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Abstract Recently, contour integral-based methods have been actively studied for
solving interior eigenvalue problems that find all eigenvalues located in a certain region
and their corresponding eigenvectors. In this paper, we reconsider the algorithms of
the five typical contour integral-based eigensolvers from the viewpoint of projection
methods, and then map the relationships among these methods. From the analysis, we
conclude that all contour integral-based eigensolvers can be regarded as projection
methods and can be categorized based on their subspace used, the type of projection
and the problem to which they are applied implicitly.
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1 Introduction

In this paper, we consider computing all eigenvalues located in a certain region of a
generalized eigenvalue problem and their corresponding eigenvectors:

Axi = λi Bxi , xi ∈ C
n \ {0}, λi ∈ Ω ⊂ C, (1)

where A, B ∈ C
n×n and zB − A are assumed as nonsingular for any z on the boundary

Γ of the region Ω . Let m be the number of target eigenvalues λi ∈ Ω (counting
multiplicity) and XΩ = [xi |λi ∈ Ω] be a matrix whose columns are the target
eigenvectors.

In 2003, Sakurai and Sugiura proposed a powerful algorithm for solving the inte-
rior eigenvalue problem (1) [19]. Their projection-type method uses certain complex
moment matrices constructed by a contour integral. The basic concept is to introduce
the rational function

r(z) := ṽH(zB − A)−1Bv, v, ṽ ∈ C
n \ {0}, (2)

whose poles are the eigenvalues of the generalized eigenvalue problem: Axi = λi Bxi ,
and then compute all poles located in Ω by Kravanja’s algorithm [16], which is based
on Cauchy’s integral formula.

Kravanja’s algorithm can be expressed as follows. Let Γ be a positively oriented
Jordan curve, i.e., the boundary of Ω . We define complex moments μk as

μk := 1

2π i

∮

Γ

zkr(z)dz, k = 0, 1, . . . , 2M − 1.

Then, all poles located in Ω of a meromorphic function r(z) are the eigenvalues of
the generalized eigenvalue problem

H<
M yi = θi HM yi , (3)

where HM , H<
M are Hankel matrices:

HM :=

⎛

⎜

⎜

⎜

⎝

μ0 μ1 · · · μM−1
μ1 μ2 · · · μM
...

...
. . .

...

μM−1 μM · · · μ2M−2

⎞

⎟

⎟

⎟

⎠

, H<
M :=

⎛

⎜

⎜

⎜

⎝

μ1 μ2 · · · μM
μ2 μ3 · · · μM+1
...

...
. . .

...

μM μM+1 · · · μ2M−1

⎞

⎟

⎟

⎟

⎠

.

Applying Kravanja’s algorithm to the rational function (2), the generalized eigenvalue
problem (1) reduces to the generalized eigenvalue problem with the Hankel matrices
(3). This algorithm is called the SS–Hankel method.
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A relationship among contour integral-based eigensolvers 723

The SS–Hankel method has since been developed by several researchers. The
SS–RR method based on the Rayleigh–Ritz procedure increases the accuracy of the
eigenpairs [20]. Block variants of the SS–Hankel and SS–RR methods (known as the
block SS–Hankel and the block SS–RR methods, respectively) improve stability of
the algorithms [10–12]. The block SS–Arnoldi method based on the block Arnoldi
method has also been proposed [13]. Different from these methods, Polizzi proposed
the FEASTeigensolver forHermitian generalized eigenvalue problems,which is based
on an accelerated subspace iteration with the Rayleigh–Ritz procedure [17]. Their
original 2009 version has been further developed [9,23,24].

Meanwhile, the contour integral-based methods have been extended to nonlinear
eigenvalue problems. Nonlinear eigensolvers are based on the block SS–Hankel [1,2]
and the block SS–RR [25] methods and a different type of contour integral-based
nonlinear eigensolver was proposed by Beyn [6], which we call the Beyn method.
More recently, an improvement of the Beyn method was proposed based on using the
canonical polyadic decomposition [5].

ForHermitian case, i.e., A is aHermitian and B is aHermitian positive definite, there
are several relatedworks based onChebyshev polynomial filtering [7,26] and based on
rational interpolation [4]. Specifically, Austin et al. analyzed that the contour integral-
based eigensolvers have strong relationship with rational interpolation established in
[3], and proposed a projection type method only with real poles [4].

In this paper, we reconsider the algorithms of typical contour integral-based eigen-
solvers of (1), namely, the block SS–Hankel method [10,11], the block SS–RRmethod
[12], the FEAST eigensolver [17], the block SS–Arnoldi method [13] and the Beyn
method [6] as projection methods. We then analyze and map the relationships among
these methods. From the map of the relationships, we also provide error analyses of
each method. Here, we note that our analyses cover the case of Jordan blocks of the
size larger than one and infinite eigenvalues (or even both).

The remainder of this paper is organized as follows. Sections 2 and 3 briefly describe
the algorithms of the contour integral-based eigensolvers and analyze the properties
of their typical matrices, respectively. The relationships among these methods are
analyzed andmapped in Sect. 4. Error analyses of themethods are presented in Sect. 5,
and numerical experiments are conducted in Sect. 6. The paper concludes with Sect. 7.

Throughout, the following notations are used. Let V = [v1, v2, . . . , vL ] ∈ C
n×L

and define the range space of the matrix V by R(V ) := span{v1, v2, . . . , vL}. In
addition, for A ∈ C

n×n,K�
k (A, V ) and B�

k (A, V ) are the block Krylov subspaces:

K�
k (A, V ) :=R([V, AV, A2V, . . . , Ak−1V ]),

B�
k (A, V ) :=

{

k−1
∑

i=0

Ai V αi

∣

∣

∣αi ∈ C
L×L

}

.

We also define a block diagonal matrix with block elements Di ∈ C
ni ×ni constructed

as follows:
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724 A. Imakura et al.

d
⊕

i=1

Di = D1 ⊕ D2 ⊕ · · · ⊕ Dd =

⎛

⎜

⎜

⎜

⎝

D1
D2

. . .

Dd

⎞

⎟

⎟

⎟

⎠

∈ C
n×n,

where n = ∑d
i=1 ni .

2 Contour integral-based eigensolvers

The contour integral-based eigensolvers reduce the target eigenvalue problem (1) to a
different type of small eigenvalue problem. In this section,we first describe the reduced
eigenvalue problems and then introduce the algorithms of the contour integral-based
eigensolvers.

2.1 Theoretical preparation

As a generalization of the Jordan canonical form to the matrix pencil, we have the
following theorem.

Theorem 1 (Weierstrass canonical form) Let zB − A be regular. Then, there exist
nonsingular matrices ˜PH, Q such that

˜PH(zB − A)Q =
r
⊕

i=1

(

z Ini − Jni (λi )
)⊕

d
⊕

i=r+1

(

z Jni (0) − Ini

)

,

where Jni (λi ) is the Jordan block with λi ,

Jni (λ) =

⎛

⎜

⎜

⎜

⎜

⎝

λi 1

λi
. . .

. . . 1
λi

⎞

⎟

⎟

⎟

⎟

⎠

∈ C
ni ×ni ,

and z Jni (0) − Ini is the Jordan block with λ = ∞,

z Jni (0) − Ini =

⎛

⎜

⎜

⎜

⎜

⎝

−1 z

−1
. . .

. . . z
−1

⎞

⎟

⎟

⎟

⎟

⎠

∈ C
ni ×ni .

The generalized eigenvalue problem Axi = λi Bxi has r finite eigenvalues
λi , i = 1, 2, . . . , r with multiplicity ni and d − r infinite eigenvalues λi , i =
r + 1, r + 2, . . . , d with multiplicity ni . Let ˜Pi and Qi be submatrices of ˜P and Q,
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A relationship among contour integral-based eigensolvers 725

respectively, corresponding to the i-th Jordan block, i.e., ˜P = [˜P1, ˜P2, . . . , ˜Pd ], Q =
[Q1, Q2, . . . , Qd ]. Then, the columns of ˜Pi and Qi are the left/right generalized
eigenvectors, whose 1st columns are the corresponding left/right eigenvectors.

Let L , M ∈ N be input parameters and V ∈ C
n×L be an input matrix. We also

define S ∈ C
n×L M and Sk ∈ C

n×L as follows:

S := [S0, S1, . . . , SM−1], Sk := 1

2π i

∮

Γ

zk(zB − A)−1BV dz. (4)

From Theorem 1, we have the following theorem [10,11, Theorem 4].

Theorem 2 Let ˜QH = Q−1 and ˜Qi be a submatrix of ˜Q corresponding to the i-th
Jordan block, i.e., ˜Q = [˜Q1, ˜Q2, . . . , ˜Qd ]. Then, we have

Sk = QΩ J k
Ω
˜QH

Ω V = (QΩ JΩ
˜QH

Ω)k(QΩ
˜QH

Ω V ) = Ck
Ω S0, CΩ = QΩ JΩ

˜QH
Ω,

where

QΩ = [Qi |λi ∈ Ω], ˜QΩ = [˜Qi |λi ∈ Ω], JΩ =
⊕

λi ∈Ω

Jni (λi ).

Using Theorem 2, we also have the following theorem.

Theorem 3 Let m be the number of target eigenvalues (counting multiplicity) and
XΩ := [xi |λi ∈ Ω] be a matrix whose columns are the target eigenvectors. Then, we
have

R(XΩ) ⊂ R(QΩ) = R(S),

if and only if rank(S) = m.

Proof From Theorem 2 and the definition of S, we have

S = [S0, S1, . . . , SM−1] = QΩ Z

where

Z :=
[

(QH
Ω V ), JΩ(QH

Ω V ), . . . , J M−1
Ω (QH

Ω V )
]

.

Since QΩ is full rank, rank(S) = rank(Z) and R(QΩ) = R(S) is satisfied if and
only if rank(S) = rank(Z) = m. From the definitions of XΩ and QΩ , we have
R(XΩ) ⊂ R(QΩ). Therefore, Theorem 3 is proven.

Here, we note that rank(Z) = m is not always satisfied for m ≤ L M even if QH
Ω V

is full rank [8]. ��
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726 A. Imakura et al.

2.2 Introduction to contour integral-based eigensolvers

The contour integral-based eigensolvers are mathematically designed based on Theo-
rems 2 and 3, then the algorithms are derived from approximating the contour integral
(4) using some numerical integration rule:

̂S := [̂S0,̂S1, . . . ,̂SM−1], ̂Sk :=
N
∑

j=1

ω j z
k
j (z j B − A)−1BV, (5)

where z j is a quadrature point and ω j is its corresponding weight.

2.2.1 The block SS–Hankel method

The block SS–Hankel method [10,11] is a block variant of the SS–Hankel method.
Define the block complex moments μ�

k ∈ C
L×L by

μ�
k := 1

2π i

∮

Γ

zk
˜VH(zB − A)−1BV dz = ˜VHSk,

where ˜V ∈ C
n×L , and the block Hankel matrices HM , H<

M ∈ C
L M×L M are given by

H�
M :=

⎛

⎜

⎜

⎜

⎜

⎝

μ�
0 μ�

1 · · · μ�
M−1

μ�
1 μ�

2 · · · μ�
M

...
...

. . .
...

μ�
M−1 μ�

M · · · μ�
2M−2

⎞

⎟

⎟

⎟

⎟

⎠

, H�<
M :=

⎛

⎜

⎜

⎜

⎜

⎝

μ�
1 μ�

2 · · · μ�
M

μ�
2 μ�

3 · · · μ�
M+1

...
...

. . .
...

μ�
M μ�

M+1 · · · μ�
2M−1

⎞

⎟

⎟

⎟

⎟

⎠

.

We then obtain the following theorem [10,11, Theorem 7].

Theorem 4 If rank(S) = m, then the nonsingular part of the matrix pencil zH�
M −

H�<
M is equivalent to z I − JΩ .

According to Theorem 4, the target eigenpairs (λi , xi ), λi ∈ Ω can be obtained
through the generalized eigenvalue problem

H�<
M yi = θi H�

M yi . (6)

In practice,we approximate the block complexmomentsμ�
k ∈ C

L×L by the numerical
integral (5) such that

μ̂�
k :=

N
∑

j=1

ω j z
k
j
˜VH(z j B − A)−1BV = ˜VH

̂Sk,

and set the block Hankel matrices ̂H�
M , ̂H�<

M ∈ C
L M×L M as follows:
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A relationship among contour integral-based eigensolvers 727

Algorithm 1 The block SS–Hankel method
Input: L , M, N ∈ N, V, ˜V ∈ C

n×L , (z j , ω j ) for j = 1, 2, . . . , N
Output: Approximate eigenpairs (˜λi , x̃i ) for i = 1, 2, . . . , m̂
1: Compute ̂Sk = ∑N

j=1 ω j zk
j (z j B − A)−1BV and μ̂�

k = ˜VH
̂Sk

2: Set ̂S = [̂S0,̂S1, . . . ,̂SM−1] and block Hankel matrices ̂H�
M , ̂H�<

M by (7)

3: Compute SVD of ̂H�
M : ̂H�

M = [UH1, UH2][ΣH1, O; O, ΣH2][WH1, WH2]H
4: Compute eigenpairs (θi , t i ) of UH

H1
̂H�<

M WH
H1Σ

−1
H1 t i = θi t i ,

and compute (˜λi , x̃i ) = (θi ,̂SWH1Σ
−1
H1 t i ) for i = 1, 2, . . . , m̂

̂H�
M :=

⎛

⎜

⎜

⎜

⎜

⎝

μ̂�
0 μ̂�

1 · · · μ̂�
M−1

μ̂�
1 μ̂�

2 · · · μ̂�
M

...
...

. . .
...

μ̂�
M−1 μ̂�

M · · · μ̂�
2M−2

⎞

⎟

⎟

⎟

⎟

⎠

, ̂H�<
M :=

⎛

⎜

⎜

⎜

⎜

⎝

μ̂�
1 μ̂�

2 · · · μ̂�
M

μ̂�
2 μ̂�

3 · · · μ̂�
M+1

...
...

. . .
...

μ̂�
M μ̂�

M+1 · · · μ̂�
2M−1

⎞

⎟

⎟

⎟

⎟

⎠

.

(7)

To reduce the computational costs and improve the numerical stability, we also intro-
duce a low-rank approximation with a numerical rank m̂ of ̂H�

M based on singular
value decomposition:

̂H�
M = [UH1, UH2]

[

ΣH1 O
O ΣH2

] [

WH
H1

WH
H2

]

≈ UH1ΣH1WH
H1.

In this way, the target eigenvalue problem (1) reduces to an m̂ dimensional standard
eigenvalue problem, i.e.,

UH
H1
̂H�<

M WH1Σ
−1
H1 t i = θi t i .

The approximate eigenpairs are obtained as (˜λi , x̃i ) = (θi ,̂SWH1Σ
−1
H1 t i ). The algo-

rithm of the block SS–Hankel method is shown in Algorithm 1.

2.2.2 The block SS–RR method

Theorem 3 indicates that the target eigenpairs can be computed by the Rayleigh–Ritz
procedure over the subspace R(S), i.e.,

SH AS t i = θi SHBS t i .

The above forms the basis of the block SS–RR method [12]. In practice, the
Rayleigh–Ritz procedure uses the approximated subspace R(̂S) ≈ R(S) and a low-

123



728 A. Imakura et al.

Algorithm 2 The block SS–RR method
Input: L , M, N ∈ N, V ∈ C

n×L , (z j , ω j ) for j = 1, 2, . . . , N
Output: Approximate eigenpairs (˜λi , x̃i ) for i = 1, 2, . . . , m̂
1: Compute ̂Sk = ∑N

j=1 ω j zk
j (z j B − A)−1BV , and set ̂S = [̂S0,̂S1, . . . ,̂SM−1]

2: Compute SVD of ̂S: ̂S = [U1, U2][Σ1, O; O, Σ2][W1, W2]H
3: Compute eigenpairs (θi , t i ) of UH

1 AU1 t i = θi U
H
1 BU1 t i ,

and compute (˜λi , x̃i ) = (θi , U1 t i ) for i = 1, 2, . . . , m̂

Algorithm 3 The accelerated subspace iteration with the Rayleigh–Ritz procedure

Input: L ∈ N, V0 ∈ C
n×L

Output: Approximate eigenpairs (˜λi , x̃i ) for i = 1, 2, . . . , L
1: For k = 1, 2, . . . , until convergence Do:
2: Approximate subspace projection: Qk = ρ(A, B) · Vk−1

3: Compute eigenpairs (θ
(k)
i , t(k)

i ) of QH
k AQk t i = θi QH

k B Qk t i ,

and compute (˜λ
(k)
i , x̃(k)

i ) = (θ
(k)
i , Qk t

(k)
i ) for i = 1, 2, . . . , L

4: Set Vk = [̃x(k)
1 , x̃(k)

2 , . . . , x̃(k)
L ]

5: End For

rank approximation of ̂S:

̂S = [U1, U2]
[

Σ1 O
O Σ2

] [

WH
1

WH
2

]

≈ U1Σ1WH
1 .

In this case, the reduced problem is given by

UH
1 AU1 t i = θiU

H
1 BU1 t i .

The approximate eigenpairs are obtained as (˜λi , x̃i ) = (θi , U1 t i ). The algorithm of
the block SS–RR method is shown in Algorithm 2.

2.2.3 The FEAST eigensolver

The algorithm of the accelerated subspace iteration with the Rayleigh–Ritz procedure
for solving Hermitian generalized eigenvalue problems is given in Algorithm 3. Here,
ρ(A, B) is called an accelerator. When ρ(A, B) = B−1A, Algorithm 3 becomes
the standard subspace iteration with the Rayleigh–Ritz procedure. It computes the L
largest-magnitude eigenvalues and their corresponding eigenvectors.

The FEAST eigensolver [17], proposed for Hermitian generalized eigenvalue prob-
lems, is based on an accelerated subspace iteration with the Rayleigh–Ritz procedure.
In the FEAST eigensolver, the accelerator ρ(A, B) is set as

ρ(A, B) =
N
∑

j=1

ω j (z j B − A)−1B ≈ 1

2π i

∮

Γ

(zB − A)−1Bdz,
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A relationship among contour integral-based eigensolvers 729

Algorithm 4 The FEAST eigensolver

Input: L , N ∈ N, V0 ∈ C
n×L , (z j , ω j ) for j = 1, 2, . . . , N

Output: Approximate eigenpairs (˜λi , x̃i ) for i = 1, 2, . . . , L
1: For k = 1, 2, . . . , until convergence Do:

2: Compute ̂S(k)
0 = ∑N

j=1 ω j (z j B − A)−1BVk−1

3: Compute eigenpairs (θ
(k)
i , t(k)

i ) of ̂S(k)H
0 ÂS(k)

0 t i = θîS
(k)H
0 B̂S(k)

0 t i ,

and compute (˜λ
(k)
i , x̃(k)

i ) = (θ
(k)
i ,̂S(k)

0 t(k)
i ) for i = 1, 2, . . . , L

4: Set Vk = [̃x(k)
1 , x̃(k)

2 , . . . , x̃(k)
L ]

5: End For

based on Theorem 3. Therefore, the FEAST eigensolver computes the eigenvalues
located in Ω and their corresponding eigenvectors. For numerical integration, the
FEAST eigensolver uses the Gauß–Legendre quadrature or the Zolotarev quadrature;
see [9,17].

In each iteration of the FEAST eigensolver, the target eigenvalue problem (1) is
reduced to a small eigenvalue problem, i.e.,

̂SH
0 ÂS0 t i = θîS

H
0 B̂S0 t i ,

based on the Rayleigh–Ritz procedure. The approximate eigenpairs are obtained as
(˜λi , x̃i ) = (θi ,̂S0 t i ). The algorithm of the FEAST eigensolver is shown in Algo-
rithm 4.

2.2.4 The block SS–Arnoldi method

FromTheorems 2 and 3 and the definition ofCΩ := QΩ JΩ
˜QH

Ω , we have the following
three theorems [13].

Theorem 5 The subspace R(S) can be expressed as the block Krylov subspace asso-
ciated with the matrix CΩ :

R(S) = K�
M (CΩ, S0).

Theorem 6 Let m be the number of target eigenvalues (counting multiplicity). Then, if
rank(S) = m, the target eigenvalue problem (1) is equivalent to a standard eigenvalue
problem of the form

CΩ xi = λi xi , xi ∈ R(S) = K�
M (CΩ, S0). (8)

Theorem 7 Any Ek ∈ B�
k (CΩ, S0) has the following formula:

Ek = 1

2π i

∮

Γ

k−1
∑

i=0

zi (zB − A)−1BV αidz, αi ∈ C
L×L .
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730 A. Imakura et al.

Algorithm 5 The block SS–Arnoldi method
Input: L , M, N ∈ N, V ∈ C

n×L , (z j , ω j ) for j = 1, 2, . . . , N
Output: Approximate eigenpairs (˜λi , x̃i ) for i = 1, 2, . . . , L M
1: Solve Y j = (z j B − A)−1BV for j = 1, 2, . . . , N

2: W0 = ∑N
j=1 ω j Y j

3: Compute QR decomposition of W0: W0 = W1R
4: Set α1, j = R−1 for j = 1, 2, . . . , N
5: For k = 1, 2, . . . , M Do:
6: α̃k, j = z j αk, j for j = 1, 2, . . . , N

7: ˜Wk = ∑N
j=1 ω j Y j α̃k, j

8: For i = 1, 2, . . . , k Do:
9: Hi,k = WH

i
˜Wk

10: α̃k, j = α̃k, j − αi, j Hi,k for j = 1, 2, . . . , N
11: ˜Wk = ˜Wk − Wi Hi,k
12: End For
13: Compute QR decomposition of ˜Wk : ˜Wk = Wk+1Hk+1,k

14: αk+1, j = α̃k, j H−1
k+1,k for j = 1, 2, . . . , N

15: End For
16: Set W = [W1, W2, . . . , WM ] and HM = {Hi, j }1≤i, j≤M
17: Compute eigenpairs (θi , t i ) of HM t i = θi t i ,

and compute (˜λi , x̃i ) = (θi , W t i ) for i = 1, 2, . . . , L M

Then, the matrix multiplication of CΩ by Ek becomes

CΩ Ek = 1

2π i

∮

Γ

z
k−1
∑

i=0

zi (zB − A)−1BV αidz.

From Theorems 5 and 6, we observe that the target eigenpairs (λi , xi ), λi ∈ Ω can be
computed by the block Arnoldi method with the block Krylov subspace K�

M (CΩ, S0)
for solving the standard eigenvalue problem (8). Here, we note that the matrix CΩ is
not explicitly constructed. Instead, the matrix multiplication of CΩ can be computed
via the contour integral using Theorem 7. By approximating the contour integral by a
numerical integration rule, the algorithm of the block SS–Arnoldi method is derived
(Algorithm 5).

A low-rank approximation technique to reduce the computational costs and improve
stability is not applied in the current version of the block SS–Arnoldi method [13].
Improvements of the block SS–Arnoldi method has been developed in [14].

2.2.5 The Beyn method

The Beyn method is a nonlinear eigensolver based on the contour integral [6]. In this
subsection, we consider the algorithm of the Beyn method for solving the generalized
eigenvalue problem (1).

Let the singular value decomposition of S0 be S0 = U0Σ0WH
0 , where U0 ∈

C
n×m,Σ0 = diag(σ1, σ2, . . . , σm), W0 ∈ C

L×m and rank(S0) = m. Then, from
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A relationship among contour integral-based eigensolvers 731

Algorithm 6 The Beyn method

Input: L , N ∈ N, V ∈ C
n×L , (z j , ω j ) for j = 1, 2, . . . , N

Output: Approximate eigenpairs (˜λi , x̃i ) for i = 1, 2, . . . , m̂
1: Compute ̂S0,̂S1, where ̂Sk = ∑N

j=1 ω j zk
j (z j B − A)−1BV

2: Compute SVD of ̂S0: ̂S0 = [U0,1, U0,2][Σ0,1, O; O, Σ0,2][W0,1, W0,2]H
3: Compute eigenpairs (θi , t i ) of UH

0,1
̂S1W0,1Σ

−1
0,1 t i = θi t i ,

and compute (˜λi , x̃i ) = (θi , U0,1 t i ) for i = 1, 2, . . . , m̂

Theorem 2, we have

S0 = QΩ
˜QH

Ω V = U0Σ0WH
0 , S1 = QΩ JΩ

˜QH
Ω V . (9)

Since R(QΩ) = R(U0), we obtain

QΩ = U0Z , Z = UH
0 QΩ ∈ C

m×m, (10)

where Z is nonsingular. With (9) and (10), we find U0Z ˜QH
Ω V = U0Σ0WH

0 and thus
˜QH

Ω V = Z−1Σ0WH
0 . This leads to

UH
0 S1 = Z JΩ

˜QH
Ω V = Z JΩ Z−1Σ0WH

0 .

Therefore, we have

Z JΩ Z−1 = UH
0 S1W0Σ

−1
0 .

This means that the target eigenpairs (λi , xi ), λi ∈ Ω are computed by solving

UH
0 S1W0Σ

−1
0 t i = θi t i ,

where (λi , xi ) = (θi , U0 t i ) [6].
In practice, we compute a low-rank approximation of ̂S0 by the singular value

decomposition, i.e.,

̂S0 = [U0,1, U0,2]
[

Σ0,1 O
O Σ0,2

] [

WH
0,1

WH
0,2

]

≈ U0,1Σ0,1WH
0,1, (11)

which reduces the target eigenvalue problem (1) to the standard eigenvalue problem

UH
0,1
̂S1W0,1Σ

−1
0,1 t i = θi t i . (12)

The approximate eigenpairs are obtained as (˜λi , x̃i ) = (θi , U0,1 t i ). The algorithm
of the Beyn method for solving the generalized eigenvalue problem (1) is shown in
Algorithm 6.
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3 Theoretical preliminaries for map building

As shown in Sect. 2, contour integral-based eigensolvers are based on the property of
the matrices S and Sk (Theorems 2 and 3). The practical algorithms are then derived
by a numerical integral approximation. As theoretical preliminaries for map building
in Sect. 4, this section explores the properties of the approximated matriceŝS and̂Sk .
Here, we assume that (z j , ω j ) satisfy the following condition:

N
∑

j=1

ω j z
k
j

{= 0, k = 0, 1, . . . , N − 2

= 0, k = −1

. (13)

If the matrix pencil zB − A is diagonalizable and (z j , ω j ) satisfies condition (13),
we have

̂Sk = Ck
̂S0, C = XrΛr˜X

H
r ,

where Xr = [x1, x2, . . . , xr ] is a matrix whose columns are eigenvectors corre-
sponding to finite eigenvalues, ˜Xr = [̃x1, x̃2, . . . , x̃r ] is a submatrix of ˜X = X−H:
˜XH

r Xr = I , and Λr = diag(λ1, λ2, . . . , λr ); see [15]. In the following analysis, we
introduce a similar relationship in the case that the matrix pencil zB − A is non-
diagonalizable. First, we define an upper triangular Toeplitz matrix as follows.

Definition 1 For a = [a1, a2, . . . , an] ∈ C
1×n , define Tn(a) as an n × n triangular

Toeplitz matrix, i.e.,

Tn(a) :=

⎛

⎜

⎜

⎜

⎝

a1 a2 · · · an

0 a1 · · · an−1
...

. . .
. . .

...

0 · · · 0 a1

⎞

⎟

⎟

⎟

⎠

∈ C
n×n .

Let a = [a1, a2, . . . , an], b = [b1, b2, . . . , bn], c = [c1, c2, . . . , cn] ∈ C
1×n and

α, β ∈ C. Then, we have

αTn(a) + βTn(b) = Tn(αa + βb), (14)

Tn(a)Tn(b) = Tn(c), ci =
i
∑

j=1

a j bi− j+1, i = 1, 2, . . . , n. (15)
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Letting d = [α, β, 0, . . . , 0] ∈ C
1×n , we also have

(Tn(d))k = Tn(d(k)), d(k) =
[(

k

0

)

αkβ0,

(

k

1

)

αk−1β1, . . . ,

(

k

n

)

αk−n+1βn−1
]

,

(16)

(Tn(d))−1 = Tn(d(−1)), d(−1) =
[

1

α
,− β

α2 , . . . ,
(−β)n−1

αn

]

. (17)

Using these relations (14)–(17),we analyze properties of̂S and̂Sk . FromTheorem1,
we have

(zB − A)−1 =Q

[

r
⊕

i=1

(

z Ini − Jni (λi )
)−1 ⊕

d
⊕

i=r+1

(

z Jni (0) − Ini

)−1

]

˜PH,

B =P

[

r
⊕

i=1

Ini ⊕
d
⊕

i=r+1

Jni (0)

]

˜QH,

where P := ˜P−H, ˜QH := Q−1. Therefore, the matrix ̂Sk can be written as

̂Sk =
N
∑

j=1

ω j z
k
j (z j B − A)−1BV

=
N
∑

j=1

ω j z
k
j Q

{

r
⊕

i=1

(

z j Ini − Jni (λi )
)−1

⊕
d
⊕

i=r+1

[

(

z j Jni (0) − Ini

)−1
Jni (0)

]

}

˜QHV

=
⎧

⎨

⎩

r
∑

i=1

Qi

⎡

⎣

N
∑

j=1

ω j z
k
j

(

z j Ini − Jni (λi )
)−1

⎤

⎦ ˜QH
i V

⎫

⎬

⎭

+
⎧

⎨

⎩

d
∑

i=r+1

Qi

⎡

⎣

N
∑

j=1

ω j z
k
j

(

z j Jni (0) − Ini

)−1
Jni (0)

⎤

⎦ ˜QH
i V

⎫

⎬

⎭

, (18)

where Qi and ˜Qi are n × ni submatrices of Q and ˜Q respectively, corresponding to
the i-th Jordan block, i.e., Q = [Q1, Q2, . . . , Qd ], ˜Q = [˜Q1, ˜Q2, . . . , ˜Qd ].

First, we consider the 1st term of ̂Sk (18):

̂S(1)
k :=

r
∑

i=1

Qi

⎡

⎣

N
∑

j=1

ω j z
k
j

(

z j Ini − Jni (λi )
)−1

⎤

⎦ ˜QH
i V .
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From the relation

z j Ini − Jni (λi ) = Tn([z j − λi ,−1, 0, . . . , 0])

and (17), we have

(z j Ini − Jni (λi ))
−1 = Tni

([

1

z j − λi
,

1

(z j − λi )2
, . . . ,

1

(z j − λi )ni

])

.

Thus, defining f k(λi ) ∈ C
1×ni as

f k(λi ) :=
N
∑

j=1

ω j z
k
j

[

1

z j − λi
,

1

(z j − λi )2
, . . . ,

1

(z j − λi )ni

]

, (19)

from (14), we have

N
∑

j=1

ω j z
k
j (z j Ini − Jni (λi ))

−1 = Tni

(

f k(λi )
)

. (20)

Therefore, ̂S(1)
k can be rewritten as

̂S(1)
k =

r
∑

i=1

Qi Tni

(

f k(λi )
)

˜QH
i V . (21)

Here, the following propositions hold.

Proposition 1 Suppose that (ω j , z j ) satisfies condition (13). Then, for any λi 
= 0
and 0 ≤ k ≤ N + p − 2, p ≥ 1, the relation

N
∑

j=1

ω j zk
j

(z j − λi )p
= λk

i

N
∑

j=1

ω j

(z j − λi )p

p−1
∑

q=0

(

k

q

)(

z j − λi

λi

)q

(22)

is satisfied.

Proof Since λi 
= 0, we have

ω j zk
j

(z j − λi )p
= ω j

(z j − λi )p
λk

i

(

z j

λi

)k

= ω j

(z j − λi )p
λk

i

(

1 + z j − λi

λi

)k

. (23)

Here, from the binomial theorem (a + b)k = ∑k
q=0

(k
q

)

ak−qbq , (23) is rewritten as

ω j zk
j

(z j − λi )p
= ω j

(z j − λi )p
λk

i

k
∑

q=0

(

k

q

)(

z j − λi

λi

)q

.
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Therefore, the left-hand side of (22) is

N
∑

j=1

ω j zk
j

(z j − λi )p

=
N
∑

j=1

ω j

(z j − λi )p
λk

i

k
∑

q=0

(

k

q

)(

z j − λi

λi

)q

=
N
∑

j=1

ω j

(z j − λi )p
λk

i

⎡

⎣

p−1
∑

q=0

(

k

q

)(

z j − λi

λi

)q

+
k
∑

q=p

(

k

q

)(

z j − λi

λi

)q
⎤

⎦

=
⎡

⎣λk
i

p−1
∑

q=0

(

k

q

)

λ
−q
i

N
∑

j=1

ω j (z j − λi )
q−p

⎤

⎦

+
⎡

⎣λk
i

k
∑

q=p

(

k

q

)

λ
−q
i

N
∑

j=1

ω j (z j − λi )
q−p

⎤

⎦ . (24)

Because condition (13) is satisfied, we have

N
∑

j=1

ω j (z j − λi )
q−p = 0, q = p, p + 1, . . . , N + p − 2,

thus, for k ≤ N + p − 2, the 2nd term of (24) becomes 0. Therefore, for k =
0, 1, . . . , N + p − 2, we obtain

N
∑

j=1

ω j zk
j

(z j − λi )p
=

N
∑

j=1

ω j

(z j − λi )p
λk

i

p−1
∑

q=0

(

k

q

)(

z j − λi

λi

)q

,

which proves Proposition 1. ��

Proposition 2 Suppose that (ω j , z j ) satisfies condition (13). Then, for any 0 ≤ k ≤
N − 1, the relation

Tni

(

f k(λi )
) = (Jni (λi ))

k Tni

(

f 0(λi )
)

(25)

is satisfied, where f k(λi ) is defined by (19) and 00 = 1.

Proof We first consider the case of λi = 0. From Jni (0) = Tni ([0, 1, 0, . . . , 0]), there
exists a vector t0,k ∈ C

1×ni satisfying

Tni (t0,k) := (Jni (0))
k Tni

(

f 0(0)
)

.
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Then, from (15) and (16), the p-th element (t0,k)p of t0,k can be written as

(t0,k)p =
{

0 (1 ≤ p ≤ k)
∑N

j=1 ω j z
k−p
j (k < p ≤ ni )

.

On the other hand, from the definition (19), the vector f k(0) can be written as

f k(0) =
N
∑

j=1

ω j [zk−1
j , zk−2

j , . . . , zk−ni
j ].

Since the first k elements of f k(0) are 0 from condition (13), we have f k(0) = t0,k .
Therefore, (25) is satisfied for λi = 0.

Next, we consider the case of λi 
= 0. From Jni (λi ) = Tni ([λi , 1, 0, . . . , 0]) and
(16), we have

(Jni (λi ))
k = Tni

([

λk
i ,

(

k

1

)

λk−1
i , . . . ,

(

k

ni

)

λ
k−ni +1
i

])

. (26)

Let tk ∈ C
1×ni be a vector satisfying

Tni (tk) := (Jni (λi ))
k Tni

(

f 0(λi )
)

.

Then, from (15), (26) and the definition of f k(λi ) (19), the p-th element (tk)p of tk
can be written as

(tk)p =
p
∑

q=1

(

k

q − 1

)

λ
k−q+1
i

N
∑

j=1

ω j
1

(z j − λi )p−q+1

= λk
i

N
∑

j=1

ω j

(z j − λi )p

p
∑

q=1

(

k

q − 1

)

(z j − λi )
q−1

λ
q−1
i

= λk
i

N
∑

j=1

ω j

(z j − λi )p

p−1
∑

q=0

(

k

q

)(

z j − λi

λi

)q

.

By Proposition 1, for 0 ≤ k ≤ N + p − 2, we obtain

(tk)p =
N
∑

j=1

ω j zk
j

(z j − λi )p
.

Therefore, for 0 ≤ k ≤ N − 1, we have

tk =
⎡

⎣

N
∑

j=1

ω j zk
j

z j − λi
,

N
∑

j=1

ω j zk
j

(z j − λi )2
, . . . ,

N
∑

j=1

ω j zk
j

(z j − λi )ni

⎤

⎦ = f k(λi ),
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and

Tni

(

f k(λi )
) = Tni (tk) = (Jni (λi ))

k Tni

(

f 0(λi )
)

is satisfied, proving Proposition 2. ��
From Proposition 2, by substituting (25) into (21) and using (20), we obtain

̂S(1)
k =

r
∑

i=1

Qi
(

Jni (λi )
)k

Tni ( f 0(λi ))˜Q
H
i V

=
r
∑

i=1

Qi
(

Jni (λi )
)k

⎡

⎣

N
∑

j=1

ω j
(

z j Ini − Jni (λi )
)−1

⎤

⎦ ˜QH
i V (27)

for any 0 ≤ k ≤ N − 1.
Now consider the 2nd term of ̂Sk (18), i.e.,

̂S(2)
k :=

d
∑

i=r+1

Qi

⎡

⎣

N
∑

j=1

ω j z
k
j

(

z j Jni (0) − Ini

)−1
Jni (0)

⎤

⎦ ˜QH
i V .

From the relations

z j Jni (0) − Ini = Tni ([−1, z j , 0, . . . , 0]),
Jni (0) = Tni ([0, 1, 0, . . . , 0])

and (15) and (17), we have

(

z j Jni (0) − I
)−1

Jni (0) = −Tni ([0, 1, z j , z2j , . . . , zni −2
j ]).

In addition, from (14), we have

N
∑

j=1

ω j z
k
j

(

z j Jni (0) − Ini

)−1
Jni (0)

= −Tni

⎛

⎝

⎡

⎣0,
N
∑

j=1

ω j z
k
j ,

N
∑

j=1

ω j z
k+1
j , . . . ,

N
∑

j=1

ω j z
k+ni −2
j

⎤

⎦

⎞

⎠ .

Here, because (z j , ω j ) satisfies condition (13),

N
∑

j=1

ω j z
k
j

(

z j Jni (0) − Ini

)−1
Jni (0) = O
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is satisfied for any 0 ≤ k ≤ N − ni . Therefore, letting

η := max
r+1≤i≤d

ni ,

the 2nd term of ̂Sk is O for any 0 ≤ k ≤ N − η, i.e.,

̂S(2)
k = O. (28)

From (27) and (28), we have the following theorems.

Theorem 8 Suppose that (ω j , z j ) satisfies condition (13). Then, we have

̂Sk = Ck
̂S0, C = Q1:r J1:r ˜QH

1:r ,

for any 0 ≤ k ≤ N − η, where

Q1:r := [Q1, Q2, . . . , Qr ], ˜Q1:r := [˜Q1, ˜Q2, . . . , ˜Qr ], J1:r :=
r
⊕

i=1

Jni (λi ).

Proof From (27) and (28), we have

̂Sk =
r
∑

i=1

Qi (Jni (λi ))
k

⎡

⎣

N
∑

j=1

ω j
(

z j Ini − Jni (λi )
)−1

⎤

⎦ ˜QH
i V,

for any 0 ≤ k ≤ N − η. Here, we let

Fni := Tni

(

f 0(λi )
) =

N
∑

j=1

ω j
(

z j Ini − Jni (λi )
)−1

,

F1:r :=
r
⊕

i=1

Fni ,

then we obtain

̂Sk =
r
∑

i=1

Qi
(

Jni (λi )
)k

Fni
˜QH

i V

= Q1:r J k
1:r F1:r ˜QH

1:r V

= (Q1:r J1:r ˜QH
1:r )k(Q1:r F1:r ˜QH

1:r V )

= Ck
̂S0.

Therefore, Theorem 8 is proven. ��
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Theorem 9 If (z j , ω j ) satisfies condition (13), then the standard eigenvalue problem

Cxi = λi xi , xi ∈ R(Q1:r ), λi ∈ Ω ⊂ C, (29)

is equivalent to the generalized eigenvalue problem (1).

Proof From the definition of C := Q1:r J1:r ˜QH
1:r , the matrix C has the same right

eigenpairs (λi , xi ), i = 1, 2, . . . , r as the matrix pencil zB − A, i.e., xi ∈ R(Q1:r ).
The other eigenvalues of C are 0, and their corresponding eigenvectors are equivalent
to the right eigenvectors associated with the infinite eigenvalues λi = ∞ of zB − A,
i.e., xi /∈ R(Q1:r ). Therefore, Theorem 9 is proven. ��

4 Map of the relationships among contour integral-based eigensolvers

Section 3 analyzed the properties of the approximated matriceŝS and̂Sk (Theorem 8)
and introduced the standard eigenvalue problem (29) equivalent to the target eigenvalue
problem (1) (Theorem 9).

In this section, based on Theorems 8 and 9, we reconsider the algorithms of the
contour integral-based eigensolvers in terms of projection methods and map the rela-
tionships, focusing on their subspace used, the type of projection and the problem to
which they are applied implicitly.

4.1 Reconsideration of the contour integral-based eigensolvers

As described in Sect. 2, the subspacesR(S) andR(Sk) contain only the target eigen-
vectors xi , λi ∈ Ω based on Cauchy’s integral formula. In contrast, the subspaces
R(̂S) andR(̂Sk) are rich in the component of the target eigenvectors as will be shown
in Sect. 5.

4.1.1 The block SS–RR method and the FEAST eigensolvers

The block SS–RR method and the FEAST eigensolvers are easily reconfigured as
projection methods.

The block SS–RR method solves Axi = λi Bxi through the Rayleigh–Ritz proce-
dure on R(̂S). The block SS–RR method (Algorithm 2) is derived using a low-rank
approximation of the matrix ̂S as shown in Sect. 2.2. Since R(̂S) is rich in the com-
ponent of the target eigenvectors, the target eigenpairs are well approximated by the
Rayleigh–Ritz procedure.

The FEASTeigensolver conducts accelerated subspace iterationwith theRayleigh–
Ritz procedure. In each iteration of the FEAST eigensolver, the Rayleigh–Ritz
procedure solves Axi = λi Bxi on R(̂S0). Like R(̂S) in the block SS–RR method,
R(̂S0) is rich in the component of the target eigenvectors; therefore, the FEAST eigen-
solver also well approximates the target eigenpairs by the Rayleigh–Ritz procedure.
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4.1.2 The block SS–Hankel method, the block SS–Arnoldi method and the Beyn
method

From Theorem 8, we rewrite the block complex moments μ̂�
k of the block SS–Hankel

method as

μ̂�
k = ˜VH

̂Sk = ˜VHĈSk−1 = · · · = ˜VHCk
̂S0.

Thus, the block Hankel matrices ̂H�
M , ̂H�<

M (7) become

̂H�
M =

⎛

⎜

⎜

⎜

⎝

˜VH
̂S0 ˜VH

̂S1 · · · ˜VH
̂SM−1

˜VHĈS0 ˜VHĈS1 · · · ˜VHĈSM−1
...

...
. . .

...
˜VHC M−1

̂S0 ˜VHC M−1
̂S1 · · · ˜VHC M−1

̂SM−1

⎞

⎟

⎟

⎟

⎠

,

̂H�<
M =

⎛

⎜

⎜

⎜

⎝

˜VHĈS0 ˜VHĈS1 · · · ˜VHĈSM−1
˜VHC2

̂S0 ˜VHC2
̂S1 · · · ˜VHC2

̂SM−1
...

...
. . .

...
˜VHC M

̂S0 ˜VHC M
̂S1 · · · ˜VHC M

̂SM−1

⎞

⎟

⎟

⎟

⎠

,

respectively. Here, let

˜S := [˜V , CH
˜V , (CH)2˜V , . . . , (CH)M−1

˜V ].

Then, we have

̂H�
M = ˜SH

̂S, ̂H�<
M = ˜SHĈS.

Therefore, the generalized eigenvalue problem (6) is rewritten as

˜SHĈS yi = θi˜S
H
̂S yi . (30)

In this form, the block SS–Hankel method can be regarded as a Petrov–Galerkin-
type projection method for solving the standard eigenvalue problem (29), i.e., the
approximate solution x̃i and the corresponding residual r i := C x̃i −θi x̃i satisfy x̃i ∈
R(̂S) and r i⊥R(˜S), respectively. Recognizing that R(̂S) ⊂ R(Q1:r ) and applying
Theorem 9, we find that the block SS–Hankel method obtains the target eigenpairs.

Since the Petrov–Galerkin-type projection method for (29) does not perform the
(bi-)orthogonalization; that is ˜SH

̂S 
= I , (30) describes the generalized eigenvalue
problem. The practical algorithm of the block SS–Hankel method (Algorithm 1) is
derived from a low-rank approximation of (30).

From Theorem 8, we have

R(̂S) = K�
M (C,̂S0)
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similar to Theorem 5. Therefore, the block SS–Arnoldi method can be regarded as a
block Arnoldi method with K�

M (C,̂S0) for solving the standard eigenvalue problem
(29). Moreover, for M ≤ N − η, any ̂EM ∈ B�

M (C,̂S0) can be written as

̂EM =
N
∑

j=1

ω j

M−1
∑

i=0

zi
j (z j B − A)−1BV αi , αi ∈ C

L×L .

and the matrix multiplication of C by ̂EM is given by

ĈEM =
N
∑

j=1

ω j z j

M−1
∑

i=0

zi
j (z j B − A)−1BV αi .

similar to Theorem 7. Therefore, in each iteration, the matrix multiplication of C can
be performed by a numerical integration.

The Beyn method can be also regarded as a projection method for solving the
standard eigenvalue problem (29). From the relation ̂S1 = ĈS0 and the singular
value decomposition (11) of̂S0, the coefficient matrix of the eigenvalue problem (12)
obtained from the Beyn method becomes

UH
0,1
̂S1W0,1Σ

−1
1 = UH

0,1ĈS0W0,1Σ
−1
0,1 = UH

0,1CU0,1.

Therefore, the Byen method can be regarded as a Rayleigh–Ritz-type projection
method on R(U0,1) for solving (29), where R(U0,1) is obtained from a low-rank
approximation of ̂S0.

4.2 Map of the contour integral-based eigensolvers

As shown in Sect. 4.1.1, the block SS–RR method and the FEAST eigensolver are
based on the Rayleigh–Ritz procedure, which solve the generalized eigenvalue prob-
lem Axi = λi Bxi . These methods use subspacesR(̂S) andR(̂S0), respectively. The
FEAST eigensolver can be regarded as a simplified algorithm of the block SS–RR
method with M = 1 and no orthogonalization of the basis. Instead, the FEAST eigen-
solver presupposes an iteration based on an accelerated subspace iteration. Here, we
note that the block SS–RR method can also use an iteration technique for improving
accuracy as demonstrated in [15,21].

In contrast, as shown in Sect. 4.1.2, the block SS–Hankel, block SS–Arnoldi and
Beyn methods can be regarded as projection methods for solving the standard eigen-
value problem (29) instead of Axi = λi Bxi . The block SS–Hankel method is a
Petrov–Galerkin-type method with R(̂S), the block SS–Arnoldi method is a block
Arnoldi method with R(̂S) = K�

M (C,̂S0) and the Beyn method is a Rayleigh–Ritz-
type method with R(̂S0). Note that because these methods are based on Theorems 8
and 9, (z j , ω j ) should satisfy condition (13).

Since the block SS–Hankel, block SS–RR and block SS–Arnoldimethods useR(̂S)

as the subspace, the maximum dimension of the subspace is L M . In contrast, the
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The target GEP

block SS-RR

FEAST

block
SS-Hankel

Beyn

block
SS-Arnoldi

SEP with the same eigenpairs

Rayleigh-Ritz

(Implicit) 
transforma�on

block
SS-Beyn

Subspace
itera�on Petrov-Galerkin block Arnoldi

Rayleigh-Ritz

with high order
moments

Fig. 1 A map of the relationship among the contour integral-based eigensolvers

FEAST eigensolver and the Beyn method use the subspace R(̂S0), whose maximum
dimension is L; that is, rank(̂S0) can not be larger than the number L of right-hand sides
of linear systems at each quadrature point. Therefore, for the same subspace dimension,
the FEAST eigensolver and the Beyn method should incur larger computational costs
than the block SS–Hankel, block SS–RR and block SS–Arnoldi methods for solving
the linear systems with multiple right-hand sides.

A map of the relationship among the contour integral-based eigensolvers is pre-
sented in Fig. 1.

4.3 Proposal for a block SS–Beyn method

As mentioned above, one iteration of the FEAST eigensolver is a simplified version
of the block SS–RR method with M = 1 and no orthogonalization. In contrast, a
derivative of the Beyn method with M ≥ 2 has not been proposed. Although this
paper mainly aims to analyze the relationships among these methods and provide a
map, we also propose an extension of the Beyn method to M ≥ 2 as with the block
SS–Hankel, block SS–RR and block SS–Arnoldi methods.

As shown in Sect. 2.2.5, from the relation̂S1 = ĈS0 and a singular value decompo-
sition of ̂S0, we can derive a small size eigenvalue problem (12) of the Beyn method.
As shown in Sect. 4.1.2, the Beyn method can be also regarded as the Rayleigh–Ritz
projection method with R(̂S0) for solving the standard eigenvalue problem (29). To
extend the Beyn method, here we consider the Rayleigh–Ritz projection method with
R(̂S) for solving (29), i.e.,

UHCU t i = θi t i

where ̂S = UΣWH is a singular value decomposition of ̂S. Using Theorem 8, the
coefficient matrix UTCU is replaced as
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Algorithm 7 A block SS–Beyn method

Input: L , M, N ∈ N, V ∈ C
n×L , (z j , ω j ) for j = 1, 2, . . . , N

Output: Approximate eigenpairs (˜λi , x̃i ) for i = 1, 2, . . . , m̂
1: Compute ̂Sk = ∑N

j=1 ω j zk
j (z j B − A)−1BV ,

and set ̂S = [̂S0,̂S1, . . . ,̂SM−1],̂S+ = [̂S1,̂S2, . . . ,̂SM ]
2: Compute SVD of ̂S: ̂S = [U1, U2][Σ1, O; O, Σ2][W1, W2]H
3: Compute eigenpairs (θi , t i ) of UH

1
̂S+W1Σ

−1
1 t i = θi t i ,

and compute (˜λi , x̃i ) = (θi , U1 t i ) for i = 1, 2, . . . , m̂

UHCU = UHĈSW1Σ
−1
1 = UH

̂S+W1Σ
−1
1 ,

where

̂S+ := [̂S1,̂S2, . . . ,̂SM ] = ĈS.

In practice, we can also use a low-rank approximation of ̂S,

̂S = [U1, U2]
[

Σ1 O
O Σ2

] [

WH
1

WH
2

]

≈ U1Σ1WH
1 .

Then, the reduced eigenvalue problem becomes

UH
1
̂S+W1Σ

−1
1 t i = θi t i .

The approximate eigenpairs are obtained as (˜λi , x̃i ) = (θi , U1 t i ). In this paper, we
call this method as the block SS–Beyn method and show it in Algorithm 7.

Both the block SS–RR method and the block SS–Beyn method are Rayleigh–
Ritz-type projection methods with R(̂S). However, since the methods are targeted at
different eigenvalue problems, they have different definitions of the residual vector.
Therefore, these methods mathematically differ when B 
= I . In contrast, the block
SS–Arnoldi method and the block SS–Beyn method without a low-rank approxima-
tion, i.e., m̂ = L M , are mathematically equivalent.

5 Error analyses of the contour integral-based eigensolvers with an
iteration technique

As shown inSect. 2.2.3, theFEASTeigensolver is basedon the iteration.Other iterative
contour integral-based eigensolvers have been designed to improve the accuracy [15,
21]. The basic concept is the iterative computation of thematrix̂S(�−1)

0 , from the initial

matrix ̂S(0)
0 = V as follows:

̂S(ν)
0 :=

N
∑

j=1

ω j (z j B − A)−1B̂S(ν−1)
0 , ν = 1, 2, . . . , � − 1. (31)
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(a) (b)

Fig. 2 Magnitude of filter function | f (λ)| of the N -point trapezoidal rule for the unit circle region Ω

The matrices ̂S(�)
k and ̂S(�) are then constructed from ̂S(�−1)

0 as

̂S(�) := [̂S(�)
0 ,̂S(�)

1 , . . . ,̂S(�)
M−1], ̂S(�)

k :=
N
∑

j=1

ω j z
k
j (z j B − A)−1B̂S(�−1)

0 , (32)

andR(̂S(�)
0 ) andR(̂S(�)) are used as subspaces rather thanR(̂S0) andR(̂S). The � iter-

ations of the FEAST eigensolver can be regarded as a Rayleigh–Ritz-type projection
method on R(̂S(�)

0 ).

From the discussion in Sect. 3, the matrix ̂S(�)
0 can be expressed as

̂S(�)
0 =

(

Q1:r F1:r ˜QH
1:r
)�

V .

Here, the eigenvalues of the linear operator ̂P := Q1:r F1:r ˜QH
1:r are given by

f (λi ) :=
N
∑

j=1

ω j

z j − λi
.

The function f (λ), called the filter function, is used in the analyses of some
eigensolvers with diagonalizable matrix pencil [9,15,22,23]. The function f (λ) is
characterized by | f (λ)| ≈ 1 in the inner region and | f (λ)| ≈ 0 in the outer region.
Figure 2 plots the filter function whenΩ is the unit circle and integration is performed
by the N -point trapezoidal rule.

Error analyses of the block SS–RR method with the iteration technique (31) and
(32) and the FEAST eigensolver in the diagonalizable case were given in [9,15,23]. In
these error analyses, the block SS–RRmethod and the FEASTeigensolverwere treated
as projection methods with the subspaces R(̂S) and R(̂S0), respectively. In Sect. 4,
we explained that the other contour integral-based eigensolvers are also projection
methods with the subspacesR(̂S) andR(̂S0), but were designed to solve the standard
eigenvalue problem (29). In this section, we establish the error bounds of the contour
integral-based eigensolvers with the iteration technique (31) and (32), omitting the
low-rank approximation, in non-diagonalizable cases.
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5.1 Error bounds of the block SS–RR method and the FEAST eigensolver in the
diagonalizable case

Let (λi , xi ) be exact finite eigenpairs of the generalized eigenvalue problem Axi =
λi Bxi . Assume that f (λi ) are ordered by decreasing magnitude | f (λi )| ≥ | f (λi+1)|.
Define P(�) and PL M as orthogonal projectors onto the subspaces R(̂S(�)) and the
spectral projector with an invariant subspace span{x1, x2, . . . , xL M }, respectively.
Assume that the matrix PL M [V, CV, . . . , C M−1V ] is full rank. Then, for each eigen-
vector xi , i = 1, 2, . . . , L M , there exists a unique vector si ∈ K�

M (C, V ) such that
PL M si = xi .

In the diagonalizable case, for the error analysis of the block SS–RRmethod and the
FEAST eigensolver, the following inequality was given in [15] and [9,23] for M = 1:

‖(I − P(�))xi‖2 ≤ αβi

∣

∣

∣

∣

f (λL M+1)

f (λi )

∣

∣

∣

∣

�

, i = 1, 2, . . . , L M, (33)

where α = ‖Xr‖2‖˜Xr‖2 and βi = ‖xi − si‖2. Note that, in the diagonalizable
case, the linear operator ̂P can be expressed as ̂P = Xr f (Λr )˜XH

r , where f (Λr ) :=
diag( f (λ1), f (λ2), . . . f (λr )). An additional error bound is given in [15]:

‖(AP(�) − λi BP(�) )xi‖2 ≤ γi‖(I − P(�))xi‖2 ≤ αβiγi

∣

∣

∣

∣

f (λL M+1)

f (λi )

∣

∣

∣

∣

�

, (34)

for i = 1, 2, . . . , L M , where AP(�) := P(�) AP(�), BP(�) := P(�)BP(�) and γi =
‖P(�)(A − λi B)(I − P(�))‖2.

Inequality (33) determines the accuracy of the subspaceR(̂S), whereas inequality
(34) defines the error bound of the block SS–RR method and the FEAST eigensolver.

5.2 Error bounds of the contour integral-based eigensolvers in the
non-diagonalizable case

The constant α in (33) derives from the following inequality for a diagonalizable
matrix Gdiag = X DX−1

‖G�
diag‖2 ≤ ‖X‖2‖D�‖2‖X−1‖2 ≤ ‖X‖2‖X−1‖2(ρ(Gdiag))

�,

where ρ(Gdiag) is the spectral radius of Gdiag. This inequality is extended to a non-
diagonalizable matrix Dnon = X J X−1 as follows:

‖G�
non‖2 ≤ ‖X‖2‖J �‖2‖X−1‖2 ≤ 2‖X‖2‖X−1‖2�η−1(ρ(Gnon))

�,
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where ρ(Gnon) is the spectral radius of Gnon and η is the maximum size of the Jordan
blocks.Using this inequality, the error boundof the contour integral-based eigensolvers
in the non-diagonalizable case is given as

‖(I − P(�))xi‖2 ≤ α′βi�
η−1

∣

∣

∣

∣

f (λL M+1)

f (λi )

∣

∣

∣

∣

�

, i = 1, 2, . . . , L M, (35)

where α′ = 2‖Q1:r‖2‖˜Q1:r‖2. From (35), the error bound of the block SS–RRmethod
and the FEAST eigensolver in the non-diagonalizable case is given by

‖(AP(�) − λi BP(�) )xi‖2 ≤ γi‖(I − P(�))xi‖2 ≤ α′βiγi�
η−1

∣

∣

∣

∣

f (λL M+1)

f (λi )

∣

∣

∣

∣

�

, (36)

for i = 1, 2, . . . L M .
The inequality (36) derives from the error bound of the Rayleigh–Ritz procedure

for generalized eigenvalue problems Axi = λi Bxi . From the error bound of the
Rayleigh–Ritz procedure for standard eigenvalue problems [18, Theorem 4.3], we
derive the error bound of the block SS–Arnoldi and block SS–Beyn methods as

‖(CP(�) − λi I )P(�)xi‖2 ≤ γ ′‖(I − P(�))xi‖2 ≤ α′βiγ
′�η−1

∣

∣

∣

∣

f (λL M+1)

f (λi )

∣

∣

∣

∣

�

, (37)

for i = 1, 2, . . . , L M , where CP(�) := P(�)CP(�) and γ ′ = ‖P(�)C(I − P(�))‖2.
In addition, let Q be the oblique projector onto R(̂S(�)) and orthogonal to R(˜S).

Then, from the error boundof thePetrov–Galerkin-type projectionmethod for standard
eigenvalue problems [18, Theorem 4.7], the error bound of the block SS–Hankel
method is derived as follows:

‖(CQ
P(�) − λi I )P(�)xi‖2 ≤ γ ′′

i ‖(I − P(�))xi‖2 ≤ α′βiγ
′′
i �η−1

∣

∣

∣

∣

f (λL M+1)

f (λi )

∣

∣

∣

∣

�

, (38)

for i = 1, 2, . . . , L M , where CQ
P(�) := QCP(�) and γ ′′

i = ‖Q(C − λi I )(I −P(�))‖2.
Error bounds (36), (37) and (38) indicate that given a sufficiently large subspace,

i.e., | f (λL M+1)/ f (λi )|� ≈ 0, the contour integral-based eigensolvers can obtain the
accurate target eigenpairs even if some eigenvalues exist outside but near the region
and the target matrix pencil is non-diagonalizable.

6 Numerical experiments

This paper mainly aims to analyze the relationships among the contour integral-based
eigensolvers and to map these relationships; although, in this section, the efficiency of
the block SS–Hankel, block SS–RR, block SS–Arnoldi and block SS–Beyn methods
are compared in numerical experiments with M = 1, 2, 4, 8 and 16.

These methods compute 1000 eigenvalues in the interval [−1, 1] and the cor-
responding eigenvectors of a real symmetric generalized eigenvalue problem with
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20,000 dimensional dense and random matrices. Γ is an ellipse with center 0
and major and minor axes 1 and 0.1, respectively. The parameters are (L , M) =
(4096, 1), (2048, 2), (1024, 4), (512, 8), (256, 16) (note that L M = 4096) and N =
32. Because of a symmetry of the problem, the number of required linear systems
is N/2 = 16. For the low-rank approximation, we used singular values σi satisfy-
ing σi/σ1 ≥ 10−14 and their corresponding singular vectors, where σ1 is the largest
singular value.

The numerical experiments were carried out in double precision arithmetic on 8
nodes ofCOMAatCCS,University ofTsukuba.COMAhas two IntelXeonE5-2670v2
(2.5 GHz) and two Intel Xeon Phi 7110P (61 cores) per node. In these numerical
experiments, we used only the CPU part. The algorithms were implemented in Fortran
90 and MPI, and executed with 8 [node] × 2 [process/node] × 8 [thread/process].

The numerical results are presented in Table 1. First, we consider the numerical
rank m̂. Comparing M dependence of the numerical rank m̂ in the block SS–Hankel,
block SS–RR and block SS–Beyn methods, we observe that the numerical rank m̂
increases with increasing M . This is causally related to the property of the subspace
K�

M (C, V ), because ̂S is written as

̂S =
(

Q1:r F1:r ̂QH
1:r
)

[V, CV, . . . , C M−1V ].

For M = 1, the subspace K�
1 (C, V ) = R(V ) is unbiased for all eigenvectors, since

V is a random matrix. On the other hand, for M ≥ 2, the subspace K�
M (C, V ) con-

tains eigenvectors corresponding exterior eigenvalues well. Therefore, for computing
interior eigenvalues, the numerical rank m̂ for M = 16 is expected to be larger than
for M = 1.

Next, we consider the computation time. The computation times of the LU factor-
ization, forward and back substitutions and the other computation time including the
singular value decomposition and orthogonalization are denoted by tLU, tSolve, tOther,
respectively. The total computation time is also denoted by tTotal. We observe, from
Table 1, that the most time-consuming part is to solve linear systems with multiple-
right hand sides (tLU + tSolve). In particular, tSolve is much larger for M = 1 than for
M = 16, because the number of right-hand sides for M = 1 is 16 times larger than
for M = 16. Consequently, tTotal increases with decreasing M .

We now focus on tOther. The block SS–Arnoldi method consumes much greater
tOther than the other methods because its current version applies no low-rank approx-
imation technique to reduce the computational costs and improve the stability [13].
For the block SS–Hankel, block SS–RR and block SS–Beyn methods, tOther is smaller
as M and the numerical rank m̂ are smaller. In addition, the block SS–Hankel method
consumes smallest tOther among testedmethods, because it performs nomatrix orthog-
onalization.

Finally, we consider the accuracy of the computed eigenpairs. The block SS–Hankel
and block SS–Arnoldi methods are less accurate than the other methods, specifically
for M = 16. This result is attributed to no matrix orthogonalization in the block SS–
Hankel method, and to no low-rank approximation in the block SS–Arnoldi method.
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Table 1 Computational results of the block SS–Hankel, block SS–RR, block SS–Arnoldi and block SS–
Beyn methods with M = 1, 2, 4, 8 and 16

M m̂ Time (s) Residual norm

tLU tSolve tOther tTotal Maxλi ∈Ω‖r i ‖2 Minλi ∈Ω‖r i ‖2
Block SS–Hankel method

1 1274 126.47 97.80 41.57 265.84 1.72 × 10−14 3.06 × 10−15

2 1291 126.38 49.02 28.74 204.14 1.12 × 10−12 2.72 × 10−15

4 1320 126.46 25.40 25.93 177.78 2.15 × 10−14 3.16 × 10−15

8 1419 126.33 13.53 26.39 166.25 1.31 × 10−11 1.66 × 10−14

16 2206 126.24 7.65 32.41 166.30 1.64 × 10−06 1.59 × 10−11

Block SS–RR method

1 1283 126.45 97.27 38.62 262.33 1.34 × 10−13 1.05 × 10−13

2 1292 126.31 48.77 38.84 213.92 1.35 × 10−13 9.56 × 10−14

4 1304 126.34 25.22 38.49 190.05 1.73 × 10−13 9.89 × 10−14

8 1340 126.33 13.46 38.78 178.57 5.53 × 10−13 1.16 × 10−13

16 1461 126.49 7.65 40.84 174.98 1.34 × 10−11 1.24 × 10−13

Block SS–Arnoldi method

1 4096 125.96 97.13 94.58 317.66 4.72 × 10−08 4.46 × 10−12

2 4096 126.43 48.84 62.11 237.37 5.24 × 10−08 1.99 × 10−13

4 4096 126.13 25.20 52.61 203.94 2.64 × 10−08 5.24 × 10−13

8 4096 126.23 13.46 49.32 189.02 9.05 × 10−09 8.80 × 10−13

16 4096 126.35 7.63 54.41 188.38 9.31 × 10−07 7.70 × 10−13

Block SS–Beyn method

1 1283 126.17 97.24 32.63 256.05 1.34 × 10−13 1.06 × 10−13

2 1292 126.48 48.76 32.14 207.37 1.36 × 10−13 9.58 × 10−14

4 1304 126.22 25.22 31.25 182.69 1.74 × 10−13 9.91 × 10−14

8 1340 126.21 13.44 31.09 170.74 5.54 × 10−13 1.16 × 10−13

16 1461 126.45 7.65 32.25 166.35 1.90 × 10−10 1.25 × 10−13

On the other hand, the block SS–RR and block SS–Beyn methods show high accuracy
even for M = 16.

7 Conclusions

In this paper, we analyzed and mapped the mathematical relationships among the
algorithms of the typical contour integral-basedmethods for solving generalized eigen-
value problems (1): the block SS–Hankel method, the block SS–RR method, the
FEAST eigensolver, the block SS–Arnoldi method and the Beyn method. We found
that the block SS–RR method and the FEAST eigensolver are projection methods for
Axi = λi Bxi , whereas the block SS–Hankel, block SS–Arnoldi and Beyn methods

123



A relationship among contour integral-based eigensolvers 749

are projection methods for the standard eigenvalue problem Cxi = λi xi . From the
map of the algorithms, we also extended the existing Beyn method to M ≥ 2. Our
numerical experiments indicated that increasing M reduces the computational costs
(relative to M = 1).

In future, we will compare the efficiencies of these methods in solving large, real-
life problems. We also plan to analyze the relationships among contour integral-based
nonlinear eigensolvers.
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