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Abstract A large proportion of human malaria infections is asymptomatic, yet serves
as a reservoir that sustains malaria transmission. To achieve malaria elimination, it
is important to understand how asymptomatic infections affect malaria transmission
amonghumans.Herewepropose a simplemathematicalmodel ofmalaria transmission
with both symptomatic and asymptomatic infections, and investigate the effect of
interventions targeting the reservoir population during an early phase ofmalaria spread
under different transmission settings.
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1 Introduction

Malaria is a vector-borne disease that imposes a huge health burden on the world’s
most vulnerable populations. To understand malaria transmission dynamics, many
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mathematical models have been proposed and used in data analysis [1]. A basic model
of malaria spread is “Ross model” [2]:

d Ih (t)

dt
= abmIm (t) (1 − Ih (t)) − γ Ih (t) ,

d Im (t)

dt
= acIh (t) (1 − Im (t)) − μIm (t) .

Here Ih (t) and Im (t) are the proportions of infected humans and mosquitoes, respec-
tively. Parameters a, b, c,m, r , and μ represent the human-biting rate of a single
mosquito, the proportion of bites by infectious mosquitoes on susceptible humans
producing a patient infection, the proportion of bites by susceptible mosquitoes on
infected humans producing a disease vector, the number of female mosquitoes per
human host, the rate of human recovery from infection (i.e., 1/γ is the average dura-
tion of an infection), and the rate of mosquito mortality (i.e., 1/μ is mosquito life
expectancy), respectively [2,3]. The basic reproduction number is defined as the aver-
age number of secondary cases of malaria arising from a single case in a completely
susceptible population, and in the Ross model turns out to be R0 = ma2bc/rμ.
Malaria can spread in a population only if R0 > 1. The Ross model describes the
basic features of malaria transmission and has served as a basic theoretical framework
for malaria control [1,4,5].

Fighting malaria over the last decade with controlled interventions resulted in a
remarkable decline in global malaria morbidity and mortality [6]. However, it remains
unclear whether complete eradication of malaria will be achieved by currently avail-
able interventions. In low transmission setting, most of the asymptomatic infections
are with submicroscopic parasitemia and difficult to detect through routine surveil-
lance (requiring molecular methods) [7]. These infections account for more than 60%
of the total [8] and, as such, represent a “human reservoir” for malaria transmission
that interferes with eradication efforts [7–9]. It is therefore believed that finding and
treating the asymptomatic population is an important way forward. Interestingly, sim-
ulation studies so far suggested that targeting asymptomatic infections could reduce
malaria transmission [4,10]. Here,we develop a simplemathematicalmodel ofmalaria
transmission with both symptomatic and asymptomatic infections, and investigate
how interventions targeting the reservoir population impact the early phase of malaria
spread. Furthermore, we discuss how our simple model will be applied to reported
annual malaria cases for extracting quantitative information on malaria spread.

2 Results

Immunity is an important factor determining whether a malaria patient shows clini-
cal symptoms [7,8]. For example, in areas of high malaria transmission, people are
always exposed to malaria infections, and therefore acquire immunity against the
disease. Increased immunity decreases the parasite density in an individual and mod-
erates the severity of symptoms [11]. Interestingly, in high transmission settings, the
proportion of asymptomatic malaria infections tends to be above 90% [8,12]. Even in
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low transmission areas, it is shown that more than 60% of malaria infections fail to
show clinical symptoms [8]. However, some fraction of these asymptomatic patients
are malaria gametocyte carriers who are essential for malaria transmission (i.e., infec-
tious) [13], and therefore they act as a human reservoir for the disease [7–9]. Thus, all
malaria cases, including asymptomatic infections, should be detected and treated to
achieve better control. Using a simplemathematical model, we investigate the effect of
human reservoir reduction on an early phase of malaria spread, and identify important
factors for an improved effectiveness.

2.1 A mathematical model for malaria spread

Modifying the Ross model [2], we develop a simple mathematical model describing
malaria spread as follows:

dS (t)

dt
= dN (t) + θ {I (t) + A (t)} + (1 + ϕ) θR (t) − dS (t) − λ (t) S (t) ,

dE (t)

dt
= λ (t) S (t) − (ε + d) E (t) ,

d I (t)

dt
= f εE (t) − (r + q + d + θ) I (t) ,

d A (t)

dt
= (1 − f ) εE (t) + r I (t) − (ηq + d + θ) A (t) ,

dR (t)

dt
= q I (t) + ηq A (t) − dR (t) − (1 + ϕ) θR (t) ,

dVs (t)

dt
= g − μVs (t) − λV (t) VS (t) ,

dVE (t)

dt
= λV (t) VS (t) − (μ + εV ) VE (t) ,

dVI (t)

dt
= εV VE (t) − μVI (t) . (1)

The human population is divided into five compartments: susceptible (S); exposed
(i.e., latent but non-infectious) (E); symptomatic infectious (I ); asymptomatic infec-
tious (A); and “reported” as malaria infection and treated (R). Because the birth and
death rate are assumed to be same (i.e., d), the total human population remains con-
stant (i.e., N (t) = S (t) + E (t) + I (t) + A (t) + R (t) = N ). We assume that
the mean latency period in a human is 1/ε, and thereafter the proportion f develops
symptomatic disease, whereas the remainder 1− f is asymptomatic. The mean rate of
natural clearance of gametocyte is θ for both symptomatic and asymptomatic infec-
tions. Even if malaria patients show acute clinical symptoms, symptomatic individuals
become asymptomatic at the rate, r (i.e., 1/r is the mean symptomatic period) because
the symptoms sometimes disappear without clearance of the gametocytes. Parameter
q is the rate of detection and recovery from clinical malaria by treatment, and η is the
relative rate of detection and treatment (0 < η < 1). Because of the treatment, the
mean rate of the natural clearance of gametocyte is increased (1 + ϕ)-fold for indi-
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viduals reported as the cases of malaria infection. Furthermore, the female mosquito
population is divided into three compartments: susceptible (Vs); exposed (VE ); and
infectious (VI ). The mosquitoes die with rate μ, but the total mosquito population,
NV (t), is maintained by the constant birth, g. The mean latent period in a mosquito
is 1/εV . The force of infection experienced by humans and mosquitoes, respectively,
is defined as follows:

λ (t) = a × NV (t)

N (t)
× VI (t)

NV (t)
× b = β

VI (t)

N (t)
,

λV (t) = a × I (t) + A (t)

N (t)
× c = βV

I (t) + A (t)

N (t)
. (2)

Here a, b, and c are the human-biting rate of a mosquito, the proportion of bites by
infectious mosquitoes on susceptible humans producing a patient infection, and the
proportion of bites by susceptible mosquitoes on infected humans producing a disease
vector, respectively. Note that a × NV (t) /N (t) represents the biting rate per human
host. For convenience, we define β = ab and βV = ac. Our mathematical model
(1-2) is a simplified version of a previous model discussed in [5,14]. All variables and
parameters are summarized in Table 1.

2.2 Derivation of the basic reproduction number

The basic reproduction number, i.e., the average number of secondary (human) cases
produced by a human primary case in a completely susceptible population, is an
important quantity characterizing disease transmission and intervention impact [3].
We derived the basic reproduction number from model (1-2) as follows [15–17]. At
the beginning of malaria spread, the equation for exposed human individuals is

dE (t)

dt
= βVI (t) − (ε + d) E (t) ,

because we could assume that the number of susceptible human individuals is approx-
imately equal to the total human population (i.e., S (t) = N ). Applying the variation
of constants formula to the above equation, we have

E (t) =
∫ t

0
βVI (t − s) e−(ε+d)sds = β (VI ∗ φ1) (t) ,

where, for simplicity, we assume that the infection process starts at t = 0. In the above
expression, φ1 (s) denotes the distribution function of waiting time in compartment
E (t) given by

φ1 (s) = e−(ε+d)s,
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Table 1 Variables and parameters of the proposed mathematical model

Variables Definition

S (t) Susceptible human individuals

E (t) Exposed human individuals

I (t) Symptomatic infectious human individuals

A (t) Asymptomatic infectious human individuals

R (t) Reported as malaria infection and treated human individuals

Vs (t) Susceptible mosquitoes

VE (t) Exposed mosquitoes

VI (t) Infectious mosquitoes

Parameters Meaning

d Natural birth and death rate of humans

1/ε Mean latent period in humans

f Proportion becoming a symptomatic case upon infection

1/r Mean symptomatic period

q Rate of detection and recovery from clinical malaria by treatment

θ Rate of natural clearance of gametocytes

ϕ Enhancement rate of natural clearance of gametocytes by treatment

η Relative rate of detection and treatment

g Constant birth rate of mosquitoes

μ Natural death rate of mosquitoes

1/εV Mean latent period in mosquitoes

a Human-biting rate of a single mosquito

b Proportion of bites by infectious mosquitoes on susceptible humans
producing a patient infection

c Proportion of bites by susceptible mosquitoes on infectious humans
producing a disease vector

and, ∗ denotes the convolution of functions. In a similar manner, if we define the
distribution functions of waiting time for other compartments,

φ2 (s) = e−(μ+εV )s, φ3 (s) = e−(r+q+d+θ)s, φ4 (s) = e−(ηq+d+θ)s,

φ5 (s) = e−[d+(1+ϕ)θ ]s, φ6 (s) = e−μs,

then the linearized equations of model (1-2) at the disease-free steady state,
(N , 0, 0, 0, 0, b/μ, 0, 0), are rewritten by the following integral equations:

I (t) = f ε (E ∗ φ3) (t) ,

A (t) = (1 − f ) ε (E ∗ φ4) (t) + r (I ∗ φ4) (t) ,

R (t) = q {(I + ηA) ∗ φ5} (t) ,

VE (t) = (
N∗
Vφ2 ∗ λV

)
(t) = mβV {φ2 ∗ (I + A)} (t) ,
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VI (t) = εV (VE ∗ φ6) (t) .

Here, N∗
V = b/μ and m = N∗

V /N . Therefore, we arrived at the following renewal
equation for compartment, E (t):

E (t) = mεVββV {φ1 ∗ φ2 ∗ φ6 ∗ (I + A)} (t)

= mεεVββV E ∗ φ1 ∗ φ2 ∗ φ6 ∗ { f φ3 + (1 − f ) φ4 + f rφ4 ∗ φ3} (t) .

The kernel of the above renewal equation is given by

Φ (s) = mεεVββV ∗ φ1 ∗ φ2 ∗ φ6 ∗ { f φ3 + (1 − f ) φ4 + f rφ4 ∗ φ3} (s) .

From the general theory of the basic reproduction number [16,17], R0 for the exposed
human individuals is

R0 =
∫ ∞

0
Φ (s) ds = mεεVββV

μ (μ + εV )

{
(r + ηq + d + θ) f + (r + q + d + θ) (1 − f )

(ηq + d + θ) (d + ε) (r + q + d + θ)

}
.

The disease-free steady state is globally asymptotically stable if R0 < 1, because,
in the model (1-2), E (t) and VE (t) satisfy inequalities E (t) ≤ β (VI ∗ φ1) (t) and
VE (t) ≤ mβV {φ2 ∗ (I + A)} (t) [17]. Therefore, R0 < 1 is a sufficient condition to
eradicate the disease.

2.3 Impact of control intervention targeting asymptomatic infection

It is difficult to detect malaria infection without any clinical symptoms or molecular
methods [7–9]. Accordingly, the relative rate of detection and treatment is usually
close to zero in current malaria case management (i.e., η = 0). To investigate how
malaria control interventions targeting the reservoir population impact the early phase
of malaria spread, we analyzed the sensitivity of the basic reproduction number, R0, to
0 < η < 1. Because R0 is a function of parameter η, we redefine the basic reproduction
number as R0 (η), and consider the effect of intervention on R0 as follows:

1 − R0 (η)

R0 (0)
= 1 − θ {(r + ηq + θ) f + (r + q + θ) (1 − f )}

(ηq + θ) {(r + θ) f + (r + q + θ) (1 − f )} ,

where we ignore the natural death rate (i.e., d = 0) because it is too small com-
pared with other parameters. Interestingly, the sensitivity of R0 to η depends only
on four parameters: θ, r, q, and f . Here we fixed θ = 1/180, r = 1/180, and
q = 1/21 [4,10,14]. In Fig.1, solid and dashed curves represent the sensitivity in
a high (1 − f = 55%) and a low (1 − f = 5%) transmission setting, respectively.
Although the transmission setting is usually defined using the entomological inocula-
tion rate (EIR) or the transmission intensity [4,18], as reviewed in [7,8], there is a strong
and positive correlation between the transmission intensity and f (i.e., the proportion
of asymptomatic population with malaria parasitemia). Thus, we simply assumed that
the difference in f corresponds to that in the transmission settings. When the efficacy
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Fig. 1 Impact of control intervention targeting asymptomatic infection on the basic reproduction number:
the sensitivity of the basic reproduction number to 0 < η < 1 in the high (1 − f = 45%) and the low
(1 − f = 95%) transmission setting (i.e., 1 − R0 (η) /R0 (0)) is shown using solid and dashed curves,
respectively. Here, the parameters are fixed at θ = 1/180, r = 1/180, and q = 1/21

of the intervention is relatively low (up to η = 0.4), the effect, 1 − R0 (η) /R0 (0),
dramatically increases in both settings. As the efficacy of the intervention approaches
100% (i.e., the parameter η approaches 1), the effect of intervention saturates. Inter-
estingly, the saturated value in the high transmission setting is 83.5% which is much
higher than 54.5% in the low transmission setting, meaning that the intervention in the
former setting is more efficient (the solid curve is always above the dashed curve in
Fig.1). In other words, if we could maintain the control intervention efficacy close to
100%, the control intervention would be effective in reducing the basic reproduction
number—the control might block a malaria spread with the basic reproduction num-
ber less than 8.77 and 6.49 in the high and the low setting, respectively. In contrast,
if the basic reproduction number is above 8.77 and 6.49 in the high and the low set-
ting, respectively, the control intervention alone could not prevent malaria spread. In
fact, it is reported that the basic reproduction number in the high malaria transmission
areas sometimes exceeds 100 [19]. This high number implies that the impact of the
control intervention applied to the human reservoir is limited in the high transmission
setting, which is consistent with previous prediction by simulation studies in Ref. [4].
For malaria control, it is important to estimate the basic reproduction number and to
execute multi-control strategies depending on a transmission setting [4,8,20].

2.4 Relation between the basic reproduction number and the Malthusian
parameter

In areas of high seasonal transmission, it is believed that asymptomatic patients persist
over the course of dry season and reseed transmission when mosquito populations
increase along with wetter conditions [8,20,21]. Therefore, malaria outbreak occurs
every year during the rainy season. Quantifying the annual basic reproduction number,
R0, during an early phase of malaria spread is important to evaluate whether control
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interventions mitigate malaria spread [1,3,16]. Here we explained that our simple
model will be applied to annual malaria case reports to extract quantitative information
on malaria spread. Note that many parameter values in the mathematical model are
unknown, especially those appearing in the force of infection.

The Malthusian parameter for malaria, i.e., the speed of malaria spread, is the
dominant real root of the Euler–Lotka equation [22]:

Φ̂ (λ) =
∫ ∞

0
e−λsΦ (s) ds = 1,

where Φ̂ (∗) denotes the Laplace transformation of function Φ (∗). Because the
Laplace transformation turns convolution into multiplication, the Euler–Lotka equa-
tion is rewritten as

Φ̂ (λ) = mεεVββV φ̂1 (λ) φ̂2 (λ) φ̂6 (λ)
{
f φ̂3 (λ) + (1 − f ) φ̂4 (λ) + f γ φ̂4 (λ) φ̂3

} = 1.

In addition, if we define the mean waiting time in each compartment as

�1 = 1

ε + d
, �2 = 1

μ + εV
, �3 = 1

r + q + d + θ
,

�4 = 1

ηq + d + θ
, �5 = 1

d + (1 + ϕ) θ
, �6 = 1

μ
,

then each Laplace transformation is explicitly calculated as follows:

φ̂1 (λ) = 1

λ + ε + d
= �1

1 + λ�1
,

φ̂2 (λ) = 1

λ + μ + εV
= �2

1 + λ�2
,

φ̂3 (λ) = 1

λ + r + q + d + θ
= �3

1 + λ�3
,

φ̂4 (λ) = 1

λ + ηq + d + θ
= �4

1 + λ�4
,

φ̂5 (λ) = 1

λ + d + (1 + ϕ) θ
= �5

1 + λ�5
,

φ̂6 (λ) = 1

λ + μ
= �6

1 + λ�6
.

The dominant real root of the above sixth degree equation in λ corresponds to the
Malthusian parameter. Thus, from theEuler–Lotka equation,we arrive to the following
relation:

R0 = (1 + λ�1) (1 + λ�2) (1 + λ�3) (1 + λ�4) (1 + λ�6)

× f �3 + f γ�3�4 + (1 − f ) �4

f �3 (1 + γ�4) + f γ�3�4 + (1 − f ) (1 + γ�3)
.

Interestingly, the basic reproduction number is expressed as a function of the Malthu-
sian parameter.Although inmost of the countrieswheremalaria is endemic, a relatively
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large fraction of the population (both human and mosquito) is already infectious at the
start of a malaria season, thus driving yearly outbreaks, all information on population
having an immunity against malaria is included in the initial slope of malaria cases.
Because the Malthusian parameter is usually estimated from the growth rate of the
reported malaria cases (i.e., the time evolution of q I (t)+ ηq A (t) at the beginning of
malaria spread), it is possible for us to estimate the basic reproduction number just by
knowing the mean waiting times (�1,�2,�3,�4, and �6), and parameters f and γ ,
all of which are directly observed in clinical patients.

3 Discussion

To derive analytical expressions for the basic reproduction number (R0) and the effect
of intervention (1 − R0 (η) /R0 (0)), we used a simple model (1-2), inspired by a
previously proposed model in Refs. [5,14]. By analyzing the sensitivity of R0 to
0 < η < 1, we showed that, depending on the transmission setting as defined by
EIR [1,7,8], the effect of malaria control interventions targeting the reservoir popu-
lation is different (see the solid and dashed curves in Fig. 1). As mentioned above, it
is considered that a host’s immune response to malaria infection plays an important
role [11] (here, the parameter f is assumed to be determined by the host’s immu-
nity). In some areas, in fact, it is reported that high gametocyte carriage amongst
asymptomatic patients may be the cause of a sustained low level transmission despite
strict enforcement of malaria control measures. Thus, asymptomatic infection may
contribute to malaria spread. Furthermore, the dynamics of the gametocyte density
in patients is a critical factor in determining malaria transmission [7–9,13]. Previous
transmission experiments showed a positive relationship between gametocyte den-
sity and the prevalence of infection in mosquitoes [8,23]. The probability of mosquito
infection depends on gametocyte density [7,8].Although no clear relationship between
asymptomatic infection and gametocyte density has been established, the effect that
biting symptomatic infected individuals has on the probability of a susceptible mos-
quito becoming infected might be different from that of biting asymptomatic infected
individuals, because the density of gametocyte is likely different depending on the
host’s immunity level. Taking into account the gametocyte density in the force of
infection using term βV (I (t) + σ A (t)) /N (t), where σ is a scaling parameter, and
evaluating the malaria control interventions that target the reservoir population will
be the focus of a future work.
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