (2.2)–(2.6) hold. The mild solution of (2.7) is given as
z(t) = U (t)z0, where {U (t)}t≥0 is the nonnegative semiflow satisfying the following
monotonicity and concavity:

U (t)(C) ⊂ C and U (t)ϕ ≤ U (t)ψ for all ϕ,ψ ∈ C such that ϕ ≤ ψ, (2.8)

ξU (t)ϕ ≤ U (t)ξϕ for all ϕ ∈ C and ξ ∈ (0, 1) . (2.9)

In particular, if z0 belongs to the domain of A, then z(t) = U (t)z0 becomes the global
classical solution for the original Eq. (2.1).

The positively perturbed Eq. (2.7) is also useful for showing the existence of a
positive equilibrium. Let z∗ denote an equilibrium. Then, we have

(
A − 1

α
I

)
z∗ + 1

α
(I + αF)z∗ = 0.

Because − (A − (1/α)I ) is positively invertible, we have the fixed point equation for
z∗:

z∗ = − 1

α

(
A − 1

α
I

)−1

(I + αF) z∗ = (I − αA)−1(I + αF)z∗ =: Φ(z∗),

where Φ is a positive nonlinear operator preserving the invariance of the subset C . If
Φ has a positive fixed point, it gives a positive equilibrium of the basic system (2.1).
Define the linearized operator at the origin as:

Φ ′[0] := Kα = (I − αA)−1 (I + αF ′[0]) , (2.10)

where F ′[0] is the Fréchet derivative of the operator F at the origin. The existence of
a fixed point of Φ for r(Kα) > 1 will be proved by constructing a monotone bounded
sequence. The uniqueness of the positive fixed point will be proved by using a strong
concave property of Φ [15].
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SIS epidemic models with age structure and spatial heterogeneity 673

Even when the existence and uniqueness of such a positive equilibrium z∗ ∈ C\{0}
of Eq. (2.1) are guaranteed, it is not necessarily easy to show the global stability of
the unique steady state. However, if there exists a maximal point z† ∈ C such that
z ≤ z† for all z ∈ C and U (t) is eventually z∗-positive, that is, there exist positive
constants ξ ∈ (0, 1) and t0 > 0 such that

ξ z∗ ≤ U (t0)z0, (2.11)

then it is easy to show the global attractivity of z∗. In fact, we have the following
lemma.

Lemma 2.2 Suppose that (2.1) has the unique positive equilibrium z∗ ∈ C\{0}, there
exists a maximal point z† ∈ C, and U (t) is eventually z∗-positive. Then, z∗ is globally
attractive.

Proof AsU (t) is eventually z∗-positive, (2.11) holds. It then follows from the mono-
tonic and concave properties (2.8) and (2.9) of the semiflow that

ξ z∗ = ξU (t)z∗ ≤ U (t)ξ z∗ ≤ U (t)U (t0)z0 ≤ U (t)z† ≤ z†, t ≥ 0.

Hence,we can construct a nondecreasing sequence {U (t)nξ z∗}+∞
n=0 and anonincreasing

sequence {U (t)nz†}+∞
n=0, both of which are bounded and converge to the unique z∗.

Consequently, U (t)U (t0)z0 = U (t + t0)z0 also converges to z∗ as t → +∞. 
�
As shown above, we can use the spectral radius r(Kα) of the operator Kα as the

threshold value for the global attractivity of the positive equilibrium z∗. As Kα =
(I − αA)−1 (I + αF ′[0]), the spectral radius r(Kα) depends on the choice of α.
However, this dependence does not affect the threshold property of Kα . To see this fact,
let us introduce the next generation operator (NGO) for our basic system as follows
[16]: K := F ′[0] (−A)−1. The basic reproduction number is given by its spectral
radius:

R0 := r(K ). (2.12)

For epidemic models, R0 can be interpreted as the expected number of newly infected
individuals produced by a typical infected individual during its entire period of infec-
tiousness in a fully susceptible population (see, e.g., [8,16]). We have the following
lemma.

Lemma 2.3 Let Kα and R0 be defined by (2.10) and (2.12), respectively.

sign (r(Kα) − 1) = sign (R0 − 1) , (2.13)

which implies that the threshold property of Kα is independent of the choice of α.

Proof In the linearized system at the trivial steady state, R0 = r(K ) denotes the
per generation asymptotic growth factor and, if the spectral mapping theorem holds,
the spectral bound ω(A + F ′[0]) of the linearized generator gives the Malthusian
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parameter (asymptotic exponential growth rate) of the infective population. From the
renewal theorem, the following sign relation holds [16,35]:

sign (R0 − 1) = sign
(
ω(A + F ′[0])) . (2.14)

By applying similar ideas to the perturbed operator A − I/α + (I + αF ′[0]) /α, we
have the following relation:

sign (r(Kα) − 1) = sign

(
ω

(
A − 1

α
I + 1

α

(
I + αF ′[0])

))
. (2.15)

As the right-hand sides of (2.14) and (2.15) are the same, we have (2.13). 
�
In summary, we can expect that if R0 > 1, then the basic system has a unique

positive equilibrium z∗ ∈ C\ {0} that attracts all solutions z(t) = U (t)z0 with the
nontrivial initial datum z0 ∈ C\{0}; that is, U (t)z0 → z∗ in E as t → +∞, whereas
U (t)z0 → 0 as t → +∞ if R0 < 1. In the following, we apply the above general
recipe to two age-structured SIS epidemic models with spatial heterogeneity.

3 SIS epidemic model with age and patch structures

3.1 Model formulation

In this section, we are concerned with the SIS epidemic model with age and patch
structures. Let n ∈ N be the number of patches and let N := {1, 2, . . . , n}. Let
Pj (t, a) be the population of age a ∈ [0, a†] at time t ≥ 0 in patch j ∈ N , where
a† ∈ (0,+∞) denotes the maximum attainable age of individuals. For j ∈ N , let
μ j (a) andβ j (a)be the age-specificmortality rate andbirth rate in patch j , respectively.
For j, k ∈ N such that j �= k, let m jk(a) be the age-specific migration rate from
patch k to patch j . We assume that the population in each patch j obeys the following
Lotka–McKendrick system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
∂

∂t
+ ∂

∂a

)
Pj (t, a) = −

⎛
⎝μ j (a) +

∑
k �= j

mk j (a)

⎞
⎠ Pj (t, a) +

∑
k �= j

m jk(a)Pk(t, a),

Pj (t, 0) =
∫ a†

0
β j (a)Pj (t, a)da,

Pj (0, a) = Pj,0(a), t > 0, a ∈ (0, a†), j ∈ N .

(3.1)
For simplicity, we use the vector and matrix representation

P(t, a) := (P1(t, a), P2(t, a), · · · , Pn(t, a))T,

P0(a) := (P1,0(a), P2,0(a), · · · , Pn,0(a)
)T

,

M(a) := (m jk(a)) j,k∈N , B(a) := diag(β j (a)) j∈N ,
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where T denotes the transpose operation and m j j (a) := −μ j (a) − ∑k �= j mk j (a),
j ∈ N . Then, (3.1) can be rewritten as follows:

⎧⎨
⎩
(

∂

∂t
+ ∂

∂a

)
P(t, a) = M(a)P(t, a), P(t, 0) =

∫ a†

0
B(a)P(t, a)da,

P(0, a) = P0(a), t > 0, a ∈ (0, a†).
(3.2)

In this paper, we assume that the population is in the demographic steady state. For
this purpose, we make the following assumptions:

(A1) μ j (·) ∈ L1
loc,+(0, a†) and

∫ a†
0 μ j (a)da = +∞ for all j ∈ N ;

(A2) m jk(·) ∈ L∞+ (0, a†) for all j, k ∈ N such that j �= k;
(A3) β j (·) ∈ L∞+ (0, a†) for all j ∈ N ;
(A4) The net reproduction matrix

∫ a†
0 M(a)L(a)da is irreducible and its Frobe-

nius root is 1, where L(a) denotes the survivalmatrix such that dL(a)/da =
M(a)L(a) and L(0) is equal to the identity matrix.

Under (A1)–(A4),we see fromPropositions 3.2, 3.3, and 4.2 in Inaba [14] that (3.2) has
a positive demographic steady state P∗(a) := (P∗

1 (a), P∗
2 (a), · · · , P∗

n (a))T, which
satisfies

dP∗(a)

da
= M(a)P∗(a), P∗(0) =

∫ a†

0
B(a)P∗(a)da, a ∈ (0, a†).

It has been shown [14,17] that P∗ is globally asymptotically stable with intrinsic
growth rate 0. Therefore, in the following, we assume that the demographic steady
state has already been reached at t = 0, so P(t, a) ≡ P∗(a) = L(a)b∗ for all t > 0,
where b∗ denotes the positive eigenvector (the birth rate vector at the steady state)
corresponding to the eigenvalue 1 of the net reproduction matrix

∫ a†
0 M(a)L(a)da.

In this paper, we focus on an infectious disease such that recovered individuals do
not have immunity and remain susceptible. For instance, some sexually transmitted
diseases such as gonorrhea have this characteristic. Such a disease can be modeled
by the SIS epidemic model (see, for instance, [26]). Let S j (t, a) and I j (t, a) be the
susceptible and infective populations, respectively, of age a ∈ [0, a†] at time t ≥ 0
in patch j ∈ N . We assume that the population is divided into these two classes:
P∗
j (a) ≡ S j (t, a)+ I j (t, a), j ∈ N . For j ∈ N , let λ j (t, a) be the force of infection

to susceptible individuals of age a at time t , and let γ j (a) be the age-specific recovery
rate. We assume that λ j (t, a) is given by the following integral:

λ j (t, a) =
∫ a†

0
κ j (a, σ )I j (t, σ )dσ, j ∈ N ,

where κ j (a, σ ) denotes the age-specific disease transmission coefficient. The main
model in this section is formulated as the following SIS epidemic model with age and
patch structures:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂

∂t
+ ∂

∂a

)
S j (t, a) = −λ j (t, a)S j (t, a) + γ j (a)I j (t, a) +

n∑
k=1

m jk(a)Sk(t, a),

(
∂

∂t
+ ∂

∂a

)
I j (t, a) = λ j (t, a)S j (t, a) − γ j (a)I j (t, a) +

n∑
k=1

m jk(a)Ik(t, a),

S j (t, 0) =
∫ a†

0
β j (a)P∗

j (a)da, I j (t, 0) = 0,

S j (0, a) = S j,0(a), I j (0, a) = I j,0(a), t > 0, a ∈ (0, a†), j ∈ N .

(3.3)
Note that the disease-induced death and reduction of the migration rate are not con-
sidered in (3.3). As stated in [1, Sect. 3.3], these assumptions would be suitable for
mild diseases. In particular, some sexually transmitted diseases such as gonorrhea are
thought to be suitable for (3.3). Furthermore, note that ourmodel (3.3) is different from
the multi-group SIS epidemic model studied in [10], which considers the interaction
of individuals in different groups in the force of infection term, but does not allow the
movement of individuals between groups. We make the following assumption:

(A5) γ j (·) ∈ L∞+ (0, a†) and κ j (·, ·) ∈ L∞+ ((0, a†) × (0, a†)) for all j ∈ N .

In the following, we consider the normalization of the solution of system (3.3):

s j (t, a) := S j (t, a)

P∗
j (a)

, i j (t, a) := I j (t, a)

P∗
j (a)

, j ∈ N .

As s j (t, a) = (P∗
j (a) − I j (t, a))/P∗

j (a) = 1 − i j (t, a), we can rewrite (3.3) as
follows:

⎧⎪⎨
⎪⎩

∂i j (t, a)

∂t
= − ∂i j (t, a)

∂a
+λ j (t, a)(1 − i j (t, a))−γ j (a)i j (t, a)+

n∑
k=1

m̄ jk(a)ik(t, a),

i j (t, 0) = 0, i j (0, a) = i j,0(a), t > 0, a ∈ (0, a†), j ∈ N .

(3.4)

Here,

λ j (t, a) =
∫ a†

0
κ̄ j (a, σ )i j (t, σ )dσ, j ∈ N , κ̄ j (a, σ ) := κ j (a, σ )P∗

j (σ ), j ∈ N ,

m̄ jk(a) :=m jk(a)
P∗
k (a)

P∗
j (a)

, j, k ∈ N s.t. j �= k, m̄ j j (a) :=−
∑
k �= j

m̄ jk(a), j ∈ N .

In fact,

∂i j (t, a)

∂t
+ ∂i j (t, a)

∂a

= 1

P∗
j (a)

∂ I j (t, a)

∂t
+ 1

(P∗
j (a))2

[
P∗
j (a)

∂ I j (t, a)

∂a
− I j (t, a)

∂P∗
j (a)

∂a

]

= 1

P∗
j (a)

(
∂

∂t
+ ∂

∂a

)
I j (t, a) − i j (t, a)

P∗
j (a)

⎡
⎣−(μ j (a) +

∑
k �= j

mk j (a))P∗
j (a) +

∑
k �= j

m jk (a)P∗
k (a)

⎤
⎦

123



SIS epidemic models with age structure and spatial heterogeneity 677

= λ j (t, a)
S j (t, a)

P∗
j (a)

− γ j (a)
I j (t, a)

P∗
j (a)

+
∑
k �= j

m jk (a)
P∗
k (a)

P∗
j (a)

Ik (t, a)

P∗
k (a)

−
⎛
⎝μ j (a) +

∑
k �= j

mk j (a)

⎞
⎠ I j (t, a)

P∗
j (a)

+
⎛
⎝μ j (a) +

∑
k �= j

m jk(a)

⎞
⎠ i j (t, a) −

∑
k �= j

m jk (a)
P∗
k (a)

P∗
j (a)

i j (t, a)

= λ j (t, a)(1 − i j (t, a)) − γ j (a)i j (t, a) +
∑
k �= j

m̄ jk(a)ik (t, a) −
∑
k �= j

m̄ jk(a)i j (t, a), j ∈ N

and we obtain (3.4). We make the following technical assumption:

(A6) m̄ jk(·) ∈ L∞+ (0, a†) for all j, k ∈ N such that j �= k.

For example, (A6) is satisfied if the migration rate is zero at the left neighborhood of
the maximum attainable age a†, or if m jk(a) is proportional to P∗

j (a).

3.2 Definition of the semiflow

To apply the monotone dynamical system approach of Busenberg et al. [4] (see
Sect. 2), we define the semiflow generated by (3.4). Let E := L1

(
0, a†;Rn

)
, E+ :=

L1+
(
0, a†;Rn

)
and let C be the state space for system (3.4) defined as follows:

C :=
{
ϕ = (ϕ1, ϕ2, . . . ϕn)

T ∈ E+ : 0 ≤ ϕ j (a) ≤ 1 a.e. for all j ∈ N
}

.

(3.5)
To rewrite (3.4) into an abstract Cauchy problem in E , we define the following two
operators:

Aϕ(a) := −dϕ(a)

da
, ϕ ∈ D(A) :=

{
ϕ ∈ E : ϕ ∈ W 1,1(0, a†;Rn), ϕ(0) = 0

}
,

F(ϕ)(a) :=
(

λ j [a|ϕ](1 − ϕ j (a)) − γ j (a)ϕ j (a) +
n∑

k=1

m̄ jk(a)ϕk(a)

)T

j∈N
, ϕ ∈ E,

(3.6)

where

λ j [a|ϕ] :=
∫ a†

0
κ̄ j (a, σ )ϕ j (σ )dσ, ϕ ∈ E, j ∈ N .

The system (3.4) can then be rewritten in the following abstract form in E :

di(t)

dt
= Ai(t) + F(i(t)), t > 0, i(0) = i0 ∈ E, (3.7)

where i(t) = (i1(t), i2(t), · · · , in(t))T and i0 = (i1,0, i2,0, · · · , in,0
)T.
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We are now in a position to show that (3.7) defines the semiflow {U (t)}t≥0 such
that i(t) = U (t)i0, which satisfies the following monotonicity and concavity:

U (t)(C) ⊂ C and U (t)ϕ ≤ U (t)ψ for all ϕ,ψ ∈ C such that ϕ ≤ ψ, (3.8)

ξU (t)ϕ ≤ U (t)ξϕ for all ϕ ∈ C and ξ ∈ (0, 1) . (3.9)

Proposition 3.1 Let C be defined by (3.5). The abstract Cauchy problem (3.7) has
the global classical solution i(t) ∈ C for any i0 ∈ C ∩ D(A). Furthermore, it defines
the positive semiflow {U (t)}t≥0 satisfying (3.8) and (3.9).

Proof It is easy to see that the operator A defined by (3.6) generates the following
C0-semigroup {et A}t≥0 : E → E :

et Aϕ(a) :=
{

ϕ(a − t), a − t > 0,
0, t − a ≥ 0,

ϕ ∈ E .

Then, it is easy to see that et A(C) ⊂ C and et Aϕ ≤ et Aψ for all ϕ,ψ ∈ C such that
ϕ ≤ ψ . For any positive constant α > 0, the resolvent (I − αA)−1 : E → E is given
as follows:

(I − αA)−1 ϕ(a) := 1

α

∫ a

0
e− 1

α (a−σ)ϕ(σ )dσ, ϕ ∈ E .

Hence, for all ϕ,ψ ∈ C such that ϕ ≤ ψ , it holds that

(I − αA)−1ϕ ≤ (I − αA)−1ψ.

Let α > 0 satisfy the following inequality:

α <
1

max
j∈N

⎛
⎝λ+

j + γ +
j +

∑
k �= j

m̄+
jk

⎞
⎠

, (3.10)

where λ+
j , γ +

j ( j ∈ N ) and m̄+
jk ( j, k ∈ N , j �= k) denote the essential positive

upper bounds for the respective functions, the existence of which follows from (A5)
and (A6). For any ϕ,ψ ∈ C such that ϕ ≤ ψ , we have

(I + αF)ϕ

≤
(

ϕ j + αλ j [·|ψ] (1 − ϕ j
)− αγ j (·)ϕ j + α

n∑
k=1

m̄ jk(·)ϕk

)T

j∈N

≤
⎛
⎝ϕ j

{
1 − α

(
λ j [·|ψ] + γ j (·) − m̄ j j (·)

)}+ αλ j [·|ψ] + α
∑
k �= j

m̄ jk(·)ψk

⎞
⎠

T

j∈N
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≤
⎛
⎝ψ j

⎧⎨
⎩1−α(λ j [·|ψ]+γ j (·)+

∑
k �= j

m̄ jk(·))
⎫⎬
⎭+αλ j [·|ψ]+α

∑
k �= j

m̄ jk(·)ψk

⎞
⎠

T

j∈N
= (I + αF)ψ.

That is, I + αF is a monotone operator. For any ϕ ∈ C and ξ ∈ (0, 1), we have

ξ (I + αF) ϕ

= ξ

(
ϕ j + αλ j [·|ϕ] (1 − ϕ j

)− αγ j (·)ϕ j + α

n∑
k=1

m̄ jk(·)ϕk

)T

j∈N

≤
(

ξϕ j + αλ j [·|ξϕ] (1 − ξϕ j
)− αγ j (·)ξϕ j + α

n∑
k=1

m̄ jk(·)ξϕk

)T

j∈N
= (I + αF) ξϕ.

That is, (2.6) in Sect. 2 holds. For any ϕ ∈ C , we have

0 = (I − αA)−1 0 ≤ (I − αA)−1 ϕ ≤ (I − αA)−1 1 =
(
1 − e− 1

α
a
)T
j∈N ≤ 1,

0 = (I + αF) 0 ≤ (I + αF) ϕ ≤ (I + αF) 1

=
(
1 − αγ j (·) + α

n∑
k=1

m̄ jk(·)
)T

j∈N
= (

1 − αγ j (·)
)T
j∈N ≤ 1.

These inequalities imply that (I −αA)−1(C) ⊂ C and (I +αF)(C) ⊂ C , and hence,
(2.3) holds. Consequently, from Lemma 2.1, we see that the abstract Cauchy problem
(3.7) has the global classical solution i(t) ∈ C for any i0 ∈ C ∩ D(A), and it defines
the semiflow {U (t)}t≥0 satisfying (3.8) and (3.9). This completes the proof. 
�

3.3 Existence and uniqueness of the endemic equilibrium

Let i∗ = (i∗1 , i∗2 , · · · , i∗n )T ∈ C denote the equilibrium of the basic system (3.4). From
(3.7), it satisfies the following equality:

0 = Ai∗ + F(i∗).

By using the positive constant α > 0 as in the proof of Proposition 3.1, we can rewrite
the above equality as follows (see also Sect. 2):

i∗ = (I − αA)−1(I + αF)i∗ =: Φ(i∗).

Hence, regarding the existence of the endemic equilibrium,we can restrict our attention
to the fixed point problem of the operator Φ = (I − αA)−1(I + αF). From the proof
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of Proposition 3.1, we see that Φ(C) ⊂ C and Φ(ϕ) ≤ Φ(ψ) for all ϕ,ψ ∈ C such
that ϕ ≤ ψ . Let Φ ′[0] := Kα = (I − αA)−1(I + αF ′[0]) be the Fréchet derivative
of Φ at the origin, where F ′[0] : E → E is the Fréchet derivative of F at the origin:

(Kαϕ)(a) := 1

α

∫ a

0
e− 1

α
(a−σ)[ϕ(σ) + αF ′[0]ϕ(σ)]dσ, ϕ ∈ E, (3.11)

F ′[0]ϕ(a) :=
(

λ j [a|ϕ] − γ j (a)ϕ j (a) +
n∑

k=1

m̄ jk(a)ϕk(a)

)T

j∈N
, ϕ ∈ E . (3.12)

We expect the spectral radius r(Kα) of the operator Kα to play the role of the threshold
value for the existence of the nontrivial fixed point of Φ (see also Sect. 2). In fact, we
prove the following proposition.

Proposition 3.2 Let C and Kα be defined by (3.5) and (3.11), respectively. If r(Kα) >

1, then system (3.4) has at least one endemic equilibrium i∗ ∈ C\ {0}.
Proof As the operator Kα is linear, positive, and completely continuous, it follows
from the Krein–Rutman theorem [22] that there exists a positive eigenfunction ϕ∗ ∈
E+\ {0} corresponding to r(Kα) > 1. Without loss of generality, we can assume that
ϕ∗ ∈ C . For any ξ ∈ (0, 1), we have

Φ(ξϕ∗)(a) = Kαξϕ∗(a) −
(
1

α

∫ a

0
e− 1

α
(a−σ)αλ j [σ |ξϕ∗]ξϕ∗

j (σ )dσ

)T

j∈N

= ξr(Kα)ϕ∗(a) −
(

ξ2
∫ a

0
e− 1

α
(a−σ)λ j [σ |ϕ∗]ϕ∗

j (σ )dσ

)T

j∈N

≥ ξr(Kα)ϕ∗(a) − ξ2λ̄

(∫ a

0
ϕ∗
j (σ )dσ

)T

j∈N
, (3.13)

where λ̄ := max j∈N λ+
j . In addition, we have

r(Kα)ϕ∗(a) = Kαϕ∗(a)

≥
⎛
⎝ 1

α
e− 1

α
a†

∫ a

0

⎧⎨
⎩1 − α

⎛
⎝γ +

j +
∑
k �= j

m̄+
jk

⎞
⎠
⎫⎬
⎭ϕ∗

j (σ )dσ

⎞
⎠

T

j∈N

≥
(
1

α
e− 1

α
a† (1 − αγ̄ )

∫ a

0
ϕ∗
j (σ )dσ

)T

j∈N
,

where γ̄ := max j∈N
(
γ +
j +∑k �= j m̄

+
jk

)
> 0. From the choice of α in (3.10), we

see that 1 − αγ̄ > 0, and hence, we have

αr(Kα)

e− 1
α
a†(1 − αγ̄ )

ϕ∗
j (a) ≥

∫ a

0
ϕ∗
j (σ )dσ, j ∈ N . (3.14)
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As r(Kα) > 1, we can assume that ξ ∈ (0, 1) is sufficiently small that

r(Kα) − 1 − ξ λ̄
αr(Kα)

e− 1
α
a†(1 − αγ̄ )

> 0. (3.15)

From (3.13), (3.14), and (3.15), we have

Φ(ξϕ∗)(a) ≥ ξr(Kα)ϕ∗(a) − ξ2λ̄
αr(Kα)

e− 1
α
a†(1 − αγ̄ )

ϕ∗(a)

= ξϕ∗(a) +
{
r(Kα) − 1 − ξ λ̄

αr(Kα)

e− 1
α
a†(1 − αγ̄ )

}
ξϕ∗(a) ≥ ξϕ∗(a).

Hence, from the monotonicity of Φ, we can construct a monotone nondecreasing
sequence {Φn(ξϕ∗)}+∞

n=0. As Φ(C) ⊂ C , this sequence is bounded, and hence, there
exists a ϕ∞ ∈ C\{0} such that Φ(ϕ∞) = ϕ∞. This is the desired fixed point of Φ,
that is, the endemic equilibrium i∗ ∈ C\{0} of system (3.4). This completes the proof.


�
Next, we prove the uniqueness of the endemic equilibrium i∗ = (i∗1 , i∗2 , · · · , i∗n )T ∈

C\ {0}. We see from (3.4) that it satisfies the following system of ordinary differential
equations:

⎧⎪⎨
⎪⎩

di∗j (a)

da
= λ j [a|i∗]

(
1 − i∗j (a)

)
− γ j (a)i∗j (a) +

n∑
k=1

m̄ jk(a)i∗k (a),

i∗j (0) = 0, a ∈ (0, a†), j ∈ N .

(3.16)

For the uniqueness of the endemic equilibrium i∗, we make the following additional
assumption:

(A7) There exist κ−
j ∈ L∞+ (0, a†) for all j ∈ N such that κ j (a, σ ) ≥ κ−

j (σ ) > 0 for

all a, σ ∈ (0, a†).
Under assumption (A7), we have the following inequality for all ϕ ∈ E+\{0}:

λ j [a|ϕ] ≥
∫ a†

0
κ−
j (σ )P∗

j (σ )ϕ j (σ )dσ =: λ−
j (ϕ) > 0, a ∈ (0, a†), j ∈ N .

(3.17)
Using (3.17), we prove the following lemma:

Lemma 3.1 Let C be defined by (3.5) and i∗ ∈ C\ {0} be an endemic equilibrium
of system (3.4). For any ξ ∈ (0, 1) and v ∈ C\ {0}, there exists a positive functional
c(v) > 0 such that Φ (ξ i∗ + v) (a) ≥ ξ i∗(a) + c(v)a.

Proof For any ξ ∈ (0, 1) and v ∈ C\ {0}, we have
(I + αF)

(
ξ i∗ + v

)
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= ξ i∗ + v + α

⎛
⎝λ j

[·|ξ i∗ + v
] (

1 − ξ i∗j − v j

)
− γ j (·)

(
ξ i∗j + v j

)
+

n∑
k=1

m̄ jk (·)
(
ξ i∗k + vk

)
⎞
⎠
T

j∈N

= ξ i∗ + αF(ξ i∗) +
⎛
⎝αλ j [·|v]

(
1 − ξ i∗j

)

+v j

⎧⎨
⎩1 − α

⎛
⎝λ j

[·|ξ i∗ + v
]+ γ j (·) +

∑
k �= j

m̄ jk(·)
⎞
⎠
⎫⎬
⎭+ α

∑
k �= j

m̄ jk (·)vk
⎞
⎠
T

j∈N

≥ ξ i∗ + ξαF(i∗) + α (1 − ξ)
(
λ−
j (v)

)T
j∈N .

Hence, it follows from the monotonicity of (I − αA)−1 that

Φ
(
ξ i∗ + v

)
(a) = (I − αA)−1(I + αF)(ξ i∗ + v)(a)

≥ ξΦ
(
i∗
)
(a) + (1 − ξ)

(∫ a

0
e− 1

α
(a−σ)λ−

j (v) dσ

)T

j∈N
≥ ξ i∗(a) + (1 − ξ) e− 1

α
a†λ(v)a,

where λ(v) := min j∈N λ−
j (v). Therefore, by letting c(v) := (1 − ξ) e− 1

α
a†λ(v), the

proof is complete. 
�

Using Lemma 3.1, we prove the following proposition on the uniqueness of the
endemic equilibrium i∗ ∈ C\{0} of (3.4).

Proposition 3.3 Let C be defined by (3.5). System (3.4) has at most one endemic
equilibrium i∗ ∈ C\ {0}.

Proof The first equation in (3.16) can be rewritten as

di∗j (a)

da
= λ j [a|i∗] − (λ j [a|i∗] + γ j (a) − m̄ j j (a)

)
i∗j (a) +

∑
k �= j

m̄ jk(a)i∗k (a)

= λ j [a|i∗] −
⎛
⎝λ j [a|i∗] + γ j (a) +

∑
k �= j

m̄ jk(a)

⎞
⎠ i∗j (a) +

∑
k �= j

m̄ jk(a)i∗k (a).

Hence, from (3.17), we have

λ−
j (i∗) −

⎛
⎝λ+

j + γ +
j +

∑
k �= j

m̄+
jk

⎞
⎠ i∗j (a) ≤ di∗j (a)

da

≤ λ+
j +

∑
k �= j

m̄+
jk, a ∈ (0, a†), j ∈ N .
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Integrating this expression, we have

λ−
j (i∗)e−

(
λ+
j +γ +

j +∑k �= j m̄
+
jk

)
a†a ≤ i∗j (a) ≤

⎛
⎝λ+

j +
∑
k �= j

m̄+
jk

⎞
⎠ a, a ∈ (0, a†), j ∈ N .

(3.18)
Suppose that there exists another endemic equilibrium j∗ = ( j∗1 , j∗2 , · · · , j∗n )T ∈
C\ {0} of system (3.4). From inequality (3.18), we have

i∗j (a) ≥ λ−
j (i∗)e−

(
λ+
j +γ +

j +∑k �= j m̄
+
jk

)
a†

λ+
j +∑k �= j m̄

+
jk

⎛
⎝λ+

j +
∑
k �= j

m̄+
jk

⎞
⎠ a

≥ λ−
j (i∗)e−

(
λ+
j +γ +

j +∑k �= j m̄
+
jk

)
a†

λ+
j +∑k �= j m̄

+
jk

j∗j (a), a ∈ (0, a†), j ∈ N .

This implies that there exists some ξ ∈ (0, 1) such that i∗ ≥ ξ j∗. Let η := sup{ξ ∈
R+ : i∗ ≥ ξ j∗} and suppose that η ∈ (0, 1). From the monotonicity of Φ and
inequalities (3.17) and (3.18), we have

i∗(a) = Φ(i∗)(a) ≥ Φ(η j∗)(a)

= ηΦ( j∗)(a) + η (1 − η)

(∫ a

0
e− 1

α
(a−σ)λ j

[
σ | j∗] j∗j (σ )dσ

)T

j∈N

≥ ηΦ( j∗)(a) + η (1 − η) e− 1
α
a†

(
λ−
j ( j∗)2e−

(
λ+
j +γ +

j +∑k �= j m̄
+
jk

)
a†
∫ a

0
σdσ

)T

j∈N

= η j∗(a) + η (1 − η) e− 1
α
a†

(
λ−
j ( j∗)2e−

(
λ+
j +γ +

j +∑k �= j m̄
+
jk

)
a† a

2

2

)T

j∈N

≥ η j∗(a) + η (1 − η) e− 1
α
a†

⎛
⎜⎝λ−

j ( j∗)2e−
(
λ+
j +γ +

j +∑k �= j m̄
+
jk

)
a†

(
λ+
j +∑k �= j m̄

+
jk

)2
j∗j (a)2

2

⎞
⎟⎠

T

j∈N

, a ∈ (0, a†).

Regarding the last term on the right-hand side of this inequality as v in Lemma 3.1,
we see that there exists some c(v) > 0 such that Φ (η j∗ + v) (a) ≥ η j∗(a) + c(v)a.
Hence, projecting Φ on both sides, we have

Φ(i∗)(a) ≥ Φ(η j∗ + v)(a) ≥ η j∗(a) + c(v)a

≥ η j∗(a) + c(v)

λ̄ + m̄

(
λ̄ + m̄

)
a ≥ η j∗(a) + c(v)

λ̄ + m̄
j∗(a), a ∈ (0, a†),

where λ̄ := max j∈N λ+
j and m̄ := max j∈N

∑
k �= j m̄

+
jk . Recalling that i∗ = Φ(i∗),

we have

i∗(a) ≥
(

η + c(v)

λ̄ + m̄

)
j∗(a), a ∈ (0, a†),
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which contradicts the definition of η. Therefore, η ≥ 1 and we have i∗ ≥ η j∗ ≥ j∗.
Exchanging the roles of i∗ and j∗, we can show that j∗ ≥ i∗ in a similar way.
Consequently, we have i∗ = j∗ and the proof is complete. 
�

3.4 Global attractivity of equilibria

From (3.7) and (3.12), we have the following differential inequality:

di(t)

dt
≤ (A + F ′[0]) i(t), t > 0, i(0) = i0 ∈ E . (3.19)

When r(Kα) < 1, as stated in Sect. 2, we have that ω(A + F ′[0]) < 0, where ω(·)
denotes the spectral bound of an operator that is equal to the asymptotic exponential
growth rate. Therefore, from (3.19), we see that U (t)i0 → 0 in E as t → +∞, that
is, the disease-free equilibrium 0 is globally attractive. Consequently, we have the
following proposition.

Proposition 3.4 Let C and Kα be defined by (3.5) and (3.11), respectively. If r(Kα) <

1, then the disease-free equilibrium 0 of system (3.4) is globally attractive in C.

Next, we investigate the global attractivity of the endemic equilibrium i∗ ∈ C\{0}
when r(Kα) > 1. We prove the following lemma.

Lemma 3.2 Let C be defined by (3.5) and suppose that system (3.4) has the unique
endemic equilibrium i∗ ∈ C\{0}. Then, U (t) is eventually i∗-positive, that is, there
exist positive constants ξ ∈ (0, 1) and t0 > 0 such that

ξ i∗ ≤ U (t0)i0, (3.20)

provided that i0 ∈ C\{0}.
Proof By integrating the first equation in (3.4) along the characteristic line t − a =
const., we have

i j (t, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i j,0(a − t)e
− ∫ t0

{
λ j (ρ,a−t+ρ)+γ j (a−t+ρ)+∑k �= j m̄ jk (a−t+ρ)

}
dρ

dσ

+
∫ t

0

⎧⎨
⎩λ j (σ, a − t + σ) +

∑
k �= j

m̄ jk (a − t + σ)ik (σ, a − t + σ)

⎫⎬
⎭

×e
− ∫ tσ

{
λ j (ρ,a−t+ρ)+γ j (a−t+ρ)+∑k �= j m̄ jk (a−t+ρ)

}
dρ

dσ,

a − t > 0;

∫ a

0

⎧⎨
⎩λ j (t − a + σ, σ ) +

∑
k �= j

m̄ jk (σ )ik (t − a + σ, σ )

⎫⎬
⎭

×e
− ∫ aσ

{
λ j (t−a+ρ,ρ)+γ j (ρ)+∑k �= j m̄ jk (ρ)

}
dρ

dσ,

t − a ≥ 0,

j ∈ N .

It suffices to consider the case where t > a†. From the second case of the above
equation, we have

i j (t, a) ≥ e
−
(
λ+
j +γ +

j +∑n
k=1 m̄

+
jk

)
a†
∫ a

0
λ j (t − a + σ, σ ) dσ
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≥ e
−
(
λ+
j +γ +

j +∑n
k=1 m̄

+
jk

)
a†
∫ a

0
λ−
j (i(t − a + σ, ·))dσ, j ∈ N . (3.21)

Let t0 > a†. As i0 ∈ C\{0}, it follows from (3.17) and the continuity that

λ j := inf
t∈(0,t0)

λ−
j (i(t, ·)) > 0, j ∈ N .

Hence, from (3.18) and (3.21), we have

i j (t0, a) ≥ e
−
(
λ+
j +γ +

j +∑n
k=1 m̄

+
jk

)
a†

λ j a

= e
−
(
λ+
j +γ +

j +∑n
k=1 m̄

+
jk

)
a†

λ+
j +∑n

k=1 m̄
+
jk

λ j

(
λ+
j +

n∑
k=1

m̄+
jk

)
a

≥ e
−
(
λ+
j +γ +

j +∑n
k=1 m̄

+
jk

)
a†

λ+
j +∑n

k=1 m̄
+
jk

λ j i
∗
j (a), j ∈ N ,

which implies the existence of a sufficiently small ξ ∈ (0, 1) such that (3.20) holds.
This completes the proof. 
�

From Lemma 3.2, we can apply Lemma 2.2 to obtain the following proposition.

Proposition 3.5 LetC be defined by (3.5) and suppose that system (3.4) has the unique
endemic equilibrium i∗ ∈ C\{0}. Then, i∗ is globally attractive in C\{0}.
Consequently, from Propositions 3.2, 3.3, and 3.5, we have the following proposition.

Proposition 3.6 Let C and Kα be defined by (3.5) and (3.11), respectively. If r(Kα) >

1, then system (3.4) has the unique endemic equilibrium i∗ ∈ C\{0} and it is globally
attractive in C\{0}.

Finally for this section, we show the relationship between r(Kα) and the basic
reproduction number R0, which is defined by

R0 = r(K ), K = F ′[0](−A)−1. (3.22)

From Lemma 2.3, we have sign(R0 − 1) = sign(r(Kα) − 1). Consequently, from
Propositions 3.4 and 3.6, we have the following main theorem of this section.

Theorem 3.1 Let C and R0 be defined by (3.5) and (3.22), respectively.

(i) If R0 < 1, then the disease-free equilibrium 0 of system (3.4) is globally attractive
in C.

(ii) If R0 > 1, then system (3.4) has the unique endemic equilibrium i∗ ∈ C\{0} and
it is globally attractive in C\{0}.

123



686 T. Kuniya et al.

4 The SIS epidemic model with age structure and spatial diffusion

4.1 Model formulation

In this section, we are concerned with the SIS epidemic model with an age structure
and spatial diffusion. Let Ω ⊂ R

n, n ∈ N be a bounded domain with a smooth
boundary ∂Ω . Let P(t, a, x) be the population of age a ∈ [0, a†] at time t ≥ 0 in
position x ∈ Ω , where a† ∈ (0,+∞) denotes the maximum attainable age, as in the
previous section. Let μ(a) and β(a) be the age-specific mortality rate and birth rate,
respectively. Let d > 0 be the diffusion coefficient. In this section, we assume that the
population obeys the following differential equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
∂

∂t
+ ∂

∂a

)
P(t, a, x) = dΔx P(t, a, x) − μ(a)P(t, a, x),

P(t, 0, x) =
∫ a†

0
β(a)P(t, a, x)da,

P(0, a, x) = P0(a, x) := S0(a, x) + I0(a, x), t > 0, a ∈ (0, a†), x ∈ Ω\∂Ω,
∂P (t, a, x)

∂n
= 0, t > 0, a ∈ (0, a†), x ∈ ∂Ω,

(4.1)
where n denotes the outward unit normal vector on ∂Ω . This is a stable population
model with diffusion, as studied by Marcati and Serafini [30]. For the demographic
coefficients, we make the following assumptions:

(B1) μ ∈ L1
loc,+(0, a†) and

∫ a†
0 μ(a)da = +∞;

(B2) β ∈ L∞+ (0, a†) and
∫ a†
0 β(a)e− ∫ a0 μ(σ)dσda = 1.

Under assumption (B2), it is easy to see that Eq. (4.1) has a spatially homogeneous
positive equilibrium P∗(a) = P∗(0)e− ∫ a0 μ(σ)dσ (where we can regard P∗(0) as an
arbitrary constant). As in Sect. 3, we assume in the following that such a demographic
steady state has already been reached at t = 0, that is, P(t, a, x) ≡ P∗(a).

Let S(t, a, x) and I (t, a, x) denote the susceptible and infective populations,
respectively, of age a ∈ [0, a†] at time t ≥ 0 in position x ∈ Ω . Let λ(t, a, x)
be the force of infection to susceptible individuals of age a at time t in position x and
let γ (a) be the age-specific recovery rate. We assume that λ(t, a, x) is given by the
following integral:

λ(t, a, x) =
∫ a†

0

∫
Ω

κ(a, σ, x, y)I (t, σ, y)dydσ,

where κ(a, σ, x, y) denotes the coefficient of disease transmission between S(·, a, x)
and I (·, σ, y). The main model in this section is formulated as the following SIS
epidemic model with age structure and spatial diffusion:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂

∂t
+ ∂

∂a

)
S(t, a, x) = dΔx S − {λ(t, a, x) + μ(a)} S + γ (a)I,(

∂

∂t
+ ∂

∂a

)
I (t, a, x) = dΔx I − {γ (a) + μ(a)} I + λ(t, a, x)S,

S(t, 0, x) =
∫ a†

0
β(a)P(t, a, x)da, I (t, 0, x) = 0,

S(0, a, x) = S0(a, x), I (0, a, x) = I0(a, x), t > 0, a ∈ (0, a†), x ∈ Ω\∂Ω,
∂S (t, a, x)

∂n
= ∂ I (t, a, x)

∂n
= 0, t > 0, a ∈ (0, a†), x ∈ ∂Ω.

(4.2)
Note thatwe assumed in (4.2) that the diffusion coefficient d is common for susceptible
and infective individuals. As stated in Sect. 3, this kind of assumptionwould be suitable
for some mild diseases. We make the following assumption:

(B3) γ ∈ L∞+
(
0, a†

)
and κ ∈ L∞+

(
(0, a†)2 × Ω2

)
.

In this study, we assume that the state space of the vector-valued functions S(t, ·, ·)
and I (t, ·, ·) is a Bochner space E := L1([0, a†],X ) equipped with the norm

|S(t, ·, ·)|E :=
∫ a†

0
|S(t, a, ·)|X da =

∫ a†

0
sup
x∈Ω

|S(t, a, x)|da,

where X := C
(
Ω
)
with supremum norm | · |X . Let E+ := L1+([0, a†],X ) denote

the positive cone of E .
As in Section 3, we consider the normalization of the solution of system (4.2):

s(t, a, x) := S(t, a, x)

P∗(a)
, i(t, a, x) := I (t, a, x)

P∗(a)
.

As s(t, a, x) ≡ 1− i(t, a, x), system (4.2) can be rewritten as the following equation
in i :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂

∂t
i(t, a, x) = − ∂

∂a
i + dΔx i + λ(t, a, x) (1 − i) − γ (a)i, i(t, 0, x) = 0,

i(0, a, x) = i0(a, x) := I0(a, x)

P∗(a)
, t > 0, a ∈ (0, a†), x ∈ Ω\∂Ω,

∂i(t, a, x)

∂n
= 0, t > 0, a ∈ (0, a†), x ∈ ∂Ω,

(4.3)
where

λ(t, a, x) =
∫ a†

0

∫
Ω

κ̄(a, σ, x, y)i(t, σ, y)dyda

and

κ̄(a, σ, x, y) := κ(a, σ, x, y)P∗(σ ).
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4.2 Definition of the semiflow

We give the state space for Eq. (4.3) as the following closed convex set:

C := {ϕ ∈ E+ : 0 ≤ ϕ (a, x) ≤ 1 a.e.} . (4.4)

In the following, we consider problem (4.3) as an abstract equation in E . Formally,
(4.3) can be seen as an abstract Cauchy problem in E :

d

dt
i(t) = A i(t) + F (i(t)), t > 0, i(0) = i0 ∈ E , (4.5)

where

(A ϕ)(a) :=
(

− d

da
+ A(a)

)
ϕ(a)

= −dϕ(a)

da
+ dΔxϕ(a) − γ (a)ϕ(a)

and the nonlinear perturbation F is defined by

F (ϕ) (a, x) := λ[a, x |ϕ] {1 − ϕ (a, x)} , ϕ ∈ E .

Here, the force of infection is given as a linear operator:

λ[a, x |ϕ] :=
∫ a†

0

∫
Ω

κ̄(a, σ, x, y)ϕ(σ, y)dydσ, ϕ ∈ E .

First, we give a precise definition of the operator A . Let {V (a, σ )}a≥σ≥0 be an
evolutionary system given by

V (a, σ ) f = Γ (a)

Γ (σ )
T (a − σ) f, a ≥ σ ≥ 0, f ∈ X

and the operator A(·) be the generator of the evolutionary family V (a, σ ), a ≥ σ ≥ 0.
Here, we define

Γ (a) := exp

(
−
∫ a

0
γ (ζ )dζ

)

and {T (a)}a≥0 is the heat semigroup on X , which is generated by dΔx . That is,

(T (a) f )(x) :=
∫

Ω

pNd (a, x, y) f (y)dy, ψ ∈ X ,
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where pNd (a, x, y)denotes theNeumannheat kernel,which is the fundamental solution
of

⎧⎪⎨
⎪⎩

∂

∂a
u(a, x) = dΔu(a, x), a ∈ [0, a†], x ∈ Ω\∂Ω,

∂u(a, x)

∂n
= 0, a ∈ [0, a†], x ∈ ∂Ω.

Note that pNd (a, x, y) is positive and continuous on (0, a†) × Ω2, and

∫
Ω

pNd (·, ·, y)dy = 1

(see, e.g., Choulli and Kayser [6,7]). Moreover, we usually assume that inf γ > 0, so
the growth bound of the evolutionary system V is negative, that is, there exist M ≥ 1
and ε > 0 such that ‖V (a, σ )‖ ≤ Me−ε(a−σ).

According to Thieme [34], we use the following definition.

Definition 4.1 Let ϕ, y ∈ E . Then, ϕ ∈ D(A ) and y = A ϕ if and only if

ϕ(a) = −
∫ a

0
V (a, s)y(s)ds.

Then, the following characterization holds immediately [34, Corollary 1].

Lemma 4.1 Let ϕ, y ∈ E . Then, ϕ ∈ D(A ) and y = A ϕ if and only if ϕ(0) = 0
and

y(a) = lim
h↓0

1

h
(V (a, a − h)ϕ(a − h) − ϕ(a)) (4.6)

for almost all a ∈ (0, a†). Moreover, A ϕ(a) = −ϕ′(a) + A(a)ϕ(a) if ϕ ∈ D(A ).

Proof Suppose that ϕ ∈ D(A ). Then, there exists some y ∈ E such that ϕ(a) =
− ∫ a0 V (a, s)y(s)ds. Let

J (a) := 1

h
(V (a, a − h)ϕ(a − h) − ϕ(a)) − y(a).

Then, we have

|J (a)|K ≤ 1

h

∫ a

a−h
|V (a, s)y(s) − y(a)|K ds

≤ 1

h

∫ a

a−h
‖V (a, s)‖|y(s)− y(a)|K ds+ 1

h

∫ a

a−h
|V (a, s)y(a)−y(a)|K ds,

≤ c
1

h

∫ a

a−h
|y(s) − y(a)|K ds + 1

h

∫ a

a−h
|V (a, s)y(a) − y(a)|K ds,
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where c is a suitable constant. Therefore, we have limh↓0 J (a) = 0. Conversely, if we
assume (4.6) for ϕ ∈ E with ϕ(0) = 0, it follows that

∫ a

0
V (a, s)y(s)ds = lim

h↓0
1

h

∫ a

h
(V (a, s − h)ϕ(s − h) − V (a, s)ϕ(s))ds

= lim
h↓0

1

h

(∫ a−h

0
V (a, s)ϕ(s)ds −

∫ a

h
V (a, s)ϕ(s)ds

)

= lim
h↓0

1

h

(
−
∫ a

a−h
V (a, s)ϕ(s)ds +

∫ h

0
V (a, s)ϕ(s)ds

)

= −ϕ(a)

for almost all a ∈ (0, a†). Then, ϕ ∈ D(A ) and

dϕ(a)

da
= −y(a) − A(a)

∫ a

0
V (a, s)y(s)ds,

which shows that A ϕ(a) = y(a) = (−d/da + A(a))ϕ(a). 
�
From the above lemma, we can define A by

(A ϕ)(a) =
(

− d

da
+ A(a)

)
ϕ(a)

= lim
h↓0

1

h
(V (a, a − h)ϕ(a − h) − ϕ(a))

for ϕ ∈ D(A ) and almost all a ∈ (0, a†), and the linear operator A is the generator
of the following Howland evolution semigroup S (t), t ≥ 0 [5]:

(S (t)ϕ)(a) :=
{
V (a, a − t)ϕ(a − t), a − t > 0,
0, t − a ≥ 0,

ϕ ∈ E . (4.7)

Now, we can show that the abstract Cauchy problem (4.5) generates a positive
semiflow {U (t)}t≥0 such that i(t) = U (t)i0 is the weak solution of (4.5) satisfying
the concavity in (2.8) and (2.9).

Proposition 4.1 Let C be defined by (4.4). The abstract Cauchy problem (4.5) has
the global classical solution i(t) ∈ C for any i0 ∈ C ∩D(A ). Furthermore, it defines
a positive semiflow {U (t)}t≥0 satisfying

U (t)(C ) ⊂ C and U (t)ϕ ≤ U (t)ψ for all ϕ,ψ ∈ C such that ϕ ≤ ψ, (4.8)

ξU (t)ϕ ≤ U (t)ξϕ for all ϕ ∈ C and ξ ∈ (0, 1) . (4.9)

Proof As stated in Sect. 2, introducing a parameter α > 0, we obtain a mild solution
i(t) as a continuous solution of the variation of constants formula:

i(t) = e− 1
α
tS (t)i0 + 1

α

∫ t

0
e− 1

α (t−σ)S (t − σ) (I + αF ) i(σ )dσ. (4.10)
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It is easy to see that S (t)ϕ ≤ S (t)ψ for all ϕ,ψ ∈ C such that ϕ ≤ ψ . For any
ϕ ∈ C , we have

0 ≤ (S (t)ϕ) (a, x) ≤ (S (t)1) (a, x)

≤
⎧⎨
⎩

Γ (a)

Γ (a − t)

∫
Ω

pNd (a − σ, x, y)dy = e− ∫ aa−t γ (ζ )dζ , a − t > 0,

0, t − a ≥ 0,

≤1,

for all t > 0, a ∈ [0, a†], and x ∈ Ω . This implies that S (t)(C ) ⊂ C . That is, (2.2)
holds. For any positive constant α > 0, the resolvent (I − αA )−1 is calculated as
follows:

(I − αA )−1 ϕ(a, ·) = 1

α

∫ a

0
e− 1

α
(a−σ)V (a, σ )ϕ(σ, ·)dσ.

Hence, we see that (I − αA )−1 ϕ ≤ (I − αA )−1 ψ for all ϕ,ψ ∈ C such that
ϕ ≤ ψ . That is, (2.4) holds. From assumption (B3), the following inequality holds for
any ϕ ∈ C :

λ[a, x |ϕ] ≤ κ+
∫ a†

0

∫
Ω

P∗(σ )dydσ = κ+ ∥∥P∗∥∥
L1 |Ω| =: λ+ < +∞,

(4.11)
where κ+ := ess.sup κ(a, σ, x, y) and |Ω| denotes the volume ofΩ . Choosing α > 0
such that α < 1/λ+, we can then expect property (2.5) to hold, as in Busenberg et
al. [4]. In fact, for any ϕ,ψ ∈ C such that ϕ ≤ ψ , we have

(I + αF )ϕ ≤ ϕ + αλ[·, ·|ψ] (1 − ϕ) = ϕ (1 − αλ[·, ·|ψ]) + αλ[·, ·|ψ]
≤ ψ (1 − αλ[·, ·|ψ]) + αλ[·, ·|ψ] = (I + αF)ψ

and hence, (2.5) holds. For any ϕ ∈ C and ξ ∈ (0, 1), we have

ξ(I + αF )ϕ = ξϕ + ξαλ[·, ·|ϕ] (1 − ϕ)

≤ ξϕ + αλ[·, ·|ξϕ] (1 − ξϕ) = (I + αF )ξϕ.

Hence, (2.6) holds. For any ϕ ∈ C , we have

0 = (I − αA )−1 0 ≤ (I − αA )−1 ϕ ≤ (I − αA )−1 1

= 1

α

∫ a

0
e− 1

α
(a−σ) Γ (a)

Γ (σ )
T (a − σ)1dσ

≤ 1

α

∫ a

0
e− 1

α
(a−σ)dσ = 1 − e− 1

α
a ≤ 1
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and

0 = (I + αF ) 0 ≤ (I + αF )ϕ ≤ (I + αF )1 = 1.

These inequalities imply that (I − αA )−1 (C ) ⊂ C and (I + αF ) (C ) ⊂ C , and
hence, (2.3) holds. Consequently, from Lemma 2.1, we can conclude that the abstract
problem (4.5) has the global classical solution i(t) ∈ C provided i0 ∈ C ∩D(A ), and
it defines the positive semiflow {U (t)}t≥0 such that i(t) = U (t)i0 satisfying (4.8)
and (4.9). This completes the proof. 
�

4.3 Existence and uniqueness of an endemic equilibrium

Next, we investigate the existence and uniqueness of each equilibrium i∗ ∈ C of
Eq. (4.3). As stated in Sect. 2, we focus on the fixed point problem of the nonlinear
operator Ψ := (I − αA )−1 (I + αF ) : E → E , where α > 0 is a positive constant
such that α < 1/λ+. It is easy to see that the trivial fixed point i∗ = 0 ∈ C always
exists and is the disease-free equilibrium. In the following, we restrict our attention to
the nontrivial endemic equilibrium i∗ ∈ C \ {0}. The Fréchet derivativeKα : E → E
of Ψ at 0 ∈ E is given by

(Kαϕ)(a, ·) := 1

α

∫ a

0
e− 1

α
(a−σ)V (a, σ ) {ϕ(σ, ·) + αλ[σ, ·|ϕ]} dσ, ϕ ∈ E . (4.12)

As stated in Sect. 3, we can expect the spectral radius r(Kα) to determine the existence
of the endemic equilibrium i∗ ∈ C \{0}. Before the proof, we make the following
assumption:

(B4) There exists some κ− ∈ L∞+ ((0, a†) × Ω) such that κ(a, σ, x, y) ≥
κ−(σ, y) > 0 for all a, σ ∈ (0, a†) and x, y ∈ Ω .

Under assumption (B4), we have that, for any ϕ ∈ E+\{0},

λ[a, x |ϕ] ≥
∫ a†

0

∫
Ω

κ−(σ, y)P∗(σ )ϕ(σ, y)dydσ =: λ−(ϕ) > 0. (4.13)

In proving the existence of the endemic equilibrium i∗ for r(Kα) > 1, we need the
complete continuity of the operatorKα to apply the Krein–Rutman theorem. For this
reason, we now prove the following proposition.

Proposition 4.2 Let X be a closed interval, and let F be a Banach space with norm
| · |F . Let Φ be a subset of the space of integrable functions E := L1(X, F) with norm
‖ f ‖E = ∫X | f (τ )|Fdτ . For ε > 0 and a ∈ X, define

fε(a) := 1

2ε

∫ a+ε

a−ε

f (τ )dτ,

where we adopt the convention that f (a) = 0 for a /∈ X. The set Φ ⊂ E is relatively
compact if both of the following two assumptions are satisfied.
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1. For a given ε > 0 and each a ∈ X, the set Φε(a) := { fε(a) : f ∈ Φ} is relatively
compact in F.

2.

lim
h→0

∫
X

| f (a + h) − f (a)|Fda = 0 (4.14)

holds uniformly for f ∈ Φ.

Proof For a fixed ε > 0, Φε := { fε : f ∈ Φ} ⊂ C(X, F). It then follows from
assumption 2 that limε→0 ‖ fε − f ‖E = 0 uniformly for f ∈ Φ. Therefore, if Φε

is relatively compact for sufficiently small ε > 0 in C(X, F), we can say that Φ

is relatively compact in E because Φε is an ε-net for Φ, and the convergence in the
supremum norm implies convergence in L1. From assumption 1, one of the conditions
of Ascoli’s theorem (see [27, p.57]) is satisfied. From our assumption 2, for a given
ε > 0 and any small η > 0, we can take α > 0 such that

∫
X

| f (a + h) − f (a)|Fda < 2εη

uniformly for f ∈ Φ and |h| < α. Then, if |a − b| < α, we have

sup
f ∈Φ

| fε(a) − fε(b)|F ≤ sup
f ∈Φ

1

2ε

∫ ε

−ε

| f (a + h) − f (b + h)|Fdh

≤ sup
f ∈Φ

1

2ε

∫
X

| f (τ + (a − b)) − f (τ )|Fdτ < η.

That is, Φε is equi-continuous, so Φε is relatively compact in C(X, F) by Ascoli’s
theorem [27, p.57]; hence, Φ is also relatively compact in E . 
�

Using Proposition 4.2, we prove the following lemma.

Lemma 4.2 Let Kα be defined by (4.12). Kα is linear, preserves the invariance of
E+, and is completely continuous.

Proof We only prove the complete continuity as the other properties are obvious. It is
sufficient to show that a linear operator

(Tφ)(a, ·) :=
∫ a

0
e− 1

α
(a−σ)V (a, σ )φ(σ, ·)dσ

is completely continuous, because φ → φ + αλ[·, ·|φ] is a bounded operator from E
to itself. Let B ⊂ E be a bounded subset such that |φ|E ≤ c holds for any φ ∈ B,
where c > 0 is a positive constant.

Let ε > 0. To prove condition 1 in Proposition 4.2, for each a ∈ [0, a†], we show
that the set {(Tφ)ε(a, ·) : φ ∈ B} is relatively compact inX , where

(Tφ)ε(a, ·) := 1

2ε

∫ a+ε

a−ε

(Tφ)(τ, ·)dτ.
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Let η > 0 be an arbitrary small positive constant and let δ > 0 be sufficiently small
such that

sup
x∈Ω

∫ a†

0

∫
Ω

∣∣∣pNd (ζ, x + h, y) − pNd (ζ, x, y)
∣∣∣ dydζ ≤ 2ε

c
η (4.15)

holds for any h ∈ (0, δ). We have

|(Tφ)ε(a, x + h) − (Tφ)ε(a, x)| ≤ 1

2ε

∫ a+ε

a−ε

|(Tφ)(τ, x + h) − (Tφ)(τ, x)| dτ

≤ 1

2ε

∫ a+ε

a−ε

∫ τ

0
e− 1

α
(τ−σ) Γ (τ)

Γ (σ )∫
Ω

∣∣∣pNd (τ − σ, x + h, y) − pNd (τ − σ, x, y)
∣∣∣φ(σ, y)dydσdτ

≤ 1

2ε

∫ a+ε

a−ε

∫ τ

0

∫
Ω

∣∣∣pNd (τ − σ, x + h, y) − pNd (τ − σ, x, y)
∣∣∣ dy |φ(σ, ·)|X dσdτ

≤ 1

2ε

∫ a†

0

∫ τ

0

∫
Ω

∣∣∣pNd (τ − σ, x + h, y) − pNd (τ − σ, x, y)
∣∣∣ dy |φ(σ, ·)|X dσdτ

= 1

2ε

∫ a†

0

∫ a†

σ

∫
Ω

∣∣∣pNd (τ − σ, x + h, y) − pNd (τ − σ, x, y)
∣∣∣ dydτ |φ(σ, ·)|X dσ

≤ 1

2ε

∫ a†

0

∫
Ω

∣∣∣pNd (ζ, x + h, y) − pNd (ζ, x, y)
∣∣∣ dydζ |φ|E

≤ c

2ε

∫ a†

0

∫
Ω

∣∣∣pNd (ζ, x + h, y) − pNd (ζ, x, y)
∣∣∣ dydζ,

where, without loss of generality, we have assumed φ(a, ·) = 0 for a /∈ [0, a†]. Hence,
from (4.15), we have supx∈Ω |(Tφ)ε(a, x + h) − (Tφ)ε(a, x)| ≤ η, which implies
that {(Tφ)ε(a, ·) : φ ∈ B} is equi-continuous inX and, hence, relatively compact in
X , as its equi-boundedness is obvious.

Next, to prove condition 2 in Proposition 4.2, we show that

lim
h→0

∫ a†

0
|(Tφ)(a + h) − (Tφ)(a)|X da = 0

holds uniformly in φ ∈ B. Let η > 0 be arbitrarily small, and let δ > 0 be sufficiently
small such that

c

α

{(
1

α
+γ +

)
a†+1

}
h+c

α
sup
x∈Ω

∫ a†

0

∫
Ω

∣∣∣pNd (ζ + h, x, y) − pNd (ζ, x, y)
∣∣∣ dydζ ≤ η

(4.16)
holds for any h ∈ (0, δ). Now, we have

|(Tφ) (a + h, x) − (Tφ) (a, x)|
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≤ 1

α

∫ a

0

∫
Ω

∣∣∣∣e− 1
α

(a+h−σ) Γ (a + h)

Γ (σ )
pNd (a + h − σ, x, y)

−e− 1
α

(a−σ) Γ (a)

Γ (σ )
pNd (a − σ, x, y)

∣∣∣∣ |φ(σ, y)| dy dσ

+ 1

α

∫ a+h

a

∫
Ω

e− 1
α

(a+h−σ) Γ (a + h)

Γ (σ )
pNd (a + h − σ, x, y) |φ(σ, y)| dydσ

≤ 1

α

∫ a

0

∫
Ω

∣∣∣∣e− 1
α

(a+h−σ) Γ (a + h)

Γ (σ )
− e− 1

α
(a−σ) Γ (a)

Γ (σ )

∣∣∣∣ pNd (a + h − σ, x, y)dy|φ(σ, ·)|X dσ

+ 1

α

∫ a

0

∫
Ω

e− 1
α

(a−σ) Γ (a)

Γ (σ )

∣∣∣pNd (a + h − σ, x, y) − pNd (a − σ, x, y)
∣∣∣ dy|φ(σ, ·)|X dσ

+ 1

α

∫ a+h

a

∫
Ω

pNd (a + h − σ, x, y)dy|φ(σ, ·)|X dσ

≤ 1

α

∫ a

0

∣∣∣∣e− 1
α

(a+h−σ) Γ (a + h)

Γ (σ )
− e− 1

α
(a−σ) Γ (a)

Γ (σ )

∣∣∣∣ |φ(σ, ·)|X dσ

+ 1

α

∫ a

0

∫
Ω

∣∣∣pNd (a + h − σ, x, y) − pNd (a − σ, x, y)
∣∣∣ dy|φ(σ, ·)|X dσ + 1

α

∫ a+h

a
|φ(σ, ·)|X dσ.

Taking the norm in E , we have

∫ a†

0
sup
x∈Ω

|(Tφ)(a + h, x) − (Tφ)(a, x)| da

≤ 1

α

∫ a†

0

∫ a

0

∣∣∣∣e− 1
α

(a+h−σ) Γ (a + h)

Γ (σ )
− e− 1

α
(a−σ) Γ (a)

Γ (σ )

∣∣∣∣ |φ(σ, ·)|X dσda

+ 1

α

∫ a†

0
sup
x∈Ω

(∫ a

0

∫
Ω

∣∣∣pNd (a + h − σ, x, y) − pNd (a − σ, x, y)
∣∣∣ dy|φ(σ, ·)|X dσ

)
da

+ 1

α

∫ a†

0

∫ a+h

a
|φ(σ, ·)|X dσda

≤ 1

α

∫ a†

0

∫ a

0

∣∣∣∣ 1α (a + h − σ) +
∫ a+h

σ

γ (ζ )dζ − 1

α
(a − σ) −

∫ a

σ

γ (ζ )dζ

∣∣∣∣ |φ(σ, ·)|X dσda

+ 1

α

∫ a†

0
sup
x∈Ω

(∫ a†

σ

∫
Ω

∣∣∣pNd (a + h − σ, x, y) − pNd (a − σ, x, y)
∣∣∣ dyda

)
|φ(σ, ·)|X dσ

+ 1

α

(∫ h

0

∫ σ

0
|φ(σ, ·)|X dadσ +

∫ a†

h

∫ σ

σ−h
|φ(σ, ·)|X dadσ +

∫ a†+h

a†

∫ a†

σ−h
|φ(σ, ·)|X dadσ

)

≤ 1

α

∫ a†

0

(
1

α
+ γ +

)
h
∫ a

0
|φ(σ, ·)|X dσda

+ 1

α

∫ a†

0
sup
x∈Ω

(∫ a†−σ

0

∫
Ω

∣∣∣pNd (ζ + h, x, y) − pNd (ζ, x, y)
∣∣∣ dydζ

)
|φ(σ, ·)|X dσ

+ 1

α

(∫ h

0
σ |φ(σ, ·)|X dσ + h

∫ a†

h
|φ(σ, ·)|X dσ

)
,
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where we have used the estimate |e−x − e−y | ≤ |x − y| for x, y ∈ R, γ + :=
ess.sup γ (a), and, without loss of generality, we have assumed φ(a, ·) = 0 for any
a > a†. Hence, we have

∫ a†

0
sup
x∈Ω

|(Tφ)(a + h, x) − (Tφ)(a, x)| da

≤ 1

α

(
1

α
+ γ +

)
a†|φ|E h + 1

α
sup
x∈Ω

(∫ a†

0

∫
Ω

∣∣∣pNd (ζ + h, x, y) − pNd (ζ, x, y)
∣∣∣ dydζ

)
|φ|E + 1

α
h|φ|E

≤ c

α

{(
1

α
+ γ +

)
a† + 1

}
h + c

α
sup
x∈Ω

∫ a†

0

∫
Ω

∣∣∣pNd (ζ + h, x, y) − pNd (ζ, x, y)
∣∣∣ dydζ.

Thus, from (4.16),we have
∫ a†
0 supx∈Ω |(Tφ)(a + h, x) − (Tφ)(a, x)| da ≤ η, which

implies that limh→0
∫ a†
0 |(Tφ)(a + h) − (Tφ)(a)|X da = 0 holds uniformly for φ ∈

B. Consequently, conditions 1 and 2 in Proposition 4.2 hold and the proof is complete.

�

Under these preparations, we prove the following proposition.

Proposition 4.3 LetC andKα be defined by (4.4)and (4.12), respectively. If r(Kα) >

1, then system (4.3) has at least one endemic equilibrium i∗ ∈ C \{0}.
Proof From Lemma 4.2, we can apply the Krein–Rutman theorem to find that there
exists a positive eigenfunction ϕ∗ ∈ E+\{0} corresponding to r(Kα) > 1. Such ϕ∗
satisfies

r(Kα)ϕ∗(a, x) = Kαϕ∗(a, x)

= Ψ (ϕ∗)(a, x) +
∫ a

0
e− 1

α
(a−σ)

{
V (a, σ )λ[σ, ·|ϕ∗]ϕ∗(σ, ·)} (x)dσ

= (I − αA )−1 (I + αF ) ϕ∗(a, x) + (I − αA )−1 (αλ[·, ·|ϕ∗]ϕ∗) (a, x)

and hence, projecting (I − αA ) on both sides of this equality yields

αr(Kα)

(
∂

∂a
− dΔx + γ (a)

)
ϕ∗(a, x) = {1 − r(Kα)} ϕ∗(a, x) + αλ[a, x |ϕ∗].

Then, using (4.11) and (4.13), we have

λ−(ϕ∗)
r(Kα)

−
(

1

αr(Kα)
+ 1

α

)
ϕ∗(a, x) ≤

(
∂

∂a
− dΔx + γ (a)

)
ϕ∗(a, x)

≤ λ+

r(Kα)
+ 1

αr(Kα)
ϕ∗(a, x).

Duhamel’s principle yields

λ−(ϕ∗)
r(Kα)

∫ a

0
e
−
(

1
αr(K α)

+ 1
α

)
(a−σ)

(V (a, σ )1) (x) dσ ≤ ϕ∗(a, x)
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≤ λ+

r(Kα)

∫ a

0
e

1
αr(K α)

(a−σ)
(V (a, σ )1) (x) dσ

(note that ϕ∗(0, x) = 0). Hence, we obtain

λ−(ϕ∗)
r(Kα)

e
−
(

1
αr(K α)

+ 1
α

)
a†a ≤ ϕ∗(a, x) ≤ λ+

r(Kα)
e

1
αr(K α)

a†a. (4.17)

In the following, for simplicity, we represent (4.17) as

c−(ϕ∗)a ≤ ϕ∗(a, x) ≤ c+a.

Thus, ϕ∗ ∈ L∞+
([0, a†],X )

and hence, without loss of generality, we can assume
that ϕ∗ ∈ C . Then, for any ξ ∈ (0, 1), we have

Ψ (ξϕ∗)(a, x) = ξKαϕ∗(a, x) − ξ2
∫ a

0
e− 1

α
(a−σ)

{
V (a, σ )λ[σ, ·|ϕ∗]ϕ∗(σ, ·)} (x)dσ

≥ ξr(Kα)ϕ∗(a, x) − ξ2λ+c+
∫ a

0
e− 1

α
(a−σ)σdσ

≥ ξr(Kα)ϕ∗(a, x) − ξ2λ+c+a†a

≥ ξr(Kα)ϕ∗(a, x) − ξ2
λ+c+a†
c−(ϕ∗)

c−(ϕ∗)a

≥ ξr(Kα)ϕ∗(a, x) − ξ2
λ+c+a†
c−(ϕ∗)

ϕ∗(a, x)

= ξϕ∗(a, x) + ξ

{
(r(Kα) − 1) − ξ

λ+c+a†
c−(ϕ∗)

}
ϕ∗(a, x).

Thus, for sufficiently small ξ ∈ (0, 1), we have Ψ (ξϕ∗)(a, x) ≥ ξϕ∗(a, x).
Hence, there exists a monotone nondecreasing sequence {Ψ n(ξϕ∗(a, x))}∞n=0. As this
sequence is bounded (note thatΨ (C ) ⊂ C ), there exists aϕ∞ such thatϕ∞ = Ψ (ϕ∞).
This is none other than the desired endemic equilibrium i∗ ∈ C \{0}. This completes
the proof. 
�

Next, we prove the uniqueness of the endemic equilibrium i∗ ∈ C \{0}. From (4.3),
we see that it satisfies
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

∂a
i∗(a, x) = dΔx i

∗(a, x) − γ (a)i∗(a, x) + λ
[
a, x |i∗] {1 − i∗(a, x)

}
,

i∗(0, x) = 0, a ∈ (0, a†), x ∈ Ω\∂Ω,
∂i∗(a, x)

∂n
= 0, a ∈ (0, a†), x ∈ ∂Ω.

Then, from (4.11) and (4.13), the following inequality holds:

λ−(i∗) − λ+i∗(a, x) ≤
(

∂

∂a
− dΔx + γ (a)

)
i∗(a, x) ≤ λ+.
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Similar to the calculation for (4.17), we obtain the following inequality:

λ−(i∗)e−λ+a†a ≤ i∗(a, x) ≤ λ+a. (4.18)

Before the proof of the uniqueness, we prove the following lemma.

Lemma 4.3 Let C be defined by (4.4) and i∗ ∈ C \ {0} be an endemic equilibrium of
system (4.3). Let ξ ∈ (0, 1) and v ∈ C \ {0}. Then, there exists some c(v) > 0 such
that Ψ (ξ i∗ + v) (a, x) ≥ ξ i∗ + c(v)a.

Proof It follows that

(I + αF )
(
ξ i∗ + v

)
(a, x)

= ξ i∗(a, x) + v(a, x) + αλ
[
a, x |ξ i∗ + v

] (
1 − ξ i∗(a, x) − v(a, x)

)
= ξ i∗(a, x) + αF (ξ i∗)(a, x) + v(a, x)

{
1 − αλ

[
a, x |ξ i∗ + v

]}
+ αλ [a, x |v] {1 − ξ i∗(a, x)

}
≥ ξ i∗(a, x) + ξαF (i∗)(a, x) + α(1 − ξ)λ−(v).

Hence, from the monotonicity of (I − αA )−1, it follows that

Ψ
(
ξ i∗ + v

)
(a, x) ≥ ξΨ (i∗)(a, x) + (1 − ξ)

∫ a

0
e− 1

α
(a−σ)

{
V (a, σ )λ−(v)

}
(x)dσ

≥ ξ i∗(a, x) + (1 − ξ)e− 1
α
a†λ−(v)a.

Then, the proof is complete with c(v) := (1 − ξ)e− 1
α
a†λ−(v). 
�

Using Lemma 4.3, we prove the following proposition on the uniqueness of the
endemic equilibrium.

Proposition 4.4 Let C be defined by (4.4). System (4.3) has at most one endemic
equilibrium i∗ ∈ C \ {0}.
Proof Suppose that there exist two endemic equilibria i∗, j∗ ∈ C \ {0}. From inequal-
ity (4.18), it follows that

i∗(a, x) ≥ λ−(i∗)e−λ+a†

λ+ λ+a ≥ λ−(i∗)e−λ+a†

λ+ j∗(a, x).

This implies that there exists some ξ ∈ (0, 1) such that i∗ ≥ ξ j∗. Let η :=
sup {ξ ∈ R+ : i∗ ≥ ξ j∗} and suppose that η ∈ (0, 1). From the monotonicity of
Ψ = (I − αA )−1 (I + αF ) and inequalities (4.13) and (4.18), we have

i∗(a, x) = Ψ (i∗)(a, x) ≥ Ψ (η j∗)(a, x)

= ηΨ ( j∗)(a, x) + η(1 − η)

∫ a

0
e− 1

α
(a−σ)

{
V (a, σ )λ[σ, ·| j∗] j∗(σ, ·)} (x)dσ
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≥ ηΨ ( j∗)(a, x) + η(1 − η)e
−
(
1
α
+λ+

)
a† (

λ−( j∗)
)2 ∫ a

0
σdσ

= η j∗(a, x) + η(1 − η)e
−
(
1
α
+λ+

)
a† (

λ−( j∗)
)2 a2

2

≥ η j∗(a, x) + η(1 − η)e
−
(
1
α
+λ+

)
a†
(

λ−( j∗)
λ+

)2 j∗(a, x)2

2
. (4.19)

Let v(a, x) := η(1 − η)e
−
(
1
α
+λ+

)
a† (

λ−( j∗)/λ+)2 j∗(a, x)2/2. Then, it is obvious
that v ∈ C \ {0}, and it therefore follows from Lemma 4.3 that there exists some
c(v) > 0 such that Ψ (η j∗ + v)(a, x) ≥ η j∗(a, x) + c(v)a. Hence, projecting Ψ on
both sides of (4.19) yields

Ψ (i∗)(a, x) ≥ Ψ (η j∗ + v)(a, x) ≥ η j∗(a, x) + c(v)a ≥ η j∗(a, x) + c(v)

λ+ j∗(a, x).

Recalling that i∗ = Ψ (i∗), we see that this inequality implies i∗ ≥ (η + c(v)/λ+) j∗.
This contradicts the definition of η. Therefore, η > 1 and hence, i∗ ≥ η j∗ ≥ j∗.
Exchanging the roles of i∗ and j∗,we canprove j∗ ≥ i∗ in a similarway.Consequently,
i∗ = j∗, which completes the proof. 
�

4.4 Global attractivity of equilibria

As

F ′[0]ϕ(a, x) := λ[a, x |ϕ], ϕ ∈ E ,

we have from (4.5) that

d

dt
i(t) ≤ A i(t) + F ′[0](i(t)), t > 0, i(0) = i0 ∈ E .

As stated inSect. 2,when r(Kα) < 1,ω(A +F ′[0]) < 0. This implies thatU (t)i0 →
0 in E as t → +∞, that is, the disease-free equilibrium 0 is globally attractive.
Consequently, we have the following proposition.

Proposition 4.5 Let C andKα be defined by (4.4) and (4.12), respectively. If r(Kα)

< 1, then the disease-free equilibrium 0 of system (4.3) is globally attractive in C .

We show that, when it exists, the endemic equilibrium i∗ ∈ C \{0} is globally
attractive for some nontrivial initial datum i0 ∈ C \{0}. In order to use Lemma 2.2,
we prove the following lemma.

Lemma 4.4 Let C be defined by (4.4) and suppose that system (4.3) has the endemic
equilibrium i∗ ∈ C \{0}. Then, U (t) is eventually i∗-positive, that is, there exist
positive constants ξ ∈ (0, 1) and t0 > 0 such that

ξ i∗ ≤ U (t0)i0,
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provided that i0 ∈ C \{0}.
Proof Now, we have

(I + αF ) i(σ ) = i(σ ) + αλ[·, ·|i(σ )] (1 − i(σ ))

= i(σ ) [1 − αλ[·, ·|i(σ )]] + αλ[·, ·|i(σ )]
≥ αλ[·, ·|i(σ )] ≥ αλ− (i(σ )) .

Hence, it follows from (4.10) that

i(t) ≥
∫ t

0
e− 1

α (t−σ)e(t−σ)A λ− (i(σ )) dσ. (4.20)

Recalling that λ− (i(σ )) is independent of age and space, we have from (4.7) that

e(t−σ)A λ− (i(σ )) (a) =
{
V (a, a − t + σ)λ− (i(σ )) , σ > t − a;
0, σ ≤ t − a,

=
⎧⎨
⎩

Γ (a)

Γ (a − t + σ)
T (t − σ)λ− (i(σ )) , σ > t − a;

0, σ ≤ t − a,

=
{
e− ∫ aa−t+σ γ (ζ )dζ λ− (i(σ )) , σ > t − a;
0, σ ≤ t − a,

≥
{
e−γ +(t−σ)λ− (i(σ )) , σ > t − a;
0, σ ≤ t − a,

where γ + := ess.supa∈(0,a†) γ (a) ∈ (0,+∞). Hence, from (4.20), we have

i(t) ≥
∫ t

0
e− 1

α (t−σ)e(t−σ)A λ− (i(σ )) dσ ≥
∫ t

(t−a)∨0
e
−
(
1
α
+γ +

)
(t−σ)

λ− (i(σ )) dσ

≥ e
−
(
1
α
+γ +

)
t
∫ t

(t−a)∨0
λ− (i(σ )) dσ, (4.21)

where (t − a) ∨ 0 = max (t − a, 0). Let t0 ≥ a†. Then, it follows that t0 − a > 0 for
all a ∈ (0, a†) and hence, we have from (4.21) that

i(t0)(a, x) ≥ e
−
(
1
α
+γ +

)
t0
∫ t0

t0−a
λ− (i(σ )) dσ, a ∈ (0, a†), x ∈ Ω.

As i0 ∈ C \{0}, it follows from (4.13) and the continuity that λ := infσ∈(0,t0)
λ− (i(σ )) > 0. Hence, we have

i(t0)(a, x) ≥ e
−
(
1
α
+γ +

)
t0
λa ≥ e

−
(
1
α
+γ +

)
t0 λ

λ+ λ+a ≥ e
−
(
1
α
+γ +

)
t0 λ

λ+ i∗ (a, x) .
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Therefore, setting ξ := e− 1
α
t0λ/λ+ ∈ (0, 1) completes the proof. 
�

From Lemma 4.4, we can apply Lemma 2.2 to prove that the endemic equilibrium
i∗ ∈ C \ {0} is globally attractive. Recalling Propositions 4.3 and 4.4, we obtain the
following proposition.

Proposition 4.6 Let C andKα be defined by (4.4) and (4.12), respectively. If r (Kα)

> 1, then system (4.3) has the unique endemic equilibrium i∗ ∈ C \ {0} and it is
globally attractive in C \{0}.

As in Sects. 2 and 3, we can define the basic reproduction number R0 by

R0 = r(K ), K = F ′[0](− ˜A )−1. (4.22)

Then, from Lemma 2.3, it holds that sign (R0 − 1) = sign (r(Kα) − 1). Hence, from
Propositions 4.5 and 4.6, we establish the following main theorem of this section.

Theorem 4.1 Let C and R0 be defined by (4.4) and (4.22), respectively.

(i) IfR0 < 1, then the disease-free equilibrium 0 of system (4.3) is globally attractive
in C .

(ii) IfR0 > 1, then system (4.3) has the unique endemic equilibrium i∗ ∈ C \ {0} and
it is globally attractive in C \{0}.

5 Numerical simulations

In this section, we present numerical examples to demonstrate the validity and appli-
cability of our main results, Theorems 3.1 and 4.1.

5.1 Numerical simulation for the SIS epidemic model with age and patch
structures

First, we describe a numerical simulation for system (3.4). For simplicity, we consider
the case of three patches (N = {1, 2, 3}) and a normalized maximum age (a† = 1).
We fix the following parameters.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m̄ jk(a) =

⎧⎪⎨
⎪⎩

0.1

| j − k| , a < 0.05 or a > 0.8,

1

| j − k| , otherwise,
j, k ∈ {1, 2, 3}, j �= k,

γ j (a) = 0.5, a ∈ (0, 1), j ∈ {1, 2, 3},
i j,0(a) = 1 − e−a

100
, a ∈ [0, 1], j ∈ {1, 2, 3},

κ̄ j (a, σ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p
(
−(a − σ)2 + 1

)
+ 0.1, j = 1,

2p
(
−(a − σ)2 + 1

)
+ 0.1, j = 2,

3p
(
−(a − σ)2 + 1

)
+ 0.1, j = 3,

a, σ ∈ (0, 1),

(5.1)
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Fig. 1 Time evolution of infective populations i j (t, a), j = 1, 2, 3, for system (3.4) with parameters (5.1)
(R0 ≈ 0.9679 < 1)

Fig. 2 Time evolution of infective populations i j (t, a), j = 1, 2, 3, for system (3.4) with parameters (5.1)
(R0 ≈ 1.0488 > 1)

where p > 0 is a variable parameter used to observe the stability change of each
equilibrium with different values of R0. Note that all parameters satisfy the required
assumptions in Sect. 3. As the purpose of this section is to show the validity and
applicability of our main theorems, there is little biological justification in the choice
of these parameters. We leave the parameter estimation for some diseases that are
suitable for our model (3.4) for future work. For the numerical computation of R0 =
r(K ) = r(F ′[0](−A)−1), we discretize our model (3.4) into a corresponding system
of ordinary differential equations and compute the maximum eigenvalue of its next
generationmatrix [36].We regard this as an approximation of R0 (see [23] for a similar
method).

When p = 1.15, we have R0 ≈ 0.9679 < 1. In this case, from Theorem 3.1(i),
we expect the disease-free equilibrium 0 to be globally attractive. In fact, in Fig. 1, all
infective populations i j (t, a), j = 1, 2, 3, converge to zero over time.

When p = 1.25, we have R0 ≈ 1.0488 > 1. In this case, from Theorem 3.1(ii), we
expect the positive endemic equilibrium i∗ = (i∗1 , i∗2 , i∗3 )T to be globally attractive.
In fact, in Fig. 2, all infective populations i j (t, a), j = 1, 2, 3, converge to positive
distributions over time.
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Fig. 3 Time evolution of the infective population i(t, a, x), 0 ≤ t ≤ 30, for system (4.3) with parameters
(5.2) (R0 ≈ 0.9760 < 1)

Fig. 4 Time evolution of the infective population i(t, a, x), 0 ≤ t ≤ 30, for system (4.3) with parameters
(5.2) (R0 ≈ 1.0325 > 1)

5.2 Numerical simulation for the SIS epidemic model with an age structure and
spatial diffusion

Next, we present numerical simulation results for system (4.3). For simplicity, we
consider the case of a normalized 1-dimensional space (Ω = [0, 1]) and a normalized
maximum age (a† = 1). We fix the following parameters:

d = 0.01, γ (a) = 0.5, a ∈ (0, 1), i0(a, x) = 1 − e−a

100
, a ∈ (0, 1), x ∈ (0, 1),

κ̄(a, σ, x, y) = p
(
−(a − σ)2 + 1

) (
−(x − y)2 + 1

)
+ 0.1, a, σ ∈ (0, 1), x, y ∈ (0, 1),

(5.2)

where p > 0 is the variable parameter used in Sect. 5.1. As in Sect. 5.1, for the
numerical computation of R0 = r(K ) = r(F ′[0](− ˜A )−1), we consider a dis-
cretized system of ordinary differential equations for (4.3) and calculate the maximum
eigenvalue of its next generation matrix as an approximation of R0.

When p = 3.3, we have R0 ≈ 0.9760 < 1. In this case, from Theorem 4.1(i), we
expect the disease-free equilibrium 0 to be globally attractive. In fact, in Fig. 3, the
infective population i(t, a, x) converges to zero over time.

When p = 3.5, we have R0 ≈ 1.0325 > 1. In this case, from Theorem 4.1(ii),
we expect the endemic equilibrium i∗ to be globally attractive. In fact, in Fig. 4, the
infective population i(t, a, x) converges to the positive distribution over time.
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6 Discussion

In this paper, we have studied two kinds of SIS epidemic models with an age structure
and spatial heterogeneity, (3.3) and (4.2). These were normalized to (3.4) and (4.3),
respectively, and we showed that the global attractivity of each equilibrium is com-
pletely determined by the threshold values, r(Kα) and r(Kα), respectively. That is,
if r(Kα) < 1 (resp. r(Kα) < 1), then the disease-free equilibrium 0 of system (3.4)
(resp. system (4.3)) is globally attractive, whereas if r(Kα) > 1 (resp. r(Kα) > 1),
then the endemic equilibrium i∗ of system (3.4) (resp. (4.3)) exists uniquely and is
globally attractive. In particular, following the classical definition (see, e.g., [8,16]),
we have defined the basic reproduction number R0 (resp. R0) for system (3.4) (resp.
(4.3)) by the spectral radius of the next generation operator, and we have shown that
sign(R0 − 1) = sign(r(Kα) − 1) (resp. sign(R0 − 1) = sign(r(Kα) − 1)). From this
fact, we established our main results, Theorems 3.1 and 4.1, which state that the global
attractivity of each equilibrium is completely determined by the basic reproduction
number. As R0 and R0 do not depend on the sufficiently small constant α > 0, they
can be calculated numerically. Thus, we presented the results of numerical simula-
tions to verify the validity of our main theorems in Sect. 5. This is important from the
viewpoint of applications.

In this study, we have assumed two simplifications for our models: there is no
disease-induced death and the movement (diffusion) rates are the same for susceptible
and infective individuals. These assumptions enabled us to reformulate the original
SIS epidemic models into normalized systems for i and form monotone concave
dynamical systems using α so as to apply the approach of Busenberg et al. [4].
As stated in [1, Sect. 3.3], these simplifications would be suitable for some mild
diseases, but their removal is an important future challenge from both mathematical
and biological perspectives. In that case, we could no longer apply the approach in [4]
and would have to develop a new approach (e.g., the Lyapunov functional approach)
to investigate the global stability of each equilibrium.

The parameters (5.1) and (5.2) used in Sect. 5 were technical and did not have suf-
ficient biological justification. Their estimation based on epidemic and transportation
data is an important future task from a biological point of view. In particular, the patch
structure model (3.3) might be more worthy than the spatial diffusionmodel (4.2), as it
has the potential to be applied for modelling the global pandemic of diseases through
the modern transportation network.
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