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Abstract We present a three-point iterative method without memory for solving non-
linear equations in one variable. The proposed method provides convergence order
eight with four function evaluations per iteration. Hence, it possesses a very high
computational efficiency and supports Kung–Traub’s conjecture. The construction,
the convergence analysis, and the numerical implementation of the method will be
presented. Using several test problems, the proposed method will be compared with
existing methods of convergence order eight concerning accuracy and basins of attrac-
tion. Furthermore, some measures are used to judge methods with respect to their
performance in finding the basins of attraction.
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1 Introduction

Solving nonlinear equations is a basic and extremely valuable tool in all fields in
science and engineering. One can distinguish between two general approaches for
solving nonlinear equations numerically, namely, one-point and multi-point methods.
The basic optimality theorem shows that an analytic one-point method based on k
evaluations is of order at most k, see [29, §5.4] or [15] for an improved proof. The
Newton–Raphson method xn+1 := xn − f (xn)

f ′(xn) is probably the most widely used
algorithm for finding roots. It requires two evaluations per iteration step, one for f
and one for f ′, and results in second order convergence which is optimal for this
one-point method.

Some computational issues encountered by one-point methods are overcome by
multi-pointmethods since they allow to achieve greater accuracywith the samenumber
of function evaluations. Important aspects related to these methods are convergence
order and efficiency. It is convenient to attain a convergence order, with a fixed number
of function evaluations per iteration step, which is as high as possible. The unproved
conjecture by Kung and Traub [15] plays a central role in this context; it states that
an optimal multi-point method without memory provides a convergence order of 2k

while using k + 1 evaluations in each iteration step. The efficiency index for a method
with k evaluations and convergence order p is given by E(k, p) = k

√
p, see [19].

Hence, the efficiency of a method supporting Kung–Traub’s conjecture is
k+1
√
2k . In

particular, an optimal method with convergence order eight has an efficiency index
4
√
8 � 1.68179.
A large number of multi-point methods for finding simple roots of a nonlinear

equation f (x) = 0 with a scalar function f : D ⊂ R → R which is defined on
an open interval D (or f : D ⊂ C → C defined on a region D in the complex
plane C) have been developed and analyzed to improve the convergence order of
classical methods like the Newton–Raphson iteration.

Some well known two-point methods without memory are described e.g. in Jar-
ratt [13], King [14], and Ostrowski [19]. Using inverse interpolation, Kung and Traub
[15] constructed two general optimal classes without memory. Since then, there have
been many attempts to construct optimal multi-point methods, utilizing e.g. weight
functions, see in particular [2,3,5,16,20,21,23–26,28,31].

In [23], Sharifi et al. present a family of three-point with eight-order convergence
methods to find the simple roots of nonlinear equations by suitable approximations
andweight function based onMaheshwari’s method. Their method requires three eval-
uations of the function and one evaluation of its first derivative per iteration. However,
the authors in [24] introduce another new class of optimal iterative methods without
memory for approximating a simple root of a given nonlinear equation such that their
proposed class uses four function evaluations and one first derivative evaluation per
iteration. The convergence order is 16 and therefore optimal in the sense of Kung–
Traub’s conjecture. In [25], Sharifi et al. present an iterative three-point method but
with memory based on the family of King’s methods to solve nonlinear equations.
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An optimal three-point eighth-order iterative solver 753

Their proposed method has eighth order convergence and costs only four function
evaluations per iteration which supports the Kung–Traub’s conjecture on the optimal
order of convergence. They achieved an acceleration of the convergence speed by an
appropriate variation of a free parameter in each step. The self accelerator parameter
is estimated using Newton’s interpolation polynomial of fourth degree. The order of
convergence was increased from 8 to 12without any extra function evaluation. Sharma
and Sharma [26] derive a family of eighth order methods for the solution of nonlin-
ear equations based on Ostrowski’s fourth order method. In terms of computational
costs, their family requires three evaluations of the function and one evaluation of first
derivative. The efficiency index of their presented methods is 1.68179 which is better
than the efficiency index 1.587 of Ostrowski’s method. In [22], Salimi et al. construct
two optimal Newton–Secant like iterative methods for solving non-linear equations.
Their proposed classes have convergence order four and eight and cost only three and
four function evaluations per iteration, respectively. Their methods support the Kung–
Traub’s conjecture and possess a high computational efficiency. They illustrated their
new methods with numerical experiments and a comparison with some well known
existing optimal methods.

We will construct a three-point method of convergence order eight which is free
from second order derivatives, uses 4 evaluations, and provides the efficiency index
4
√
8 � 1.68179.
A widely used criterion to judge and rank different methods for solving nonlinear

equations is the basin of attraction.Wewill use twomeasures to assess the performance
in finding the basin of attraction [30].

The paper is organized as follows. Section 2 introduces the new method based on a
Newton step and Newton’s interpolation. Moreover, details of the newmethod and the
proof of its optimal convergence order eight are given. The numerical performance of
the proposed method compared to other methods are illustrated in Sect. 3. We approx-
imate and visualize the basins of attraction in Sect. 4 for the proposed method and
several existing methods, both graphically and by means of some numerical perfor-
mance measures [30]. Finally, we conclude in Sect. 5.

2 Description of the method and convergence analysis

We construct in this section a new optimal three-point method for solving nonlinear
equations by using a Newton-step and Newton’s interpolation polynomial of degree
three which was also applied in [25].
Method 1: The new method, denoted by MSSV, is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn := xn − u(xn),

zn := xn − u(xn)

(

1 + f (yn)

f (xn)
+

(

1 + 1

1 + u(xn)

) (
f (yn)

f (xn)

)2
)

,

xn+1 := zn − f (zn)

f [zn, yn] + (zn − yn) f [zn, yn, xn] + (zn − yn)(zn − xn) f [zn, yn, xn, xn] ,

(2.1)
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754 G. Matthies et al.

where u(xn) = f (xn)
f ′(xn) . The standard notation for divided differences in Newton’s

interpolation

g[tν, tν+1, . . . , tν+ j ] = g[tν+1, . . . , tν+ j ] − g[tν, . . . , tν+ j−1]
tν+ j − tν

,

with g[tν] = g(tν) and g[tν, tν] = g′(tν) is used.
The iterationmethod (2.1) and all forthcomingmethods are applied for n = 0, 1, . . .

where x0 denotes an initial approximation of the simple root x∗ of the function f . The
method (2.1) uses four evaluations per iteration step, three for f and one for f ′. Note
that (2.1) works for real and complex functions.

The convergence order of method (2.1) is given in the following theorem.

Theorem 1 Let f : D ⊂ R → R be a nine times continuously differentiable function
with a simple zero x∗ ∈ D. If the initial point x0 is sufficiently close to x∗ then the
method defined by (2.1) converges to x∗ with order eight.

Proof Let en := xn − x∗, en,y := yn − x∗, en,z := zn − x∗ and cn := f (n)(x∗)
n! f ′(x∗) for

n ∈ N. Using the fact that f (x∗) = 0, the Taylor expansion of f at x∗ yields

f (xn) = f ′(x∗)
(
en + c2e

2
n + c3e

3
n + · · · + c8e

8
n

)
+ O(e9n) (2.2)

and

f ′(xn) = f ′(x∗)
(
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + · · · + 9c9e

8
n

)
+ O(e9n). (2.3)

Therefore, we obtain

f (xn)

f ′(xn)
= en − c2e

2
n +

(
2c22 − 2c3

)
e3n +

(
−4c32 + 7c2c3 − 3c4

)
e4n

+
(
8c42 − 20c22c3 + 6c23 + 10c2c4 − 4c5

)
e5n

+
(
−16c52 + 52c32c3 − 28c22c4 + 17c3c4 − c2(33c

2
3 − 13c5) − 5c6

)
e6n + O(e7n)

and

en,y = yn − x∗ = c2e
2
n +

(
−2c22 + 2c3

)
e3n +

(
4c32 − 7c2c3 + 3c4

)
e4n

+
(
−8c42 + 20c22c3 − 6c23 − 10c2c4 + 4c5

)
e5n

+
(
16c52 − 52c32c3 + 28c22c4 − 17c3c4 + c2(33c

2
3 − 13c5) + 5c6

)
e6n + O(e7n).

We have

f (yn) = f ′(x∗)
(
en,y + c2e

2
n,y + c3e

3
n,y + · · · + c8e

8
n,y

)
+ O(e9n,y) (2.4)

by a Taylor expansion of f at x∗. By substituting (2.2)–(2.4) into (2.1), we get

en,z = zn − x∗ = c2
(
c2 + 5c22 − c3

)
e4n

+
(
−8c32 − 36c42 − 2c23 + c22(−1 + 32c3) + c2(4c3 − 2c4)

)
e5n + O(e6n).
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An optimal three-point eighth-order iterative solver 755

We obtain

f (zn) = f ′(x∗)
(
en,z + c2e

2
n,z + c3e

3
n,z + · · · + c8e

8
n,z

)
+ O(e9n,z) (2.5)

by using again a Taylor expansion of f at x∗. Substituting (2.2)–(2.5) into (2.1) results
in

en+1 = xn+1−x∗ = c22

(
c2 + 5c22 − c3

) (
c22 + 5c32 − c2c3 + c4

)
e8n+O(e9n), (2.6)

which finishes the proof of the theorem. 	


We will compare the new method (2.1) with some existing optimal three-point
methods of order eight having the same optimal computational efficiency index equal
to 4

√
8 � 1.68179, see [19,29].

The existing methods that we are going to compare are the following:

Method 2: The method by Chun and Lee [5], denoted by CL, is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn := xn − f (xn)

f ′(xn)
,

zn := yn − f (yn)

f ′(xn)
· 1
(
1 − f (yn)

f (xn)

)2 ,

xn+1 := zn − f (zn)

f ′(xn)
· 1

(1 − H(tn) − J (sn) − P(un))2
,

(2.7)

with weight functions

H(tn) = −β − γ + tn + t2n
2

− t3n
2

, J (sn) = β + sn
2

, P(un) = γ + un
2

,

where tn = f (yn)
f (xn)

, sn = f (zn)
f (xn)

, un = f (zn)
f (yn)

, and β, γ ∈ R. Note that the parameters
β and γ cancel when used in (2.7). Hence, their choice has no contribution to the
method.

Method 3: The method by Neta [17], see also [18, formula (9)], denoted by N, is
given by ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yn := xn − f (xn)

f ′(xn)
,

zn := yn − f (xn) + A f (yn)

f (xn) + (A − 2) f (yn)
· f (yn)

f ′(xn)
, A ∈ R,

xn+1 := yn + δ1 f
2(xn) + δ2 f

3(xn),

(2.8)
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where

Fy = f (yn) − f (xn), Fz = f (zn) − f (xn),

ζy = 1

Fy

(
yn − xn

Fy
− 1

f ′(xn)

)

, ζz = 1

Fz

(
zn − xn

Fz
− 1

f ′(xn)

)

,

δ2 = − ζy − ζz

Fy − Fz
, δ1 = ζy + δ2Fy .

We will use A = 0 in the numerical experiments of this paper.

Method 4: The Sharma and Sharma method [26], denoted by SS, is given by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn := xn − f (xn)

f ′(xn)
,

zn := yn − f (yn)

f ′(xn)
· f (xn)

f (xn) − 2 f (yn)
,

xn+1 := zn − f [xn, yn] f (zn)
f [xn, zn] f [yn, zn] W (tn),

(2.9)

with the weight function

W (tn) = 1 + tn
1 + αtn

, α ∈ R,

and tn = f (zn)
f (xn)

. We will use α = 1 in the numerical experiments of this paper.

Method 5: The method from Babajee et al. [2], denoted by BCST, is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn := xn − f (xn)

f ′(xn)

(

1 +
(

f (xn)

f ′(xn)

)5
)

,

zn := yn − f (yn)

f ′(xn)

(

1 − f (yn)

f (xn)

)−2

,

xn+1 := zn − f (zn)

f ′(xn)
·
1 +

(
f (yn)

f (xn)

)2

+ 5

(
f (yn)

f (xn)

)4

+ f (zn)

f (yn)
(

1 − f (yn)

f (xn)
− f (zn)

f (xn)

)2 .

(2.10)

Method 6: The method from Thukral and Petković [28], denoted by TP, is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn := xn − f (xn)

f ′(xn)
,

zn := yn − f (yn)

f ′(xn)
· f (xn) + β f (yn)

f (xn) + (β − 2) f (yn)
, β ∈ R,

xn+1 := zn − f (zn)

f ′(xn)
· (ϕ(tn) + ψ(sn) + ω(un)) ,

(2.11)
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where the weight functions are

ϕ(tn) =
(

1 + tn
1 − 2tn

)2

, ψ(sn) = sn
1 − αsn

, α ∈ R, ω(un) = 4un,

and tn = f (yn)
f (xn)

, sn = f (zn)
f (yn)

and un = f (zn)
f (xn)

. We will use β = 0 and α = 1 in the
numerical experiments of this paper.

3 Numerical examples

The new three-point methodMSSV is tested on several nonlinear equations. To obtain
high accuracy and avoid the loss of significant digits, we employed multi-precision
arithmetic with 20,000 significant decimal digits in the programming package Math-
ematica.

We are going to perform numerical experiments with the four test functions
f1, . . . , f4, which appear in Table 1. We are going to reach the given root x∗ starting
with the mentioned x0 for the four functions and the six methods of convergence order
eight.

In order to test our proposed method (2.1) and compare it with the methods (2.7)–
(2.11), we compute the error, the computational order of convergence (COC) [32]
by

COC ≈ ln |(xn+1 − x∗)/(xn − x∗)|
ln |(xn − x∗)/(xn−1 − x∗)| (3.1)

and the approximated computational order of convergence (ACOC) [6] by

ACOC ≈ ln |(xn+1 − xn)/(xn − xn−1)|
ln |(xn − xn−1)/(xn−1 − xn−2)| . (3.2)

It is worth noting that COC has been used in the recent years. Nevertheless, ACOC
is more practical because it does not require the knowledge of the root x∗. We refer
to [10] for a comparison among several convergence orders. Note that these formu-
las may result for particular examples in convergence orders which are higher than

Table 1 Test functions f1, . . . , f4 and root x∗, and initial guess x0

Test function f j Root x∗ Initial guess x0

f1(x) = ln(1 + x2) + ex
2−3x sin x 0 0.35

f2(x) = x3 + ln(1 + x) 0 0.1

f3(x) = (
2 + x3

)
cos

(
πx
2

) + ln
(
x2 + 2x + 2

) −1 −0.93

f4(x) = ln(x2 − x + 1) − 4 sin(x − 1) 1 1.1
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expected. The reason is that the error equation (2.6) contains problem-dependent coef-
ficients whichmay vanish for some nonlinear functions f . However, the formulas (3.1)
and (3.2) will provide, for a “random” example, good approximations for the conver-
gence order of the method.

We have used both COC and ACOC to check the accuracy of the considered
methods. Note that both COC and ACOC give already for small values of n good
experimental approximations to convergence order.

The comparison of our method (2.1) with the methods (2.7)–(2.11) applied to
the four nonlinear equations f j (x) = 0, j = 1, . . . , 4, are presented in Table 2. We
abbreviate (2.1) byMSSV, and (2.7)–(2.11) as CL, N, SS, BCST, TP, respectively. The
computational convergence order COC and ACOC are given with n = 3. Note that,
for all problems and all methods, both COC and ACOC approximate very accurately
the theoretical order of convergence.

4 Dynamic behavior

We have already observed that all methods converge if the initial guess is chosen
suitably. We now investigate the regions where the initial point has to be chosen in
order to achieve the root. In other words, we will numerically approximate the domain
of attraction of the zeros as a qualitative measure of how the methods depend on the
choice of the initial approximation of the root. To answer this important question on
the dynamical behavior of the algorithms, we will investigate the dynamics of the new
method (2.1) and compare it with the methods (2.7)–(2.11).

Let’s recall some basic concepts such as basin of attraction. For more details and
many other examples of the study of the dynamic behavior of iterative methods, one
can consult [1,2,4,7–9,11,12,27,30].

Let Q : C → C be a rational map on the complex plane. For z ∈ C, we define
its orbit as the set orb(z) = {z, Q(z), Q2(z), . . .}. The convergence orb(z) → z∗
is understood in the sense limk→∞ Qk(z) = z∗. A point z0 ∈ C is called periodic
point with minimal period m if Qm(z0) = z0 where m is the smallest positive integer
with this property (and thus {z0, Q(z0), . . . , Qm−1(z0)} is a cycle). A periodic point
with minimal period 1 is called fixed point. Moreover, a periodic point z0 with period
m is called attracting if |(Qm)′(z0)| < 1, repelling if |(Qm)′(z0)| > 1, and neutral
otherwise. The Julia set of a nonlinear map Q(z), denoted by J (Q), is the closure of
the set of its repelling periodic points. The complement of J (Q) is the Fatou set F(Q).

The six methods (2.1) and (2.7)–(2.11) provide iterative rational maps Q when they
are applied to find roots of complex polynomials p. In particular, we are interested in
the basins of attraction of the roots of the polynomials where the basin of attraction of
a root z∗ is the complex set {z0 ∈ C : orb(z0) → z∗}. It is well known that the basins
of attraction of the different roots lie in the Fatou set F(Q). The Julia set J (Q) is, in
general, a fractal and the rational map Q is unstable there.

From the dynamical and graphical point of view, we take a 600 × 600 grid of the
square [−3, 3] × [−3, 3] ⊂ C and assign a color to each point z0 ∈ D according to
the simple root to which the corresponding orbit of the iterative method starting from
z0 converges. We mark the point as black if the orbit does not converge to a root in
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Table 3 Test polynomials p1(z), . . . , p6(z) and their roots

Test polynomials Roots

p1(z) = z2 − 1 1, −1

p2(z) = z3 − z 0, 1, −1

p3(z) = z(z2 + 1)(z2 + 4) 0, 2i, −2i, i, −i

p4(z) = (z4 − 1)(z2 + 2i) 1, i, −1, −i, −1 + i, 1 − i

p5(z) = z7 − 1 e2kπ i/7, k = 0, . . . , 6

p6(z) = (10z5 − 1)(z5 + 10)
( 1
10

)1/5
e2kπ i/5, (−10)1/5e2kπ i/5, k = 0, . . . , 4

the sense that after at most 15 iterations it has a distance to any of the roots which
is larger than 10−3. We have used only 15 iterations because we are using methods
of convergence order eight which, if they converge, do it very fast. The basins of
attraction are distinguished by their color.

Different colors are used for different roots. In the basins of attraction, the number
of iterations needed to achieve the root is shown by the brightness. Brighter color
means less iteration steps. Note that black color denotes lack of convergence to any
of the roots. This happens, in particular, when the method converges to a fixed point
that is not a root or if it ends in a periodic cycle or at infinity. Actually and although
we have not done it in this paper, infinity can be considered an ordinary point if we
consider the Riemann sphere instead of the complex plane. In this case, we can assign
a new “ordinary color” for the basin of attraction of infinity. Details for this idea can
be found in [12].

Basins of attraction for the six methods (2.1) and (2.7)–(2.11) for the six test prob-
lems p j (z) = 0, j = 1, . . . , 6, (Table 3) are illustrated in Figs. 1, 2, 3, 4, 5 and 6 from
left to right and from top to bottom.

From the pictures, we can easily judge the behavior and suitability of any method
depending on the circumstances. If we choose an initial point z0 in a zone where
different basins of attraction touch each other, it is impossible to predict which root
is going to be reached by the iterative method that starts in z0. Hence, z0 is not a
good choice. Both the black zones and the zones with a lot of colors are not suitable
for choosing the initial guess z0 if a precise root should be reached. Although the
most attractive pictures appear when we have very intricate frontiers among basins of
attraction, they correspond to the cases where the dynamic behavior of the method is
more unpredictable and the method is more demanding with respect to the choice of
the initial point.

Finally, we have included in Table 4 the results of some numerical experiments to
measure the behavior of the six iterative methods (2.1) and (2.7)–(2.11) in finding the
roots of the test polynomials p j (z) = 0, j = 1, . . . , 6. To compute the data of this
table, we have applied the six methods to the six polynomials, starting at an initial
point z0 on a 600× 600 grid in the rectangle [−3, 3] × [−3, 3] of the complex plane.
The samewaywas used in Figs. 1, 2, 3, 4, 5 and 6 to show the basins of attraction of the
roots. In particular, we decide again that an initial point z0 has reached a root z∗ when
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Fig. 1 Comparison of basins of attraction of methods MSSV, CL, N (top row, left to right), and SS, BCST,
TP (bottom row, left to right) for the test problem p1(z) = z2 − 1 = 0

Fig. 2 Comparison of basins of attraction of methods MSSV, CL, N (top row, left to right), and SS, BCST,
TP (bottom row, left to right) for the test problem p2(z) = z3 − z = 0
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Fig. 3 Comparison of basins of attraction of methods MSSV, CL, N (top row, left to right), and SS, BCST,
TP (bottom row, left to right) for the test problem p3(z) = z(z2 + 1)(z2 + 4) = 0

Fig. 4 Comparison of basins of attraction of methods MSSV, CL, N (top row, left to right), and SS, BCST,
TP (bottom row, left to right) for the test problem p4(z) = (z4 − 1)(z2 + 2i) = 0
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Fig. 5 Comparison of basins of attraction of methods MSSV, CL, N (top row, left to right), and SS, BCST,
TP (bottom row, left to right) for the test problem p5(z) = z7 − 1 = 0

Fig. 6 Comparison of basins of attraction of methods MSSV, CL, N (top row, left to right), and SS, BCST,
TP (bottom row, left to right) for the test problem p6(z) = (10z5 − 1)(z5 + 10) = 0
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its distance to z∗ is less than 10−3 (in this case z0 is in the basin of attraction of z∗) and
we decide that the method starting in z0 diverges when no root is found in a maximum
of 15 iterations of the method. We say in this case that z0 is a “nonconvergent point”.
The column I/P shows the mean of iterations per point until the algorithm decides that
a root has been reached or the point is declared nonconvergent. The column NC shows
the percentage of nonconvergent points, indicated as black zones in the pictures of
Figs. 1, 2, 3, 4, 5 and 6. It is clear that the nonconvergent points have a great influence
on the values of I/P since these points contribute always with the maximum number
of 15 allowed iterations. In contrast, “convergent points” are reached usually very fast
due to the fact that we are dealing with methods of order eight. To reduce the effect
of nonconvergent points, we have included the column IC/C which shows the mean
number of iterations per convergent point. If we use either the columns I/P or the
column IC/C to compare the performance of the iterative methods, we clearly obtain
different conclusions.

5 Conclusion

We have introduced a new optimal three-point method without memory for approx-
imating a simple root of a given nonlinear equation which uses only four function
evaluations each iteration and results in a method of convergence order eight. There-
fore, Kung and Traub’s conjecture is supported. Numerical examples and comparisons
with some existing eighth-order methods are included and confirm the theoretical
results. The numerical experience suggests that the new method is a valuable alter-
native for solving these problems and finding simple roots. We used the basins of
attraction for comparing the iterative algorithms and we have included some tables
with comparative results.

Acknowledgements The research of the fourth author is supported by Grant MTM2015-65888-C4-4-P
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