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Abstract We present a Lagrange–Galerkin scheme free from numerical quadrature
for convection-diffusion problems. Since the scheme can be implemented exactly as
it is, theoretical stability result is assured. While conventional Lagrange–Galerkin
schemes may encounter the instability caused by numerical quadrature error, the
present scheme is genuinely stable. For the Pk-element we prove error estimates of
O(Δt + h2 + hk+1) in �∞(L2)-norm and of O(Δt + h2 + hk) in �∞(H1)-norm.
Numerical results reflect these estimates.
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1 Introduction

The Lagrange–Galerkin method, which is also called characteristics finite element
method or Galerkin-characteristics method, is a powerful numerical method for flow
problems such as the convection-diffusion equations and the Navier–Stokes equations.

B Masahisa Tabata
tabata@waseda.jp

Shinya Uchiumi
su48@fuji.waseda.jp

1 Department of Mathematics, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555,
Japan

2 Graduate School of Fundamental Science and Engineering, Waseda University, 3-4-1, Ohkubo,
Shinjuku, Tokyo 169-8555, Japan

3 Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13160-015-0196-2&domain=pdf


122 M. Tabata, S. Uchiumi

In this method the material derivative is discretized along the characteristic curve,
which originates the robustness for convection-dominated problems. Although, as a
result of the discretization along the characteristic curve, a composite function term
at the previous time appears, it is converted to the right-hand side in the system of the
linear equations. Thus, the coefficient matrix in the left-hand side is symmetric, which
allows us to use efficient linear solvers for symmetric matrices such as the conjugate
gradient method and the minimal residual method [2,15].

Stability and error analysis of LG schemes has been done in [1,3,4,6,9–14,16]; see
also the bibliography therein. Pironneau [11] analyzed convection-diffusion problems
and the Navier–Stokes equations to obtain suboptimal convergence results. Optimal
convergence results were obtained by Douglas-Russell [6] for convection-diffusion
problems and by Süli [16] for the Navier–Stokes equations. Optimal convergence
results of second order in time were obtained by Boukir et al. [4] for the Navier–
Stokes equations inmulti-stepmethod and byRui-Tabata [14] for convection-diffusion
problems in single-step method. All these theoretical results are derived under the
condition that the integration of the composite function term is computed exactly.
Since, in real problems, it is difficult to get the exact integration value, numerical
quadrature is usually employed. It is, however, reported that instability may occur
caused by numerical quadrature error in [9,17,18]. That is, the theoretical stability
results may collapse by the introduction of numerical quadrature.

Several methods have been studied to avoid the instability. The map of a particle
from a time to the previous time along the trajectory, which is nothing but to solve a
system of ordinary differential equations (ODEs), is simplified in [3,9,13]. Morton-
Priestley-Suli [9] solved the ODEs only at the centroids of the elements, and Priestley
[13] did only at the vertices of the elements. The map of the other points is approx-
imated by linear interpolation of those values. It becomes possible to perform the
exact integration of the composite function term with the simplified map. Bermejo-
Saavedra [3] used the same simplified map as [13] to employ a numerical quadrature
of high accuracy to the composite function term. Tanaka-Suzuki-Tabata [19] approxi-
mated the map by a locally linearized velocity and the backward Euler approximation
for the solution of the ODEs in P1-element. The approximate map makes possible
the exact integration of the composite function term with the map. Pironneau-Tabata
[12] used mass lumping in P1-element to develop a scheme free from quadrature for
convection-diffusion problems.

In this paper we prove the stability and convergence for the scheme with the same
approximate map as [19] in Pk-element for convection-diffusion problems. Since
we neither solve the ODEs nor use numerical quadrature, our scheme can be pre-
cisely implemented to realize the theoretical results. It is, therefore, a genuinely stable
Lagrange–Galerkin scheme. Our convergence results are of O(Δt + h2 + hk+1) in
�∞(L2)-norm and of O(Δt + h2 + hk) in �∞(H1)-norm. They are best possible in
both norms for P1-element and in �∞(H1)-norm for P2-element

The contents of this paper are as follows. In the next section we describe the
convection-diffusion problem and some preparation. In Sect. 3, after recalling the
conventional Lagrange–Galerkin scheme, we present our genuinely stable Lagrange–
Galerkin scheme. In Sect. 4 we show stability and convergence results, which are
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proved in Sect. 5. In Sect. 6 we show some numerical results, which reflect the theo-
retical convergence order. In Sect. 7 we give conclusions.

2 Preliminaries

We state the problem and prepare notation used throughout this paper.
Let Ω be a polygonal or polyhedral domain of Rd (d = 2, 3) and T > 0 be a time.

We use the Sobolev spaces L p(Ω)with the norm ‖·‖0,p,Ws,p(Ω) andWs,p
0 (Ω)with

the norm ‖·‖s,p and the semi-norm |·|s,p for 1 ≤ p ≤ ∞ and a positive integer s.
We will write Hs(Ω) = Ws,2(Ω) and drop the subscript p = 2 in the corresponding
norms. The L2-norm ‖·‖0 is simply denoted by ‖·‖. The dual space of H1

0 (Ω) is
denoted by H−1(Ω). For the vector-valued function w ∈ W 1,∞(Ω)d we define the
semi-norm |w|1,∞ by

∥
∥
∥
∥

{ d
∑

i, j=1

(∂wi

∂x j

)2
}1/2∥∥

∥
∥
0,∞

.

The parenthesis (·, ·) shows the L2-inner product ( f, g) ≡ ∫

Ω
f g dx . For a Sobolev

space X (Ω) we use abbreviations Hm(X) = Hm(0, T ; X (Ω)) and C(X) =
C([0, T ]; X (Ω)). We define a function space Zm(t1, t2) by

Zm(t1, t2) ≡ { f ∈ H j (t1, t2; Hm− j (Ω)); j = 0, . . . ,m, ‖ f ‖Zm (t1,t2) < ∞},

‖ f ‖Zm (t1,t2) ≡
⎧

⎨

⎩

m
∑

j=0

‖ f ‖2H j (t1,t2;Hm− j )

⎫

⎬

⎭

1/2

and denote Zm(0, T ) by Zm .
We consider the convection-diffusion problem: find φ : Ω × (0, T ) → R such that

∂φ

∂t
+ u · ∇φ − νΔφ = f, (x, t) ∈ Ω × (0, T ), (1a)

φ = 0, (x, t) ∈ ∂Ω × (0, T ), (1b)

φ = φ0, x ∈ Ω, t = 0, (1c)

where ∂Ω is the boundary of Ω and ν > 0 is a diffusion constant which is less than
or equal to a given ν0. Functions u : Ω × (0, T ) → R

d , f ∈ C(L2) and φ0 ∈ C(Ω̄)

are given.

Remark 1 As usual, in place of (1b), we can deal with the inhomogeneous boundary
condition φ = g by replacing the unknown function φ by φ̃ ≡ φ − g̃ if the function g
defined on ∂Ω × (0, T ) can be extended to a function g̃ in Ω × (0, T ) appropriately.

Let Δt > 0 be a time increment, NT ≡ 	T/Δt
, tn ≡ nΔt and ψn ≡ ψ(·, tn) for
a function ψ defined in Ω × (0, T ). For a set of functions ψ = {ψn}NT

n=0, two norms
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‖·‖�∞(L2) and ‖·‖�2(n1,n2;L2) are defined by

‖ψ‖�∞(L2) ≡ max
{∥
∥ψn

∥
∥ ; n = 0, . . . , NT

}

,

‖ψ‖�2(n1,n2;L2) ≡
(

Δt
n2∑

n=n1

∥
∥ψn

∥
∥
2

)1/2

and denote ‖ψ‖�2(1,NT ;L2) by ‖ψ‖�2(L2).
Let u be smooth. The characteristic curve X (t; x, s) is defined by the solution of

the system of the ordinary differential equations,

dX

dt
(t; x, s) = u(X (t; x, s), t), t < s, (2a)

X (s; x, s) = x . (2b)

Then, we can write the material derivative term ∂φ
∂t + u · ∇φ as

(
∂φ

∂t
+ u · ∇φ

)

(X (t), t) = d

dt
φ(X (t), t).

For w : Ω → R
d we define the mapping X1(w) : Ω → R

d by

(X1(w))(x) ≡ x − w(x)Δt. (3)

Remark 2 The image of x by X1(u(·, t)) is nothing but the backward Euler approxi-
mation of X (t − Δt; x, t).
The symbol ◦ stands for the composition of functions, e.g., (g ◦ f )(x) ≡ g( f (x)).

Let Th ≡ {K } be a triangulation of Ω̄ and h ≡ maxK∈Th diam(K ) be the maximum
element size. Throughout this paper we consider a regular family of triangulations
{Th}h↓0. Let k be a fixed positive integer and Vh ⊂ H1

0 (Ω) be the Pk-finite element
space,

Vh ≡ {vh ∈ C(Ω̄) ∩ H1
0 (Ω); vh|K ∈ Pk(K ), ∀K ∈ Th},

where Pk(K ) is the set of polynomials on K whose degrees are less than or equal to
k. Let φ̂h ∈ Vh be the Poisson projection of φ ∈ H1

0 (Ω) defined by

(∇(φ̂h − φ),∇ψh) = 0, ∀ψh ∈ Vh . (4)

We use c to represent a generic positive constant independent of h, Δt , ν, f and
φ which may take different values at different places. The notation c(A) means that
c depends on a positive parameter A and that c increases monotonically when A
increases.The constants c0, c1 and c2 stand for c0 = c(‖u‖C(L∞)), c1 = c(‖u‖C(W 1,∞))

and c2 = c(‖u‖C(W 2,∞)). We also use fixed positive constants α∗ and δ∗ defined in
Lemma 1 in the next section and in Lemma 5 in Sect. 5, respectively.
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3 A genuinely stable Lagrange–Galerkin scheme

The conventional Lagrange–Galerkin scheme, which we call Scheme LG, is described
as follows.

Scheme LG Let φ0
h = φ̂0

h . Find
{

φn
h

}NT
n=1 ⊂ Vh such that for n = 1, . . . , NT

(

φn
h − φn−1

h ◦ Xn
1

Δt
, ψh

)

+ ν(∇φn
h ,∇ψh) = ( f n, ψh), ∀ψh ∈ Vh, (5)

where Xn
1 = X1(un).

For this scheme error estimates

‖φh − φ‖�∞(L2) ≤ c(hk + Δt), c(1/ν)(hk+1 + Δt),

‖φh − φ‖�∞(H1) ≤ c(1/ν)(hk + Δt)
(6)

are proved in [6], where the composite function term (φn−1
h ◦ Xn

1 , ψh) is assumed to
be exactly integrated.

Although the function φn−1
h is a polynomial on each element K , the composite

function φn−1
h ◦ Xn

1 is not a polynomial on K in general since the image Xn
1 (K )

of an element K may spread over plural elements. Hence, it is hard to calculate the
composite function term (φn−1

h ◦ Xn
1 , ψh) exactly. In practice, the following numerical

quadrature has been used. Let g : K → R be a continuous function. A numerical
quadrature Ih[g; K ] of ∫K g dx is defined by

Ih[g; K ] ≡ meas(K )

Nq
∑

i=1

wi g(ai ), (7)

where Nq is the number of quadrature points and (wi , ai ) ∈ R× K is a pair of weight
and point for i = 1, . . . , Nq . We call the practical scheme using numerical quadrature
Scheme LG′.
Scheme LG′ Let φ0

h = φ̂0
h . Find

{

φn
h

}NT
n=1 ⊂ Vh such that for n = 1, . . . , NT

1

Δt
(φn

h , ψh) − 1

Δt

∑

K∈Th
Ih[(φn−1

h ◦ Xn
1 )ψh; K ] + ν(∇φn

h ,∇ψh)

= ( f n, ψh), ∀ψh ∈ Vh,

(8)

where Xn
1 = X1(un).

It is reported that the results (6) do not hold for Scheme LG′ [9,17–19].
We denote by Π

(1)
h the Lagrange interpolation operator to the P1-finite element

space. The following lemma is well-known [5].
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Lemma 1 (i) There exists a positive constant cΠ such that for w ∈ W 2,∞(Ω)d

‖Π(1)
h w − w‖0,∞ ≤ cΠh2 |w|2,∞ .

(ii) There exists a positive constant α∗ ≥ 1 such that for w ∈ W 1,∞(Ω)d

|Π(1)
h w|1,∞ ≤ α∗ |w|1,∞ .

We now present our genuinely stable scheme GSLG, which is free from quadrature
and exactly computable. We define a locally linearized velocity uh and a mapping Xn

1h
by

uh ≡ Π
(1)
h u, Xn

1h ≡ X1(u
n
h).

Scheme GSLG Let φ0
h = φ̂0

h . Find
{

φn
h

}NT
n=1 ⊂ Vh such that for n = 1, . . . , NT

(

φn
h − φn−1

h ◦ Xn
1h

Δt
, ψh

)

+ ν(∇φn
h ,∇ψh) = ( f n, ψh), ∀ψh ∈ Vh . (9)

We show that the integration (φn−1
h ◦ Xn

1h, ψh) can be calculated exactly.
At first we prepare two lemmas. The next lemma on the mapping (3) is proved in

[14].

Lemma 2 ([14, Proposition 1]) Suppose

w ∈ W 1,∞
0 (Ω)d and Δt |w|1,∞ < 1. (10)

Let F ≡ X1(w) be the mapping defined in (3). Then, F : Ω → Ω is bijective.

Lemma 3 Let K0, K1 ∈ Th and F : K0 → R
d be linear and one-to-one. Let E1 ≡

K0 ∩ F−1(K1) and meas(E1) > 0. Then, the following hold.

(i) E1 is a polygon (d = 2) or a polyhedron (d = 3).
(ii) φh ◦ F|E1 ∈ Pk(E1), ∀φh ∈ Pk(K1).

Fig. 1 Elements K0, K1 and a polygon E1
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Proof (i) Since both K0 and F−1(K1) are triangles (d = 2) or tetrahedra (d = 3), the
intersection is a polygon or a polyhedron. See Fig. 1.

(ii) F ∈ P1(K0)
d implies that F ∈ P1(E1)

d and it holds that F(E1) ⊂ K1. Hence,
φh ◦ F|E1 is well defined and φh ◦ F|E1 ∈ Pk(E1). ��

Proposition 1 Let φh, ψh ∈ Vh, w ∈ W 1,∞
0 (Ω) and X1h ≡ X1(Π

(1)
h w), where X1 is

the operator defined in (3). Suppose α∗Δt |w|1,∞ < 1. Then,
∫

Ω
(φh ◦ X1h)ψhdx is

exactly computable.

Proof It is sufficient to show that
∫

K0
(φh ◦ X1h)ψhdx can be computable exactly for

any K0 ∈ Th . The mapping X1h : Ω → Ω is bijective since we can apply Lemma 2
thanks to

Δt |Π(1)
h w|1,∞ ≤ α∗Δt |w|1,∞ < 1. (11)

Let Λ(K0) ≡
{

l; K0 ∩ X−1
1h (Kl) �= ∅

}

and El ≡ K0 ∩ X−1
1h (Kl) for l ∈ Λ(K0).

Noting that
⋃

l∈Λ(K0)

El = K0 ∩
⋃

l∈Λ(K0)

X−1
1h (Kl) = K0

and that meas(El ∩ Em) = 0 for l �= m, l,m ∈ Λ(K0), we can divide the integration
on K0 into the sum of those on El for l ∈ Λ(K0),

∫

K0

(φh ◦ X1h)ψhdx =
∑

l∈Λ(K0)

∫

El

(φh ◦ X1h)ψhdx .

Since Lemma 3 with F = X1h implies that both φh ◦ X1h and ψh are polynomials on
El , we can execute the exact integration. ��
Remark 3 In the case of d = 2, Priestley [13] approximated X (tn−1; x, tn) by

X̃1h(x) = B1λ1(x) + B2λ2(x) + B3λ3(x), x ∈ K0

on each K0 ∈ Th , where Bi = X (tn−1; Ai , tn), {Ai }3i=1 are vertices of K0 and {λi }3i=1
are the barycentric coordinates of K0 with respect to {Ai }3i=1. Since X̃1h(x) is linear
in K0, the decomposition

∫

K0

(φh ◦ X̃1h)ψhdx =
∑

l∈Λ(K0)

∫

El

(φh ◦ X̃1h)ψhdx,

Λ(K0) ≡
{

l; K0 ∩ X̃−1
1h (Kl) �= ∅

}

, El ≡ K0 ∩ X̃−1
1h (Kl)

makes the exact integration possible. However, Bi = X (tn−1; Ai , tn) are the solutions
of a system of ordinary differential equations and they cannot be solved exactly in
general. In practice, some numerical method, e.g., Runge–Kutta method, is required,
which introduces another error.
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4 Main results

We show the main results, the stability and convergence of Scheme GSLG.

Hypothesis 1 (i) u ∈ C((W 1,∞
0 )d), (ii) u ∈ C((W 1,∞

0 ∩ W 2,∞)d).

Hypothesis 2 φ ∈ H1(Hk+1) ∩ Z2.

Hypothesis 3 The time increment Δt satisfies 0 < Δt ≤ Δt0, where

Δt0 ≡ δ∗
α∗ |u|C(W 1,∞)

, (12)

and α∗ and δ∗ are the constants stated in Lemma 1 (Sect. 3) and Lemma 5 (Sect. 5),
respectively.

Hypothesis 4 There exists a positive constant cP such that, for ψ ∈ Hk+1(Ω) ∩
H1
0 (Ω),

‖ψ̂h − ψ‖0 ≤ cPh
k+1 ‖ψ‖k+1 , (13)

where ψ̂h is the Poisson projection defined in (4).

Remark 4 (i) It is well-known that the H1-estimate

‖ψ̂h − ψ‖1 ≤ cPh
k ‖ψ‖k+1 (14)

holds without any specific condition. On the other hand, Hypothesis 4 holds, for
example, if Ω is convex, by Aubin-Nitsche Lemma [5].

(ii) Hypothesis 2 implies φ ∈ C(Hk+1) and φ0 ∈ Hk+1(Ω).

Theorem 1 Suppose Hypotheses 1-(i) and 3. Then, there exists a positive constant c∗
independent of h,Δt, ν, φ and f such that

‖φh‖�∞(L2) + √
ν ‖∇φh‖�2(L2) ≤ c∗

(∥
∥
∥φ

0
h

∥
∥
∥+ ‖ f ‖�2(L2)

)

.

Theorem 2 Suppose Hypotheses 1-(ii), 2 and 3.
(i) There exists a positive constant c∗ independent of h,Δt, ν and φ such that

‖φ − φh‖�∞(L2) + √
ν ‖∇(φ − φh)‖�2(L2)

≤ c∗
{

Δt ‖φ‖Z2 + hk
(
∥
∥
∥
∥

∂φ

∂t

∥
∥
∥
∥
L2(Hk+1)

+ ‖φ‖�∞(Hk+1)

+ ‖φ‖�2(0,NT ;Hk+1)

)

+ h2 ‖∇φ‖�2(0,NT −1;L2)

}

. (15)
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(ii) There exists a positive constant c∗∗ independent of h,Δt, φ (but dependent on
1/ν) such that

‖φ − φh‖�∞(H1) ≤ c∗∗
{

Δt ‖φ‖Z2 + hk
(∥
∥
∥
∥

∂φ

∂t

∥
∥
∥
∥
L2(Hk+1)

+ ‖φ‖�∞(Hk+1)

+ ‖φ‖�2(0,NT −1;Hk+1)

)

+ h2 ‖∇φ‖�2(0,NT −1;L2)

}

.

(16)

(iii) Moreover, suppose Hypothesis 4. Then, there exists a positive constant c∗∗∗ inde-
pendent of h,Δt, ν and φ such that

‖φ − φh‖�∞(L2) ≤ c∗∗∗
{

Δt ‖φ‖Z2 + hk+1
(
∥
∥
∥
∥

∂φ

∂t

∥
∥
∥
∥
L2(Hk+1)

+ ‖φ‖�∞(Hk+1)

+ ν−1/2 ‖φ‖�2(0,NT −1;Hk+1)

)

+ h2 ‖∇φ‖�2(0,NT −1;L2)

}

.

(17)

Remark 5 From Theorem 2, we have

‖φ − φh‖�∞(L2) ≤ c(Δt + h2 + hk), c

(

Δt + h2 + 1√
ν
hk+1

)

‖φ − φh‖�∞(H1) ≤ c

(
1

ν

)

(Δt + h2 + hk).

In the case of Pk-element, k = 1, 2, the estimate (15) shows the optimal L2-
convergence rate O(Δt + hk) independent of ν. The dependency on ν in (16) and
(17) is also inevitable in Scheme LG.

5 Proofs of main theorems

We recall some results used in proving main theorems. For their proofs we only show
outlines or refer to the bibliography.

Lemma 4 ([14, Lemma 1]) Suppose w ∈ W 1,∞
0 (Ω)d and

Δt |w|1,∞ < 1. (18)

Let F ≡ X1(w) be the mapping defined in (3). Then, there exists a positive constant
c(|w|1,∞) such that for ψ ∈ L2(Ω)

‖ψ ◦ F‖ ≤ (1 + cΔt) ‖ψ‖ .

The proof is given in [14].
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130 M. Tabata, S. Uchiumi

Lemma 5 There exists a constant δ∗ ∈ (0, 1) such that, for w ∈ W 1,∞
0 (Ω)d and Δt

satisfying Δt |w|1,∞ ≤ δ∗,
1

2
≤
∣
∣
∣
∣

∂X1(w)

∂x

∣
∣
∣
∣
≤ 3

2
,

where |∂X1(w)/∂x | is the Jacobian of the mapping X1(w) defined in (3).

Lemma 5 is easily proved by the fact,

(
∂X1(w)

∂x

)

i j
= δi j − Δt

∂wi

∂x j
.

Lemma 6 Let wi ∈ W 1,∞
0 (Ω)d and Fi ≡ X1(wi ) be the mapping defined in (3) for

i = 1, 2. Under the condition Δt |wi |1,∞ ≤ δ∗, i = 1, 2, we have for ψ ∈ H1(Ω)

‖ψ ◦ F1 − ψ ◦ F2‖ ≤ √
2Δt ‖w1 − w2‖0,∞ ‖∇ψ‖ .

Lemma 6 is a direct consequence of [1, Lemma 4.5] and Lemma 5.

Lemma 7 Letw ∈ W 1,∞
0 (Ω)d and F ≡ X1(w) be the mapping defined in (3). Under

the condition Δt |w|1,∞ ≤ δ∗, there exists a positive constant c(‖w‖1,∞) such that
for ψ ∈ L2(Ω)

‖ψ − ψ ◦ F‖H−1(Ω) ≤ cΔt ‖ψ‖ .

Lemma 7 is obtained from [6, Lemma 1] and Lemma 5.

Lemma 8 (discrete Gronwall inequality) Let a0 and a1 be non-negative numbers,
Δt ∈ (0, 1

2a0
] be a real number, and {xn}n≥0 , {yn}n≥1 and {bn}n≥1 be non-negative

sequences. Suppose

xn − xn−1

Δt
+ yn ≤ a0x

n + a1x
n−1 + bn, ∀n ≥ 1.

Then, it holds that

xn + Δt
n
∑

i=1

yi ≤ exp {(2a0 + a1)nΔt}
(

x0 + Δt
n
∑

i=1

bi
)

, ∀n ≥ 1.

Lemma 8 is shown by using the inequalities

1

1 − a0Δt
≤ 1 + 2a0Δt ≤ exp(2a0Δt).

Outline of the proof of Theorem 1. We substitute φn
h into ψh in (9). We can apply

Lemma 4 with w = unh and ψ = φn−1
h by virtue of Δt |uh |C(W 1,∞) < 1. The rest of

the proof is similar to [14, Theorem 1]. We, therefore, omit it.
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A genuinely stable Lagrange–Galerkin scheme 131

Proof of Theorem 2 We first show the estimate (15). Let

eh ≡ φh − φ̂h, η ≡ φ − φ̂h, (19)

where φ̂h is the Poisson projection defined in (4). From (1a), (1b) and (9) we have

(

enh − en−1
h ◦ Xn

1h

Δt
, ψh

)

+ ν(∇enh ,∇ψh) =
4
∑

i=1

(Rn
i , ψh) (20)

for ψh ∈ Vh , where

Rn
1 ≡ ∂φn

∂t
+ un · ∇φn − φn − φn−1 ◦ Xn

1

Δt
,

Rn
2 ≡ φn−1 ◦ Xn

1h − φn−1 ◦ Xn
1

Δt
,

Rn
3 ≡ ηn − ηn−1

Δt
, Rn

4 ≡ ηn−1 − ηn−1 ◦ Xn
1h

Δt
.

(21)

Substituting enh into ψh , applying Lemma 4 with F = Xn
1h and ψ = en−1

h , and
evaluating the first term of the left-hand side as

(

enh − en−1
h ◦ Xn

1h

Δt
, enh

)

≥ 1

2Δt

(
∥
∥enh

∥
∥2 −

∥
∥
∥en−1

h ◦ Xn
1h

∥
∥
∥

2
)

≥ 1

2Δt

(
∥
∥enh

∥
∥
2 − (1 + c1Δt)2

∥
∥
∥en−1

h

∥
∥
∥

2
)

= 1

2Δt

(
∥
∥enh

∥
∥2 −

∥
∥
∥en−1

h

∥
∥
∥

2
)

− c1
2

(2 + c1Δt)
∥
∥
∥en−1

h

∥
∥
∥

2
,

we have
1

2Δt

(
∥
∥enh

∥
∥
2 −

∥
∥
∥en−1

h

∥
∥
∥

2
)

+ ν
∥
∥∇enh

∥
∥
2

≤ c1
∥
∥
∥en−1

h

∥
∥
∥

2 +
4
∑

i=1

1

4εi

∥
∥Rn

i

∥
∥2 +

(
4
∑

i=1

εi

)

∥
∥enh

∥
∥2 ,

(22)

where {εi }4i=1 are positive constants satisfying Δt0 ≤ 1
4ε0

, ε0 ≡ ∑4
i=1 εi .

We evaluate Ri , i = 1, . . . , 4. Setting

y(x, s) = x + (s − 1)Δt un(x), t (s) = tn−1 + sΔt,

we have

φn − φn−1 ◦ Xn
1

Δt
= 1

Δt

[

φ(y(·, s), t (s))]1s=0,
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which implies

Rn
1 = ∂φn

∂t
+ un · ∇φn −

∫ 1

0

{

un(·) · ∇φ + ∂φ

∂t

}

(y(·, s), t (s))ds

= Δt
∫ 1

0
ds
∫ 1

s

{(

un(·) · ∇ + ∂

∂t

)2

φ

}

(y(·, s1), t (s1))ds1

= Δt
∫ 1

0
s1

{(

un(·) · ∇ + ∂

∂t

)2

φ

}

(y(·, s1), t (s1))ds1.

Hence, we have

‖Rn
1‖ ≤ Δt

∫ 1

0
s1

∥
∥
∥
∥
∥

{(

un(·) · ∇ + ∂

∂t

)2

φ

}

(y(·, s1), t (s1))
∥
∥
∥
∥
∥
ds1

≤ c0
√

Δt ‖φ‖Z2(tn−1,tn) , (23)

where we have used the transformation of independent variables from x to y and s1
to t , and the estimate |∂x/∂y| ≤ 2 by virtue of Lemma 5.

From Δt |u|C(W 1,∞) , Δt |uh |C(W 1,∞) ≤ δ∗, and Lemmas 1 and 6 it holds that

∥
∥Rn

2

∥
∥ ≤ √

2‖∇φn−1‖‖Π(1)
h un − un‖0,∞ ≤ c2h

2
∥
∥
∥∇φn−1

∥
∥
∥ . (24)

Rn
3 is evaluated as

‖Rn
3‖ =

∥
∥
∥
∥

∫ 1

0

∂η

∂t
(·, t (s))ds

∥
∥
∥
∥

≤ cPhk√
Δt

∥
∥
∥
∥

∂φ

∂t

∥
∥
∥
∥
L2(tn−1,tn;Hk+1)

, (25)

where we have used (14).
From Δt |uh |C(W 1,∞) ≤ δ∗ and Lemma 6 it holds that

∥
∥Rn

4

∥
∥ ≤ √

2‖∇ηn−1‖‖Π(1)
h un‖0,∞ ≤ c0h

k
∥
∥
∥φ

n−1
∥
∥
∥
k+1

. (26)

Combining (22)–(26), we have

1

2Δt

(
∥
∥enh

∥
∥
2 −

∥
∥
∥en−1

h

∥
∥
∥

2
)

+ ν
∥
∥∇enh

∥
∥
2 ≤ ε0

∥
∥enh

∥
∥
2 + c1

∥
∥
∥en−1

h

∥
∥
∥

2

+ c2

{

Δt ‖φ‖2Z2(tn−1,tn) + h4
∥
∥
∥∇φn−1

∥
∥
∥

2

+ h2k

Δt

∥
∥
∥
∥

∂φ

∂t

∥
∥
∥
∥

2

L2(tn−1,tn;Hk+1)

+ h2k
∥
∥
∥φ

n−1
∥
∥
∥

2

k+1

}

.

From Lemma 8 we obtain for n = 1, . . . , NT

123



A genuinely stable Lagrange–Galerkin scheme 133

∥
∥enh

∥
∥2 + 2νΔt

NT∑

j=1

∥
∥
∥∇e jh

∥
∥
∥

2 ≤ c2

(∥
∥
∥e0h

∥
∥
∥

2 + Δt2 ‖φ‖2Z2

+ h2k
∥
∥
∥
∥

∂φ

∂t

∥
∥
∥
∥

2

L2(Hk+1)

+ h2kΔt
NT −1
∑

j=0

∥
∥
∥φ

j
∥
∥
∥

2

k+1
+ h4Δt

NT −1
∑

j=0

∥
∥
∥∇φ j

∥
∥
∥

2
)

,

which implies (15) by virtue of e0h = 0 and the triangle inequalities,

‖φ − φh‖�∞(L2) ≤ ‖eh‖�∞(L2) + ‖η‖�∞(L2)

≤ ‖eh‖�∞(L2) + cPh
k ‖φ‖�∞(Hk+1) , (27)

‖∇(φ − φh)‖�2(L2) ≤ ‖∇eh‖�2(L2) + ‖∇η‖�2(L2)

≤ ‖∇eh‖�2(L2) + cPh
k ‖φ‖�2(Hk+1) .

We show the estimate (16). The Eq. (20) can be rewritten as

1

Δt
(enh − en−1

h , ψh) + ν(∇enh ,∇ψh) =
5
∑

i=1

(Rn
i , ψh),

where

Rn
5 ≡ 1

Δt
(en−1

h ◦ Xn
1h − en−1

h ).

From Lemma 6 it holds that

∥
∥Rn

5

∥
∥ ≤ √

2‖∇en−1
h ‖‖Π(1)

h un‖0,∞ ≤ c0‖∇en−1
h ‖.

Substituting DΔt enh ≡ 1
Δt (e

n
h − en−1

h ) into ψh , and using (23)–(26) for R1, . . . , R4,
we have

∥
∥DΔt e

n
h

∥
∥
2 + 1

Δt

(
ν

2

∥
∥∇enh

∥
∥2 − ν

2

∥
∥
∥∇en−1

h

∥
∥
∥

2
)

+ ν

2Δt

∥
∥
∥∇(enh − en−1

h )

∥
∥
∥

2

≤ c2

{

Δt ‖φ‖2Z2(tn−1,tn) + h4
∥
∥
∥∇φn−1

∥
∥
∥

2 + h2k

Δt

∥
∥
∥
∥

∂φ

∂t

∥
∥
∥
∥

2

L2(tn−1,tn;Hk+1)

+ h2k
∥
∥
∥φ

n−1
∥
∥
∥

2

k+1

}

+ c0
ν

(
ν

2

∥
∥
∥∇en−1

h

∥
∥
∥

2
)

+ 1

2

∥
∥DΔt e

n
h

∥
∥
2
.

From Lemma 8 we have for n = 1, . . . , NT

Δt

2

NT∑

j=1

∥
∥DΔt e

n
h

∥
∥
2 + ν

2

∥
∥∇enh

∥
∥2 ≤ c2 exp

(
c0T

ν

)(∥
∥
∥∇e0h

∥
∥
∥

2 + Δt2 ‖φ‖2Z2

+ h2k
∥
∥
∥
∥

∂φ

∂t

∥
∥
∥
∥

2

L2(Hk+1)

+ h2kΔt
NT −1
∑

j=0

∥
∥
∥φ

j
∥
∥
∥

2

k+1
+ h4Δt

NT −1
∑

j=0

∥
∥
∥∇φ j

∥
∥
∥

2
)

,
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Fig. 2 The function φe(·, 0) (left) and the triangulation of Ω̄ for N = 64 (right) in Example 1

which implies (16) by virtue of e0h = 0, the triangle inequality,

‖∇(φ − φh)‖�∞(L2) ≤ ‖∇eh‖�∞(L2) + ‖∇η‖�∞(L2)

≤ ‖∇eh‖�∞(L2) + cPh
k ‖φ‖�∞(Hk+1)

and the Poincaré inequality,

‖v‖1 ≤ c ‖∇v‖ , ∀v ∈ H1
0 (Ω). (28)

Now we show the estimate (17). We return to the error Eq. (20). Using (13) in place
of (14) in the estimate of Rn

3 , we can evaluate (25) as

∥
∥Rn

3

∥
∥ ≤ cPhk+1

√
Δt

∥
∥
∥
∥

∂φ

∂t

∥
∥
∥
∥
L2(tn−1,tn;Hk+1)

.

From Lemma 7 we have

‖Rn
4‖H−1(Ω) ≤ c1

∥
∥
∥η

n−1
∥
∥
∥ ≤ c1h

k+1
∥
∥
∥φ

n−1
∥
∥
∥
k+1

.

Hence, it holds that

(Rn
4 , e

n
h) ≤ ∥

∥Rn
4

∥
∥
H−1(Ω)

∥
∥enh

∥
∥
1 ≤ c1

ν
h2(k+1)

∥
∥
∥φ

n−1
∥
∥
∥

2

k+1
+ ν

2

∥
∥∇enh

∥
∥
2
,

where we have used the Poincaré inequality (28). Using this inequality instead of
1
4ε4

∥
∥Rn

4

∥
∥
2+ε4

∥
∥enh

∥
∥
2 in (22) and replacing the last termof (27) by cPhk+1‖φ‖�∞(Hk+1),

we obtain (17). ��
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Table 1 Symbols used in Figs.
3, 6 and 7 and Tables 2–7 X �∞(L2) �∞(L2) �∞(H1

0 )

Δt O(hk ) O(hk+1) O(hk )

Scheme LG′ � �
Scheme GSLG © �

0.0250.05 0.1 0.2
0.001

0.01

0.1

1.

h

E
L
2 ,
E
H

01

1 2

0.0250.05 0.1 0.2
0.001

0.01

0.1

1.

h

E
L
2 ,
E
H

01

2 3

Fig. 3 Graphs of EL2 and EH1
0
versus h in Example 1 by Pk -element. k = 1 (left) and k = 2 (right)

6 Numerical results

We show numerical results in d = 2. We compare the conventional scheme (Scheme
LG′)with the present one (SchemeGSLG).WeuseFreeFem++ [8] for the triangulation
of the domain. Both P1- and P2-elements are used. For Scheme LG′ we use the seven
points quadrature formula of degree five [7]. A relative error EX is defined by

EX ≡ ‖Π(k)
h φ − φh‖�∞(X)

‖Π(k)
h φ‖�∞(X)

,

where Π
(k)
h is the Lagrange interpolation operator to the Pk-finite element space and

X = L2(Ω) or H1
0 (Ω).

Example 1 (The rotating Gaussian hill [14]) In (1), Ω is an unit disk, and we set
T = 2π, ν = 10−5,

u(x, t) ≡ (−x2, x1), f ≡ 0, φ0 ≡ φe(·, 0),
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Table 2 The values of errors and orders of the graph in Fig. 3 by P1-element

N � Order Oder � Order

32 7.58E−01 7.58E−01 9.52E−01

64 5.65E−01 0.42 5.53E−01 0.45 1.04E+00 −0.13

128 3.93E−01 0.52 1.87E−01 1.56 9.72E−01 0.10

256 2.04E−01 0.95 4.15E−02 2.17 5.54E−01 0.81

N © Order � Order Order

32 7.26E−01 7.26E−01 9.01E−01

64 4.28E−01 0.76 4.18E−01 0.80 7.34E−01 0.30

128 1.36E−01 1.65 1.04E−01 2.01 3.07E−01 1.26

256 5.62E−02 1.27 2.43E−02 2.10 1.45E−01 1.08

Table 3 The values of errors and orders of the graph in Fig. 3 by P2-element

N � Order Order � order

32 6.86E−01 6.86E−01 9.22E−01

64 4.06E−01 0.76 3.97E−01 0.79 1.31E+00 −0.51

128 1.67E+02 −8.68 8.30E−01 −1.06 1.72E+03 −10.36

256 1.42E+27 −82.81 3.05E−03 8.09 3.10E+28 −83.90

N © Order � Order order

32 6.03E−01 6.03E−01 7.38E−01

64 2.09E−01 1.53 1.17E−01 2.37 3.33E−01 1.15

128 5.48E−02 1.93 1.59E−02 2.88 9.86E−02 1.76

256 1.38E−02 1.99 2.66E−03 2.58 3.97E−02 1.31

where

φe(x, t) ≡ σ

σ + 4νt
exp

{

− (x̄1(t) − x1,c)2 + (x̄2(t) − x2,c)2

σ + 4νt

}

,

(x̄1, x̄2)(t) ≡ (x1 cos t + x2 sin t,−x1 sin t + x2 cos t),

(x1,c, x2,c) ≡ (0.25, 0), σ ≡ 0.01.

In this problem the identity Π
(1)
h u = u holds. This problem does not satisfy our

setting because Ω is not a polygon and u �= 0 on ∂Ω . The function φe in Fig. 2 (left)
satisfies (1a) and (1c) but does not satisfy the boundary condition (1b). However, we
may apply the schemes and treat φe as the solution since the value of φe on ∂Ω is
almost equal to zero, less than 10−15, and we may neglect the effect of the boundary
value and the term

∫

K (φn−1
h ◦ Xn

1 )ψhdx and
∫

K (φn−1
h ◦ Xn

1h)ψhdx on the element K
touching the boundary.

123



A genuinely stable Lagrange–Galerkin scheme 137
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Fig. 4 Solutions φn
h (nΔt � 2π) in Example 1 by Scheme LG′ (top left) and Scheme GSLG(top right)

for P1-element, and by Scheme LG′ (bottom left) and Scheme GSLG(bottom right) for P2-element

Let N be the division number of the circle.We set h ≡ 2π/N , N = 32, 64, 128 and
256. Figure 2 (right) shows the triangulation of Ω̄ for N = 64. The time increment
Δt is set to be c1h and c2h2 for P1-element (c1 = 4

5π � 0.255, c2 = 64
5π2 � 1.30),

c3h2 and c4h3 for P2-element (c3 = 128
5π2 � 2.59, c4 = 2048

5π3 � 13.21) so that we

can observe the convergence behavior of O(hk) for EH1
0
, and O(hk) and O(hk+1) for

EL2 when Pk-element is employed.
In the following figures we use the symbols shown in Table 1. Figure 3 shows

the log-log graphs of EL2 and EH1
0
versus h. The left graph shows the results of P1-
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Fig. 5 The triangulation of Ω̄ for N = 16 in Example 2
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Fig. 6 Graphs of EL2 and EH1
0
versus h in Example 2 with ν = 10−2 by Pk -element. k = 1 (left) and

k = 2 (right)

element and Table 2 shows the values of them. The convergence order of EL2 with
Δt = O(h) is less than 1 in Scheme LG′ (�) and more than 1 in Scheme GSLG (©).
The orders of EL2 with Δt = O(h2) are almost 2 for small h in both schemes ( , �).
The convergence of EH1

0
is not observed in Scheme LG′ (�) while the order is almost

1 in Scheme GSLG ( ). The right graph of Fig. 3 shows the results of P2-element
and Table 3 shows the values of them. The errors EL2 with Δt = O(h2) are too
large at N = 128 and 256 to be plotted in the graph in Scheme LG′ (�) while the
convergence order is almost 2 in Scheme GSLG (©). The error EL2 withΔt = O(h3)
is large at N = 128, but it becomes small again at N = 256 in Scheme LG′ ( ). We
will discuss the reason why such a behavior occurs in the forthcoming paper [20].
The order is greater than 2.5 in Scheme GSLG (�). The errors EH1

0
are too large at

N = 128 and 256 to be plotted in the graph in Scheme LG′ (�) while we can observe
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Table 4 The values of errors and orders of the graph in Fig. 6 by P1-element

N � Order Order � Order

8 8.14E−02 8.14E−02 1.10E−01

16 3.64E−02 1.16 1.90E−02 2.10 4.36E−02 1.34

32 1.70E−02 1.10 4.58E−03 2.05 1.87E−02 1.22

64 8.53E−03 0.99 1.19E−03 1.94 9.18E−03 1.03

N © Order � Order Order

8 8.97E−02 8.97E−02 1.09E−01

16 3.68E−02 1.29 2.13E−02 2.07 4.23E−02 1.37

32 1.78E−02 1.05 4.83E−03 2.14 1.92E−02 1.14

64 8.90E−03 1.00 1.29E−03 1.90 9.43E−03 1.03

Table 5 The values of errors and orders of the graph in Fig. 6 by P2-element

N � Order Order � Order

8 7.01E−02 4.50E−02 7.37E−02

16 1.77E−02 1.99 5.72E−03 2.98 1.85E−02 1.99

32 4.44E−03 2.00 7.11E−04 3.01 4.63E−03 2.00

64 1.11E−03 2.00 8.86E−05 3.00 1.15E−03 2.01

N © Order � Order Order

8 6.31E−02 3.87E−02 6.60E−02

16 1.58E−02 2.00 6.89E−03 2.49 1.64E−02 2.01

32 3.98E−03 1.99 1.42E−03 2.28 4.12E−03 1.99

64 9.90E−04 2.01 3.37E−04 2.08 1.02E−03 2.01

the convergence of EH1
0
but the order is less than 2 in Scheme GSLG ( ). The errors

of Scheme GSLG are smaller than those of Scheme LG′ in both cases of P1- and
P2-element.

Figure 4 shows the solutions φn
h for h = 2π/64 � 0.0982,Δt = 0.0065, nΔt �

2π . In the case of P1-element, the solution of Scheme LG′ is oscillatory while that
of Scheme GSLG is much better though a small ruggedness is observed. In the case
of P2-element, the solution of Scheme LG′ is quite oscillatory while that of Scheme
GSLG is stable.

Example 2 In (1), Ω is the square (0, 1) × (0, 1), and we set T = 1, ν = 10−2 and
10−5,

u(x, t) ≡ (sin πx1 sin πx2, sin πx1 sin πx2), f ≡ ∂φe

∂t
+ u · ∇φe − νΔφe,

φ0 ≡ φe(·, 0),
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Fig. 7 Graphs of EL2 and EH1
0
versus h in Example 2 with ν = 10−5 by Pk -element. k = 1 (left) and

k = 2 (right)

Table 6 The values of errors and orders of the graph in Fig. 7 by P1-element

N � Order Order � Order

8 9.53E−02 9.53E−02 2.90E−01

16 3.94E−02 1.27 4.17E−02 1.19 2.00E−01 0.54

32 1.82E−02 1.11 1.33E−02 1.65 1.09E−01 0.88

64 9.07E−03 1.00 3.44E−03 1.95 5.12E−02 1.09

N © Order � Order Order

8 9.70E−02 9.70E−02 2.23E−01

16 3.93E−02 1.30 2.86E−02 1.76 1.23E−01 0.86

32 1.89E−02 1.06 7.42E−03 1.95 6.02E−02 1.03

64 9.45E−03 1.00 1.91E−03 1.96 3.08E−02 0.97

where
φe(x, t) ≡ cos(2π t) sin2(πx1) sin(2πx2).

In this problem, Π(1)
h u �= u. Let N be the division number of each side of Ω̄ . We set

h ≡ 1/N , N = 8, 16, 32 and 64. Figure 5 shows the triangulation of Ω̄ for N = 16.
The time increment Δt is set to be c1h and c2h2 for P1-element (c1 = 0.125, c2 =
1), c3h2 and c4h3 for P2-element (c3 = 1, c4 = 5.12) so that we can observe the
convergence behavior of O(hk) for EH1

0
, and O(hk) and O(hk+1) for EL2 when

Pk-element is employed.
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Table 7 The values of errors and orders of the graph in Fig. 7 by P2-element

N � order order � order

8 7.45E-02 4.74E-02 1.88E-01

16 1.81E-02 2.04 6.77E-03 2.81 1.25E-01 0.59

32 3.94E+00 −7.77 1.16E-03 2.55 1.22E+02 −9.93

64 1.10E+00 1.84 1.17E-04 3.31 8.17E+01 0.58

N © order � order order

8 6.76E-02 4.17E-02 1.03E-01

16 1.69E-02 2.00 8.80E-03 2.24 4.68E-02 1.14

32 4.24E-03 1.99 2.04E-03 2.11 1.67E-02 1.49

64 1.05E-03 2.01 4.43E-04 2.20 5.84E-03 1.52

Figure 6 shows the log-log graphs of EL2 and EH1
0
versus h with ν = 10−2. The

left graph shows the results of P1-element and Table 4 shows the values of them. The
convergence orders of EL2 withΔt = O(h) are almost 1 in both schemes (�,©). The
orders of EL2 with Δt = O(h2) are almost 2 in both schemes ( , �). The orders of
EH1

0
are almost 1 in both schemes (�, ). The right graph of Fig. 6 shows the results of

P2-element and Table 5 shows the values of them. The convergence orders of EL2 with
Δt = O(h2) are almost 2 in both schemes (�,©). The order of EL2 withΔt = O(h3)
is almost 3 in Scheme LG′ ( ) and almost 2 in Scheme GSLG (�). The orders of EH1

0
are almost 2 in both schemes (�, ). These results are consistent with the theoretical
ones of Scheme GSLG, EL2 = O(Δt + h2 + hk+1) and EH1

0
= O(Δt + h2 + hk).

Figure 7 shows the log-log graphs of EL2 and EH1
0
versus h with ν = 10−5. The

left graph shows the results of P1-element and Table 6 shows the values of them. The
convergence orders of EL2 with Δt = O(h) are almost 1 in both schemes (�, ©).
The orders of EL2 with Δt = O(h2) are almost 2 for small h in both schemes ( ,
�). The orders of EH1

0
are almost 1 in both schemes (�, ). The right graph of Fig.

7 shows the results of P2-element and Table 7 shows the values of them. The errors
EL2 with Δt = O(h2) are too large at N = 32 and 64 to be plotted in the graph in
Scheme LG′ (�) while the convergence order is almost 2 in Scheme GSLG (©). The
order EL2 with Δt = O(h3) is almost 3 for small h in Scheme LG′ ( ) and almost 2
in Scheme GSLG (�). The errors EH1

0
are too large at N = 32 and 64 to be plotted in

the graph in Scheme LG′ (�) while we can observe the convergence but the order is
less than 2 in Scheme GSLG ( ). In order to obtain the theoretical convergence order
O(h2), it seems that finer mesh will be necessary.

7 Conclusions

We have presented a genuinely stable Lagrange–Galerkin scheme for convection-
diffusion problems. In the scheme locally linearized velocities are used and the
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integration is executed exactly without numerical quadrature. For the Pk-element we
have shown error estimates of O(Δt + h2 + hk+1) in �∞(L2)-norm and of O(Δt +
h2 + hk) in �∞(H1)-norm. We have also obtained error estimate, c(Δt + h2 + hk) in
�∞(L2)-norm, where the coefficient c is dependent on the exact solution φ but inde-
pendent of the diffusion constant ν. Numerical results have reflected these estimates.
The extension to the Navier–Stokes equations will be discussed in a forthcoming
paper.
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