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Abstract Considering both extracellular and intracellular environments, we propose
a nonlinear switched system composed of 16 modes based on the different metabolic
mechanism to model the microbial continuous fermentation process of glycerol to
1,3-propanediol (1,3-PD). The existence and continuity of sensitivities of the system
states with respect to the decision variables and unknown parameters are discussed.
Taking the dilution rate and the feeding glycerol concentration as control variables,
the sensitivity functions as constraints, an optimal control problem is presented with
the concentration of 1,3-PD at the terminal time as performance index. According to
sensitivity analysis, we obtain the gradient formulas of performance index and con-
straints with respect to the decision variables and the parameters to be identified. The
sequential quadratic programming algorithm is adopted to seek a numerical solution.
Numerical results indicate that under the obtained optimal dilution rate and feeding
glycerol concentration, the productivity of 1,3-PD at the terminal time is increased
significantly.
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1 Introduction

As an important chemical raw material, 1,3-Propanediol (1,3-PD) is widely applied
in polymers, cosmetics, lubricants and so on. Compared with chemical synthesis, the
microbial conversion of glycerol to 1,3-PDhas been givenmuch attention due to its low
cost and less pollution. Among all kinds ofmicrobial conversions, the bioconversion of
glycerol to 1,3-PDbyKlebsiella pneumoniae (K. pneumoniae) is particularly attractive
on account of its high productivity [1].

In recent years, some mathematical models have been proposed to describe the
bioconversion process of glycerol to 1,3-PD [1–3]. On the basis of [1–3], Xiu et al.
altered the model in [3] by leading in an excess term to describe the continuous culture
and bath fermentation [4]. According to the literature [4], Gao et al. [5] studied the
parameter identification; Li et al. [6] and Gao et al. [7] discussed the optimal control in
continuous culture; Ma et al. [8] established a model to research Hopf bifurcation and
chaos analysis; Ye et al. [9] analyzed the stability of the nonlinear dynamical system
in microbial continuous cultures; Lian et al. [10] considered the oscillatory behavior
in microbial continuous cultures with discrete time delay.

However, all the above works do not deal with the intracellular dynamics behavior.
In fact, the fermentation of glycerol bioconversion to 1,3-PD covers both extracellular
and intracellular environments in which some important intracellular intermediate
metabolites and enzymes such as 3-hydroxypropional (3-HPA), glycerol dehydratase
(GDHt) and 1,3-PD oxydoreductase (PDOR) play important roles. In 2008, taking
the concentration of both extracellular and intracellular substances into account, Sun
et al. [11] proposed a mathematical model for the continuous fermentation under
the assumptions that glycerol passes the membrane by active transport coupled with
passive diffusion and 1,3-PD passes the membrane by passive diffusion. On the basis
of Sun’s model, Zhai et al. [12] established a pathway and parameter identification
model and inferred that it is most possible that both glycerol and 1,3-PD pass the
cell membrane by active transport coupled with passive diffusion and there exists an
inhibition of 3-HPA to the cell growth. Wang et al. [13,14] presented a nonlinear
switched system to describe the fed-batch process with pH feedback control and the
parameter optimization of continuous culture via sensitivity, respectively. On the other
hand, based on the parameter identification in [12], Zhai et al. [15] further studied the
optimal control in continuous fermentation, which regarded the dilution rate and the
feeding glycerol concentration as decision variables and took the concentration of
1,3-PD at the terminal time as performance index, respectively. However, in the works
[12,15], the values of some system parameters are changed with the change of the
decision variables. The reason is that the fermentation environment may be changed
due to the alteration of the decision variables. Therefore, it will be difficult to optimize
the continuous culture process directly.

In this paper, a novel nonlinear switched systemmodel is proposedby taking the evo-
lution of concentration of the intracellular and extracellular substances into account.
According to the different values of indicator function in the model, the continuous
fermentation process is divided into 16 switching modes. Since some system parame-
ters depend on the decision variables, the sensitivities of the system states with respect
to the parameters and the decision variables are discussed, and the gradient formulas
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Optimal control of a nonlinear switched system 685

containing switches are obtained. Based on the sensitivity functions, a switched opti-
mal control model is formulated, in which the dilution rate and the feeding glycerol
concentration are taken as decision variables, and the concentration of 1,3-PD at the
terminal time is taken as performance index, respectively. The sequential quadratic
programming (SQP) algorithm is applied for seeking a numerical solution. The opti-
mal inputs, unknown parameters, switching instants and mode sequence are obtained
by implementing the proposed algorithm. Numerical results show that, by employing
the optimal control strategies, the concentration of 1,3-PD at the terminal time can be
increased considerably.

The rest of this paper is organized as follows. Section 2 introduces the nonlinear
dynamical system in continuous fermentation. In Sect. 3, we propose a novel nonlin-
ear switched system model and discuss some important properties of the system. In
Sect. 4 , the existence and continuity of parametric sensitivity functions of the switched
system are proved and an optimal control model based on the sensitivity functions is
constructed. Section 5 constructs a sequential quadratic programming algorithm to
solve the optimal problem. And Sect. 6 illustrates the numerical calculations. Conclu-
sions are presented at the end of this paper.

2 Nonlinear dynamical system in continuous fermentation

In continuous fermentation, glycerol is added to the reactor continuously, the broth in
reactor pours out at the same rate and the volume of the fermentation broth keeps con-
stant. So the cultivation process is continuous. According to the factual experiments,
we assume that

(H1) During the process of continuous fermentation, the substrate added to the reactor
only includes glycerol.

(H2) The concentrations of substrate are uniform, while time delay and nonuniform
space distribution are ignored.

(H3) The transport mechanisms of both glycerol and 1,3-PD are active transport
coupled with passive diffusion. 3-HPA has inhibition to the cell growth and
will restrain the activities of enzymes when its concentration reaches a certain
critical value [12].

Let x(t) := (x1(t), x2(t), . . . , x8(t))� ∈ R
8+ (t ∈ [0, T ]) be the state vector,

where x1(t), x2(t), . . . , x8(t) represent the concentrations of biomass, extracellular
glycerol, extracellular 1,3-PD, acetate, ethanol, intracellular glycerol, intracellular 3-
HPA and intracellular 1,3-PD, respectively. And T is the terminal time of continuous
fermentation.

Under the assumptions (H1)–(H3), the vector field of reaction in a continuous
fermentation can be formulated as follows [12].
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = (μ − D)x1,
ẋ2(t) = D(Cs0 − x2) − q2x1,
ẋ3(t) = q3x1 − Dx3,
ẋ4(t) = q4x1 − Dx4,
ẋ5(t) = q5x1 − Dx5,

ẋ6(t) = 1
u3

(
u4

x2
x2+u5

+ u6(x2 − x6)IR+(x2 − x6) − q2
)

− μx6,

ẋ7(t) = u7x6
KG
m (1+ x7−u9

u8
IR+ (x7−u9))+x6

− u10x7

K P
m +x7+ (x7−u12)2

u11
IR+ (x7−u12)

− μx7,

ẋ8(t) = u10x7

K P
m +x7+ (x7−u12)2

u11
IR+ (x7−u12)

− u13
x8

x8+u14

− u15(x8 − x3)IR+(x8 − x3) − μx8.

(1)

Here D and Cs0 represent the dilution rate and the feeding glycerol concentration;
KG
m = 0.53 mmol/L and K P

m = 0.14 mmol/L are Michaelis–Menten constants for
GDHt and PDOR, respectively. The specific substrate consumption rates and the spe-
cific product formation rates can be respectively expressed as follows.

q2 = m2 + μ

Y2
+ Δq2

x2
x2 + K ∗

2
+ u1(x2 − x6)IR+(x2 − x6),

q3 = m3 + μY3 + Δq3
x2

x2 + K ∗
3

+ u2(x8 − x3)IR+(x8 − x3),

q4 = m4 + μY4 + Δq4
x2

x2 + K ∗
4
,

q5 = m5 + μY5.

IR+ is the indicator function defined as

IR+(x) =
{
1, x > 0,
0, x ≤ 0.

The specific cell growth rate μ is expressed by

μ =
(

1 − x7
x∗
7

)

μm
x2

x2 + Ks

5∏

i=2

(

1 − xi
x∗
i

)

.

Under anaerobic conditions at 37 ◦C and pH 7.0, the maximum specific growth rate
μm and Monod saturation constant Ks are 0.67/h and 0.28 mmol/L, respectively. mi ,
Yi , Δqi and K ∗

i (i = 2, 3, 4, 5) are parameters whose values can be referred to the
literature [4] as shown in Table 1.

Let Dc := [0.08, 0.5] × [110.96, 1883] ∈ R
2+ be the value range of the dilution

rate and glycerol concentration in feed medium.
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Optimal control of a nonlinear switched system 687

Table 1 The values of
parameters

i mi Yi Δqi K ∗
i

(mmol/g/h) (mmol/g) (mmol/g/h) (mmol/L)

2 2.20 0.0082 28.58 11.43

3 −2.69 67.69 26.59 15.59

4 −0.97 33.07 5.74 85.71

5 5.26 11.66 – –

Table 2 The value ranges of the undetermined parameters

u1 u2 u3 u4 u5 u6 u7 u8

[100, 5000] [20, 30] [5, 10] [40, 70] [0.5, 3] [100, 5000] [1, 50] [100, 300]
u9 u10 u11 u12 u13 u14 u15

[0.1, 5] [1, 50] [0.01, 2] [0.1, 5] [0.5, 20] [1, 30] [1, 100]

Define

Wad :=
8∏

i=1

[xi∗, x∗
i ] ⊂ R

8+.

From literature [11], the critical concentrations x∗
1 , x

∗
2 , . . . , x

∗
8 are 15 g/L, 2039

mmol/L, 2000 mmol/L, 1026 mmol/L, 360.9 mmol/L, 2039 mmol/L, 300 mmol/L,
2000 mmol/L, respectively. And the lower bound of the state vector is given as x∗ =
(0.01, 0, 0, 0, 0, 0, 0, 0)�. A function x from [0, T ] into R

8+ is called an admissible
state if x(t) ∈ Wad for all t ∈ [0, T ]. Let Wad be the class of all such admissible
states.

Let

Uad :=
15∏

j=1

[u j∗, u∗
j ] ⊂ R

15

be the value range of parameter vector u, where u j∗, u∗
j are the lower and upper bounds

of u j , respectively. For detail, refer to Table 2. It should be noted that the value of
system parameter vector u is uncertain and difficult to determine exactly.

3 Nonlinear switched system model

Since each indicator function has two different values in Eq. (1), vector field of the
dynamical system becomes non-differentiable at the null point of indicator function.
To solve this problem, we will regard the system (1) as a switched system.
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688 Q. Hu et al.

Define σi (·) : [0, T ] → {0, 1}(i = 0, 1, 2, 3) as

σ0(t) := IR+(x2(t) − x6(t)),

σ1(t) := IR+(x7(t) − u9),

σ2(t) := IR+(x7(t) − u12),

σ3(t) := IR+(x8(t) − x3(t)),

and σ(·) : [0, T ] → � = {0, 1, 2, . . . , 15} as

σ(t) := σ0(t) + 2σ1(t) + 22σ2(t) + 23σ3(t), t ∈ [0, T ].

It means that the Eq. (1) can switch between 16 modes. According to the factual
process, we assume that

(H4) During the whole continuous fermentation process, the total number of switch-
ing times is limited.

To simplify expression, let In := {1, 2, . . . , n}, Īn := {0, 1, . . . , n} (n ∈ Z+),
x := x(t), xi := xi (t) (i ∈ I8), σ := σ(t), z := (D,Cs0, u) ∈ R

17+ . Let N (< ∞)

be the total number of switching times. τ1, τ2, . . . , τN are switching instants which
satisfy 0 < τ1 < τ2 < · · · < τN < T . For the convenience of discussion, we set
τ0 := 0 and τN+1 := T . Let Γ := {τ1, τ2, . . . , τn} be the set of switching instants.
Then we define the switching surfaces as follows.

Φ0 := {t ∈ Γ | h0(x(t), z) = x2(t) − x6(t) = 0},
Φ1 := {t ∈ Γ | h1(x(t), z) = x7(t) − u9 = 0},
Φ2 := {t ∈ Γ | h2(x(t), z) = x7(t) − u12 = 0},
Φ3 := {t ∈ Γ | h3(x(t), z) = x8(t) − x3(t) = 0}

Let Fσ (x, z) := ( f σ
1 (x, z), f σ

2 (x, z), . . . , f σ
8 (x, z))� denote the right-hand side

of the Eq. (1).
From the above, the continuous fermentation process can be described by the fol-

lowing nonlinear switched system.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Fσ(t)(x(t), z), t ∈ [0, T ] \ Γ,

σ(t) = σ0(t) + 2σ1(t) + 22σ2(t) + 23σ3(t), t ∈ [0, T ],
x(t) = x(t−), t ∈ Γ,

σ0(t) = (σ0(t−) + 1) mod 2, t ∈ Φ0,

σ1(t) = (σ1(t−) + 1) mod 2, t ∈ Φ1,

σ2(t) = (σ2(t−) + 1) mod 2, t ∈ Φ2,

σ3(t) = (σ3(t−) + 1) mod 2, t ∈ Φ3,

x(0) = x0,
σ (0) = σ 0.

(2)

Here x(t−) and σi (t−) are the left limit of x(t) and σi (t) (i = 0, 1, 2, 3) at time t ,
respectively. x0 and σ 0 are the initial values.
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Optimal control of a nonlinear switched system 689

Under the assumptions (H1)–(H4), we can easily obtain the following property.

Property 1 For given σ ∈ �, ∀(x, z) ∈ Wad × Dc × Uad , the vector field Fσ (x, z)
satisfies

(1) Fσ (x, z) is second-order continuous differentiable with respect to (x, z) inWad ×
Dc ×Uad ;

(2) Fσ (x, z) satisfies the linear growth condition, i.e., there exists two positive con-
stants a, b such that

‖ Fσ (x, z) ‖≤ a ‖ x ‖ +b,

where ‖ · ‖ is the Euclidean norm.

For fixed σ 0 ∈ � and given (x0, z) ∈ Wad × Dc × Uad , let τk (k ∈ IN ) be the
switching instant and x(τk), σ(τk) be the initial values of the Eq. (2), respectively.
Then we can formulate the following subsystem on the time interval [τk, τk+1].

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Fσ(τk )(x(t), z),
σ (τk) = σ0(τk) + 2σ1(τk) + 22σ2(τk) + 23σ3(τk),
x(τk) = x(τ−

k ), k ∈ IN ,

σ0(τk) = (σ0(τ
−
k ) + 1) mod 2, τk ∈ Φ0,

σ1(τk) = (σ1(τ
−
k ) + 1) mod 2, τk ∈ Φ1,

σ2(τk) = (σ2(τ
−
k ) + 1) mod 2, τk ∈ Φ2,

σ3(τk) = (σ3(τ
−
k ) + 1) mod 2, τk ∈ Φ3.

(3)

From the Property 1, for fixed initial values x(τk), σ(τk) and any z ∈ Dc × Uad ,
Eq. (3) has a unique solution x (k)(·; x(τk), z). Based on the assumptions (H1)–(H4),
we can obtain a property as follows.

Property 2 For given σ 0 ∈ � and (x0, z) ∈ Wad × Dc × Uad , there exists a unique
solution to Eq. (2) denoted by x(·; x0, z), and the solution can be formulated as a
piecewise solution

x(·; x0, z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x (0)(t; x(τ0), z), t ∈ [τ0, τ1],
x (1)(t; x(τ1), z), t ∈ [τ1, τ2],
...

x (N )(t; x(τN ), z), t ∈ [τN , τN+1].

On the basis of the actual fermentation courses, we can assume that
(H5) For ∀(x, z) ∈ Wad × Dc ×Uad , ∇hi (x, u)Fσ (x, z) 
= 0 (i ∈ Ī3, σ ∈ �).

By literature [13] and the assumptions (H1)–(H5), we can obtain the following
properties.

Property 3 For fixed σ 0 ∈ � and (x0, z) ∈ Wad × Dc ×Uad , let x (k)(·; x(τk), z)(k ∈
ĪN ) be a solution of the subsystem (3), then the switching instant τk+1 (k ∈ IN−1) is
continuous with respect to (x(τk), z).
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690 Q. Hu et al.

Property 4 For given σ 0 ∈ � and (x0, z) ∈ Wad × Dc × Uad , let x(·; x0, z) be the
unique solution to Eq. (2), then x(·; x0, z) is continuous with respect to z in Dc ×Uad .

Now, we define the following sets of the solutions and admissible solutions to
system (2).

E := { x(·; x0, z) | x(·; x0, z) is a solution to system (2)with x0 ∈ Wad ,

z ∈ Dc ×Uad . }, (4)

Λ := { x(·; x0, z) | x(·; x0, z) ∈ Wad ∩ E }. (5)

Next, the set of feasible parameter vectors is written as

Ω := { z ∈ Dc ×Uad | x(·; x0, z) ∈ Λ }. (6)

From the compactness of Wad and Dc × Uad , and the continuity of the solutions
with respect to z, we have the following conclusion.

Property 5 For given x0 ∈ Wad , the sets E , Λ and Ω are compact.

4 Optimal control problem

In this section, an optimal control model will be established to maximize the product
concentration by optimizing the dilution rate D and feeding glycerol concentration
Cs0. Since parts of the systemparameters dependon the decision variables, the sensitiv-
ities of the system states with respect to the parameters and the decision variables will
be discussed. Sensitivity functions refer to the partial derivatives of the state variables
with respect to the parameters. Thus, we can determine the influence of the parameters
to the system from sensitivity analysis. Furthermore, sensitivity functions can provide
the necessary gradient information for designing an optimization algorithm as well
[16] .

According to [14,17], we will use ϕ
(k)
k+1 and T (k)

k+1, respectively, to designate the
discontinuity function and the transition function, where the superscript (k) and the
subscript k+1 are used to indicate the subsystemwhen the event considered happened
and the subsequent subsystem determined by the switching condition, respectively.
The system (2) will switch when hi = 0 (i ∈ Ī3), then the switching rule can be
expressed as

ϕ
(k)
k+1(x

(k), z) = [x (k)
2 (t; x(τk), z) − x (k)

6 (t; x(τk), z)] · [x (k)
7 (t; x(τk), z) − u9]

·[x (k)
7 (t; x(τk), z) − u12] · [x (k)

8 (t; x(τk), z) − x (k)
3 (t; x(τk), z)]

= 0. (7)

The transition function T (k)
k+1 satisfies that

T (k)
k+1(x

(k+1), x (k))|t=τk+1 = x (k+1)(τk+1; z) − x (k)(τ−
k+1; z) = 0. (8)
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We can simply obtain the following results by the conclusions in [17,18].

Property 6 For ∀t ∈ (τk, τk+1), the partial derivatives ∂Fσ(τk )

∂x (k) and ∂Fσ(τk )

∂z exist, and

they are continuous in a neighborhood of the solution x (k)(·; x(τk), z).
Property 7 Let s > τk be the first switching instant satisfying Eq. (7). There exists
an open set E ⊂ R

17 with z ∈ E and a continuous differential function τ(·) such that
τ(z) = s and

ϕ
(k)
k+1(x

(k)(τ (z′); x(τk), z′), z′) = 0, ∀z′ ∈ E .

Theorem 1 Given x0 ∈ Wad, for any z ∈ Dc×Uad, l, s ∈ I17, {τk}Nk=1 is the sequence
of switching instants. Under the assumptions (H1)−(H5), the sensitivity function ∂x

∂zl

exists and is continuous; the second-order partial derivative ∂2x
∂zl∂zs

exists. And they
satisfy the differential equations

∂

∂t

(
∂x

∂zl

)

= ∂Fσ

∂x

∂x

∂zl
+ ∂Fσ

∂zl
, (9)

∂

∂t

(
∂2x

∂zl∂zs

)

= ∂Fσ

∂x

(
∂2x

∂zl∂zs

)

+ ∂

∂zs

(
∂Fσ

∂x

)
∂x

∂zl
+ ∂2Fσ

∂zl∂zs
, (10)

in [0, T ] with initial sensitivity
∂x

∂zl
|t=0 = 0, (11)

∂2x

∂zl∂zs
|t=0 = 0. (12)

Furthermore, both ∂x
∂zl

and ∂2x
∂zl∂zs

satisfy the following conditions at switching points

∂x (k+1)

∂zl
= ∂x (k)

∂zl
, (13)

∂2x (k+1)

∂zl∂zs
= −

(
∂Fσ(τk+1)

∂zs
− ∂Fσ(τk )

∂zs

)
dt

dzl
+ ∂2x (k)

∂zl∂zs
, (14)

where,

dt

dzl
= −

∂ϕ
(k)
k+1

∂x (k)
∂x (k)

∂zl
+ ∂ϕ

(k)
k+1

∂zl

∂ϕ
(k)
k+1

∂x (k) Fσ(τk )

. (15)

Proof For any k ∈ IN , l, s ∈ I17, on the open interval (τk, τk+1), it follows from
Properties 6 and 7 that
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692 Q. Hu et al.

∂

∂t

(
∂x (k)

∂zl

)

= ∂Fσ(τk )

∂x (k)

∂x (k)

∂zl
+ ∂Fσ(τk )

∂zl
. (16)

We further calculate the partial derivative of the Eq. (16) with respect to z based on
the chain rule as follows.

∂

∂t

(
∂2x (k)

∂zl∂zs

)

= ∂Fσ(τk )

∂x (k)

(
∂2x (k)

∂zl∂zs

)

+ ∂

∂zs

(
∂Fσ(τk)

∂x (k)

)
∂x (k)

∂zl

+∂2Fσ(τk )

∂zl∂zs
. (17)

At the switching instant τk+1, from the Eq. (8), we have T (k)
k+1 = x (k+1) − x (k) = 0.

Substituting T (k)
k+1 into Eq. (49) in [17], we can obtain that

∂x (k+1)

∂zl
= −

(
Fσ(τk+1) − Fσ(τk )

) dt

dzl
+ ∂x (k)

∂zl
. (18)

From the continuity of Fσ , we have

∂x (k+1)

∂zl
= ∂x (k)

∂zl
. (19)

It means that the sensitivity function ∂x (k)

∂zl
exists and is continuous. Then, we calculate

the partial derivative of the Eq. (18) with respect to z as follows.

∂2x (k+1)

∂zl∂zs
= −

(
∂Fσ(τk+1)

∂zs
− ∂Fσ(τk )

∂zs

)
dt

dzl

−
(
Fσ(τk+1) − Fσ(τk )

) d2t

dzldzs
+ ∂2x (k)

∂zl∂zs
. (20)

Since Fσ is continuous, Eq. (20) is simplified into

∂2x (k+1)

∂zl∂zs
= −

(
∂Fσ(τk+1)

∂zs
− ∂Fσ(τk)

∂zs

)
dt

dzl
+ ∂2x (k)

∂zl∂zs
. (21)

Substituting Eq. (7) into Eq. (37) in [17], we can readily get Eq. (15). In addition, Eq.
(11) and Eq. (12) can be easily obtained due to the independence of x0 with respect
to z. ��

For given x0 ∈ Wad and any (D,Cs0) ∈ Dc, our purpose is to find an optimal value
(D∗,C∗

s0) ∈ Dc so that we can obtain a higher product concentration of 1,3-PD at the
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terminal time subject to the corresponding constraint conditions. On the basis of the
definitions in Eqs. (4)–(6), we establish the following optimal control model.

OCM : min J (D,Cs0, u) = −x3(T ; x0, D,Cs0, u)

s. t.
∂xi (T ; x0, D,Cs0, u)

∂u j
≤ ε, i ∈ I8, j ∈ I15,

(D,Cs0, u) ∈ Ω,

where ε is a given sufficiently small constant.
For the optimization problem OCM, we can obtain the following result.

Theorem 2 The problem OCM has at least one optimal solution for given x0 ∈ Wad,
i.e., there exist an optimal solution (D∗,C∗

s0) ∈ Dc and an appropriate parameter
ū ∈ Uad, such that

J (D∗,C∗
s0, ū) ≤ J (D,Cs0, u), ∀(D,Cs0) ∈ Dc, u ∈ Uad .

Proof It is clear that J (D,Cs0, u) is continuous with respect to (D,Cs0, u). From
the Property 5, the sets Dc, Uad and Ω are compact. Thus, there exist an optimal
solution (D∗,C∗

s0) ∈ Dc and an appropriate parameter ū ∈ Uad satisfying constraint
conditions such that the conclusion of theorem holds. ��

5 Optimization algorithm

The purpose of this section is to solve the problem OCM by SQP algorithm [19]. For
the application of the algorithm,we need to provide the necessary gradient information
of performance index and constraint conditions.

From the definition of the set Λ in Eq. (5), for ∀t ∈ [0, T ], z ∈ Dc ×Uad , i ∈ I8,
the state variable x satisfies the following constraint.

xi∗ ≤ xi (t; z) ≤ x∗
i . (22)

Let

gi (x(t; z)) = xi (t; z) − xi∗, t ∈ [0, T ]. (23)

gi+8(x(t; z)) = x∗
i − xi (t; z), i = 1, 2, . . . , 8. (24)

Then the Eq. (22) is equivalent to

G(z) =
16∑

i=1

∫ T

0
min{gi (x(t; z)), 0}dt = 0. (25)
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However, it should be noted that the equality constraint (25) is non-smooth. To
handle the non-smooth equality constraint (25), we define

G̃θ (z) =
16∑

i=1

∫ T

0
g̃i,θ (x(t; z))dt = 0, (26)

where

g̃i,θ (x(t; z)) =
⎧
⎨

⎩

gi (x(t; z)), gi (x(t; z)) < −θ

−(gi (x(t; z)) − θ)2/4θ, −θ ≤ gi (x(t; z)) ≤ θ

0, gi (x(t; z)) > θ

and θ is a parameter of approximation quality satisfied θ > 0.
Therefore, the problem OCM can be restated as follows.

min J (z) = −x3(T ; x0, z)
s. t. Wi j (z) = ε − ∂xi (T ; x0, z)

∂u j
≥ 0, i ∈ I8, j ∈ I15,

G̃θ (z) = 0. (27)

Define the following Lagrange function as

L(z, λ, μ) = J (z) −
∑

i, j

λi jWi j (z) − μG̃θ (z),

where λi j (i ∈ I8, j ∈ I15) and μ are Lagrange multipliers. Then we will structure a
quadratic programming subproblem QP using linear approximation method [20].

min QP(d) = [∇ J (z(r))]�d + 1

2
d�H (r)d

s.t. Wi j (z
(r)) + [∇Wi j (z

(r))]�d ≥ 0,

G̃θ (z
(r)) + [∇G̃θ (z

(r))]�d = 0. (28)

If d(r) = z(r+1) − z(r) is an optimal solution of the problem QP, d(r) is a search
direction of the problem OCM. [∇ J (z(r))]�, [∇Wi j (z(r))]� and [∇G̃θ (z(r))]� are
the first-order gradients of performance index and constraint conditions, respectively.
H (r) is the second-order Hessian Matrix of Lagrange function L with respect to z(r).
All of them can be formulated as follows.

∂ J (z)

∂zl
= ∂(−x3(T ; x0, z))

∂zl
, l ∈ I17, (29)

∂Wi j (z)

∂zl
= − ∂

∂zl

(
∂xi (T ; x0, z)

∂u j

)

, i ∈ I8, j ∈ I15, (30)
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∂G̃θ (z)

∂zl
=

N∑

k=0

16∑

i=1

{ ∫ τk+1

τk

∂ g̃i,θ (x (k)(t; z))
∂x (k)

∂x (k)(t; z)
∂zl

dt

+ g̃i,θ (x
(k)(τk+1(z); z))∂τk+1

∂zl
− g̃i,θ (x

(k)(τk(z); z))∂τk

∂zl

}

, (31)

H (r) = ∇2
z L(z, λ, μ)

= ∇2 J (z(r)) −
∑

i, j

λ
(r)
i j ∇2Wi j (z

(r)) − μ(r)∇2G̃θ (z
(r)). (32)

Since H (r) includes the second-order gradient information of performance index
and constraint conditions, it would be hard to calculate directly. For overcome the
difficulty, our method is to construct a positive definite matrix A(r) instead of H (r)

with constantly improving until A(r) approaches to H (r). A(r) can be formed by BFGS
method [21] as follows.

A(r+1) = A(r) − A(r)δδ�A(r)

δ�A(r)δ
+ ηδ�

δ�η
, (33)

where

δ = z(r+1) − z(r),

η = ∇z L(z(r+1)) − ∇z L(z(r)),

and A(0) is a unit matrix.
With the SQP method, we construct an algorithm, which is given below.

Step 1 Give initial values x0, σ 0, z(0), A(0), ε = 10−2, θ = 10−2, ζ = 10−3, and set
r = 0.

Step 2 Calculate the solution of Eq. (2). Compute ∂x
∂zl

and ∂2x
∂zl∂zs

based on the Eqs.
(9)–(14) by improved Euler method. Substitute the results into Eqs. (29)-(31)
to calculate the first-order gradient information of performance index and con-
straint conditions, where the integral of Eq. (31) is solved by Newton–Cotes
method. After that, calculate the values of performance index and constraint
functions, and structure the quadratic programming subproblem (28).

Step 3 Solve the quadratic programming subproblem (28) byActive Setmethod, then
we obtain Lagrange multiplier vectors λ(r+1), μ(r+1) and search direction
d(r).

Table 3 The values of the
identified parameters

u1 u2 u3 u4 u5 u6 u7 u8

100 20 5.586 40 0.5 5000 1 300

u9 u10 u11 u12 u13 u14 u15

1.12 18.22 0.01 3.95 20 1 58.55
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Fig. 1 The computational
values of state trajectories. a The
concentration of biomass. b The
concentration of extracellular
glycerol. c The concentration of
extracellular 1,3-PD. d The
concentration of acetic acid. e
The concentration of ethanol. f
The concentration of
intracellular glycerol. g The
concentration of intracellular
3-HPA. h The concentration of
intracellular 1,3-PD
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Fig. 1 continued
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Fig. 1 continued

Step 4 Let z(r+1) = z(r) +α(r)d(r), where α(r) is the step-size chosen by Armijo line
search.

Step 5 If ‖ ∇z L(z(r+1), λ(r+1), μ(r+1)) ‖≤ ζ , substitute z(r+1) into the system (2).
Recompute the solution of Eq. (2) by improved Euler method, and substitute
the result into Eq. (27) to compute the value of performance index. Then
output the optimal value and stop. Otherwise, goto step 6.

Step 6 Modify the approximate Hessian Matrix A(r) with Eq. (33), then we obtain
A(r+1). Let r := r + 1, goto step 2.

6 Numerical results

The whole continuous fermentation was implemented with enough substrate.
The total fermentation time is taken as 40h. We take the initial state x0 =
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(0.155, 434.783, 0, 0, 0, 0, 0, 0)� and σ 0 = 1. And the value of z(0) is taken from
literature [12]. Then we use the proposed algorithm to solve the problem OCM, in
which the step size of the Euler method is 1/3600 h. All the computations are per-
formed in Visual C++ 2010. In order to approximate the factual experiments, we have
proceeded 10 times calculation for the whole fermentation procedure which spent
8.65h.

The best result is selected from the ten computational results. The optimal dilution
rate and feeding glycerol concentration are 0.08/h and 1805.38 mmol/L, respectively,
and the values of the identified parameters are listed in Table 3. The switching instants
and the mode sequence are (2.1, 2.4, 3.3, 4, 4.5, 11.5, 14.4, 17, 18.5, 20.7) (unit:
h) and (1, 3, 11, 15, 14, 6, 14, 6, 14, 6, 7), respectively. Under the gained optimal
dilution rate, feeding glycerol concentration, switching instants and mode sequence,
the concentration of 1,3-PD at the terminal time is 906.469mmol/L, which is increased
obviously in comparisonwith 710.1mmol/L presented in [15].Moreover, it is superior
to the optimal experimental value 638.16 mmol/L with the dilution rate 0.1h and the
feeding glycerol concentration 1568 mmol/L. The trajectories of concentration with
all reactants and products are shown in Fig. 1a–h.

7 Conclusions

In this work, we proposed a novel nonlinear switched system model to describe the
microbial continuous culture of glycerol bio-dissimilation to 1,3-PD. Then we dis-
cussed some properties of the switched system and sensitivity functions, respectively.
On that basis, we obtained gradient formulas based on the sensitivity functions of the
state variables with respect to parameters. In order to achieve the higher products, we
formulated an optimal control model, which is constrained by the sensitivity func-
tion of parameters. By employing the proposed algorithm, we obtained the optimal
input strategies, which not only play an important role in improving the production of
1,3-PD but also provided a reference for biochemical experiments.
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