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Abstract From the ecological point of view of competitor-mediated coexistence,
we consider a three-species competition-diffusion system which models one exotic
competing speciesW invading the native system of two strongly competing speciesU
and V . Even if W is weaker than the native species, it is found that both competitive
exclusion and competitor-mediated coexistence may occur, depending on the growth
rate ofW . Firstly, we show that there are two different planarly stable traveling waves
involving the species (U, V ) and (U, V,W ), respectively. Studying the interaction of
these waves in one dimension offers insight about whether or not coexistence occurs
in two-dimensional domains. However, when planar fronts collide at a certain angle,
phenomena which are not immediately reducible to the one-dimensional case can be
observed, such aswedge-shaped patterns. In particular, the interaction between a radial
and a planar front produces different types of moving patterns which seem to tend to
truly two-dimensional traveling waves, such as wedge-, zipper- and biwedge-shaped
traveling waves. All these waves arise from the interaction of stable planar fronts and
their velocities can be computed by only knowing their asymptotic behaviour. We
also show how such waves exist only if the angle between the planar fronts is under a
certain critical value.
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1 Introduction

Understanding of the mechanism behind the rich biodiversity observed in natural
ecosystems is an activefield of research inmathematical ecology.Onepossible cause of
biodiversity is considered to be competitor-mediated coexistence. As a simple example
of such phenomenon, take an ecosystem inhabited by three ecological species, two
of which are strongly competing native species (say, U and V ) and the third is an
exotic competing species (say, W ). If U and V cannot coexist when W is absent but
are able to do so after W invades the ecosystem, we say that competitor-mediated
coexistence has occurred. The occurrence of such coexistence has been investigated
by using macroscopic continuous models. If the three competing species disperse
randomly, the situation canbedescribedby the following competition-diffusion system
of Lotka–Volterra type (e.g., [1,23]):

⎧
⎪⎨

⎪⎩

ut = d1Δu + (r1 − u − b12v − b13w)u

vt = d2Δv + (r2 − v − b21u − b23w)v

wt = d3Δw + (r3 − w − b31u − b32v)w,

(1)

where u(x, t), v(x, t) and w(x, t) are respectively the population densities for the
three competing speciesU , V andW for space x and time t . The parameters di , ri and
bi j (i, j = 1, 2, 3, i �= j) denote respectively the diffusion rates, the intrinsic growth
rates and the inter-specific competition rates. All of them are positive constants. With
this model formulation, we note that the maximum density for the i-th species, i.e., the
concentration the species would naturally reach in the absence of other competitors
(carrying capacity), is given by ri (i = 1, 2, 3). From now on, to simplify the notation
we will denote the growth term of the equation for u by

f1(u, v, w) = (r1 − u − b12v − b13w)u.

Similarly, we will denote by f2 and f3 the growth terms for the v and w equation,
respectively. System (1) is usually considered in a bounded domain Ω with the initial
and boundary conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω, (2)

and
∂u

∂ν
(x, t) = 0,

∂v

∂ν
(x, t) = 0,

∂w

∂ν
(x, t) = 0, x ∈ ∂Ω, t > 0, (3)
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Two-dimensional traveling waves in a competition-diffusion system 709

respectively, where u0(x), v0(x) and w0(x) are given non-negative functions and ν

denotes the unit vector normal to the boundary ∂Ω .
Firstly, we explain the behaviour of the two strongly competing species U and V

in absence of the exotic species W . In this case, (1) reduces to the well-studied two
species competition-diffusion system for U and V

{
ut = d1Δu + (r1 − u − b12v)u = d1Δu + f1(u, v, 0)

vt = d2Δv + (r2 − v − b21u)v = d2Δv + f2(u, v, 0).
(4)

We assume that

b12 > 1 and b21 > 1, (A1)

which means that U and V are strongly competing, i.e., competitive exclusion [9]
occurs between them in the case they cannot move (see for example [20] for a dis-
cussion about the competition ODEs obtained by setting di = 0, i = 1, 2, 3). If the
domain Ω is convex, any non-constant equilibrium solution of (4) is unstable under
the boundary conditions (3) [15] and any positive solution generically converges to
either (r1, 0) or (0, r2) [11]. This means that competitive exclusion occurs between
two strongly competing species, even if they are allowed tomove by diffusion in space.

Unfortunately, the results above do not address the more practical and naïve
question: Which species will be surviving after a long time? In order to answer
it, the information given by the one-dimensional traveling wave solution (u, v)(z)
(z = x − θuvt ∈ R) with signed velocity θuv is particularly important. This solution
is given by {

d1uzz + θuvuz + f1(u, v, 0) = 0, z ∈ R

d2vzz + θuvvz + f2(u, v, 0) = 0, z ∈ R
(5)

with the boundary conditions

{
limz→−∞(u(z), v(z)) = (r1, 0)

limz→+∞(u(z), v(z)) = (0, r2).
(6)

It is known that the solution (u(z), v(z)) to (5)–(6) with velocity θuv is unique (up to
translations) and stable [14].

From now on we assume

θuv > 0, (A2)

which indicates that U is stronger than V when they move by diffusion, since U
asymptotically occupies the whole domain. If we had that θuv < 0, the situation would
be reversed so thatU would go extinct. In the case θuv = 0 instead, the traveling wave
does not give any further information on the dynamics of U and V . However, even
in this last case, in one-dimensional bounded domains we expect that the interface
between U and V moves, since only one species can eventually survive, being there
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710 L. Contento et al.

(a) (b)

Fig. 1 Equilibria and linear stability for the system of ODEs associated to (1). The points u, v andw denote
respectively the equilibria (r1, 0, 0), (0, r2, 0) and (0, 0, r3).Black andwhite dots denote respectively linear
stability and instability of equilibria in the three-species system, while arrows denote stability in each two-
species subsystem. a Equilibria for small values of r3 b Equilibria for intermediate values of r3

no non-constant stable equilibria. In two-dimensional domains (both bounded and
unbounded) instead, the motion of the front is driven mostly by curvature effects [8].

We now consider the situation where an exotic speciesW invades the native (U, V )

system.We are interested in investigating whether and in which situations competitor-
mediated coexistence occurs in (1)–(3). Along this direction, the coexistence problem
has already been discussed in presence of cyclic competition among the three species
U , V and W [1,7]. In this paper we consider a different situation, that is, an exotic
species W which is weaker than the other two. This setting can be classified into two
cases.One possibility is thatW is absolutelyweaker than bothU andV in the sense that

r1
r3
b31 > 1 >

r3
r1
b13 and

r2
r3
b32 > 1 >

r3
r2
b23, (7)

as shown schematically in Fig. 1a. For example, this situation is achieved by choosing
r3 suitably small while keeping all the other parameters fixed. In such case, one can
intuitively expect that competitor-mediated coexistence does not occur, although this
has not been proved analytically.

The other case is that W is absolutely weaker than V but strongly competing (not
absolutely stronger as in [1]) with U in the sense that

r2
r3
b32 > 1 >

r3
r2
b23,

r3
r1
b13 > 1 and

r1
r3
b31 > 1. (A3)

This situation can be achieved for intermediate values of r3 (the exact range depending
on the values of the other parameters). In this case, (A1) and (A3) imply that, in the
ODEs associated to (1), (r1, 0, 0) and (0, r2, 0) are locally stable, while (0, 0, r3) is
saddle-type unstable, as shown in Fig. 1b. In addition to these conditions, if we require
any positive equilibrium of the ODEs to lie outside the domain of values admissible
as densities (i.e., non-negative values smaller than the carrying capacities) or to be
unstable, then it is known that in general any positive solution (u(t), v(t), w(t)) of
the ODEs tends to either (r1, 0, 0) or (0, r2, 0) [12,27]. This means that, in the sense
of ODEs, W does not influence the dynamics of U and V asymptotically and thus
competitor-mediated coexistence cannot occur. This result also holds when spatial
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Two-dimensional traveling waves in a competition-diffusion system 711

dispersal is added if all diffusion rates are very large [4]. This conclusion seems to be
obvious because W is weaker in (U, V,W ) system.

However, our recent paper [17] emphasizes that, if the diffusion rates are not very
large, this is not necessarily correct, i.e., it is possible forU and V to coexist dynami-
cally even if W is “weak” in the sense above. Consider the one-dimensional traveling
wave solutions associated to the (v,w) and (w, u) subsystems, defined in a similar way
to equations (5)–(6), and denote the velocities of such traveling waves by θvw and θwu ,
respectively. In the case of the monostable subsystem (v,w) one knows that the veloc-
ity θvw of any traveling wave must be positive, since the equilibrium (0, r3) is unstable
[13]. In the case of the bistable subsystem (w, u) the sign of the (unique) velocity θwu

depends on the parameter values. As an additional assumption, we will require that

θwu > 0. (A4)

Assumptions (A1–4) imply that we have cyclic competition as defined in [1], even
if the underlying system considered here has a very different structure. This means
that when each couple of species is considered in absence of the other one, U results
stronger than V , V stronger than W and W stronger than U in space. Thus we may
imagine the possibility that the V species, which isweaker in the absence of the invader
W , becomes able to overcomeU by cooperatingwithW , and that competitor-mediated
coexistence occurs.

In order to show that competitor-mediated coexistence ofU and V is indeed possi-
ble, wewill numerically solve the problem (1)–(3) for the following parameter values:

d1 = d2 = d3 = 1, r1 = r2 = 28,

b12 = 22

21
, b13 = 4, b21 = 37

21
, b23 = 3

4
, b31 = 26

21
, b32 = 22

21
. (8)

The intrinsic growth rate r3 of the invading speciesW is taken to be a free parameter. Its
role can be ecologically interpreted as follows: The larger r3 (respectively smaller),
the more favourable (respectively hostile) the environment for the invader W . For
this reason, we expect r3 to play an important role in making competitor-mediated
coexistence possible. With the parameters values as in (8), we must take r3 in the
interval (7, 29 + 1/3) in order to enforce (A3). In addition, we note that in the sub-
interval (21 + 147/529, 28 + 140/373) an admissible positive constant equilibrium
solution exists but is unstable.

We consider (1)–(3) in a rectangular domainΩ . Suppose that the speciesU (respec-
tively V ) is initially placed at full carrying capacity in the left (respectively right) half
of Ω . Then, in the absence of W competitive exclusion happens between U and V ,
so that the interface between them moves towards the right withU displacing V . This
means that, in the absence ofW , the whole domain will be occupied in the long run by
the sole species U . Now consider the situation in which the exotic species W invades
a small bounded region around the interface between U and V , as shown in Fig. 2.
The resulting behaviour of U , V and W for different values of r3 is shown in Figs. 3,
4, 5, 6, which demonstrate that either competitive exclusion or competitor-mediated
coexistence occurs, sensitively depending on the value of r3. When r3 is relatively
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712 L. Contento et al.

Fig. 2 Initial conditions (2)
consisting of an interface
between regions dominated
respectively by U and V being
perturbed by the invasion by the
exotic species W . The red
(respectively green) colour
denotes regions occupied mainly
by U (respectively V ), while the
blue colour denotes regions
where W is not negligible (W is
nowhere the dominant species)

Fig. 3 Competitive exclusion for r3 = 27 and other parameters specified as in (8)

small (r3 = 27), U eventually prevails on the other species, as it is expected since
W is too weak to take hold in the new habitat, and competitor-mediated coexistence
does not occur, as shown in Fig. 3. For intermediate values of r3 (r3 = 27.12 and
27.5) the behaviour drastically changes, as shown in Figs. 4 and 5, and the three
species coexist dynamically. We remark that, even in this parameter range, certain
initial conditions (for example when the area initially occupied by W is too small
or far away from the interface between U and V ) do not lead to coexistence. When
r3 is relatively large (r3 = 28.3), we have again competitive exclusion, as shown in
Fig. 6, but in this case V is the only species that eventually survives. We emphasize
that the invasion by W has thus reversed the natural competition relation between U
and V : V becomes the dominant species (compatibly with the initial conditions), even
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Two-dimensional traveling waves in a competition-diffusion system 713

Fig. 4 Dynamic coexistence for r3 = 27.12 and other parameters specified as in (8)

Fig. 5 Dynamic coexistence for r3 = 27.5 and other parameters specified as in (8)
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714 L. Contento et al.

Fig. 6 Competitive exclusion
for r3 = 28.3 and other
parameters specified as in (8).
Here the reference frame is
moving with the same velocity
of the interface between U and
V , in order to track the
wedge-shaped features as they
move

if in the absence of W it was normally doomed to extinction. Observing Figs. 4, 5
and 6, we notice that such diverse spatio-temporal patterns are produced by the del-
icate interaction of two different kinds of propagating waves involving the species
(U ,V ) and (U ,V ,W ), respectively. In particular, Fig. 6 exhibits that the transient
behaviour distinctive of the reversal of roles between U and V consists in wedge-
shaped patterns originating from the destructive interaction of two fronts of different
type.

In this paper, we are concerned with the study of the interaction of these two kinds
of propagating fronts composed respectively by the species (U ,V ) and (U ,V ,W ). In
particular, we are interested in how their behaviour changes as the value of the free
parameter r3 varies. We will firstly consider the one-dimensional case and then show
how the extension to two dimensions produces several interesting novel patterns, such
as the moving wedges shown in Fig. 6.

2 Interaction of propagating fronts

2.1 One-dimensional traveling wave solutions

We first note that, under assumptions (A1–4), (1) is a bistable system in the sense
that (r1, 0, 0) and (0, r2, 0) are locally stable. In this section, we study the existence
of one-dimensional traveling wave solutions which connect (r1, 0, 0) and (0, r2, 0) at
infinities. These traveling wave solutions (u(z), v(z), w(z)) (z = x − θ t) with signed
velocity θ satisfy
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Two-dimensional traveling waves in a competition-diffusion system 715

Fig. 7 Global structure of the solutions to (9)–(10) for the parameters given in (8) and with r3 taken to be
a free parameter. The horizontal and the vertical axes are respectively the parameter r3 and the velocity θ

of the traveling waves. The branch corresponding to the stable trivial traveling wave is in solid red, while
the branch of the non-trivial ones is in blue

⎧
⎪⎨

⎪⎩

d1uzz + θuz + f1(u, v, w) = 0, z ∈ R

d2vzz + θvz + f2(u, v, w) = 0, z ∈ R

d3wzz + θwz + f3(u, v, w) = 0, z ∈ R

(9)

with the boundary conditions

{
limz→−∞(u(z), v(z), w(z)) = (r1, 0, 0)

limz→+∞(u(z), v(z), w(z)) = (0, r2, 0).
(10)

Obviously, the problem (9)–(10) has a non-negative and bounded solution given by
(u(z), v(z), 0) and having velocity θ = θuv > 0, which is independent of r3, where
(u(z), v(z)) is the unique solution of (5)–(6). We call it the one-dimensional trivial
traveling wave solution of (1). It is noted that the trivial traveling wave is stable in the
full system (Ikeda, personal communication (2006)).

A natural question is whether or not the system (1) admits non-trivial traveling
wave solutions, i.e., solutions of (9)–(10) in which w(z) is not zero everywhere. We
are especially interested in the existence and velocity θ of such solutions as r3 varies.
Using the numerical continuation software AUTO [6], we can solve (9)–(10) and draw
the global structure of the traveling wave solutions as r3 is varied, as shown in Fig. 7.
When r3 is relatively small (say, r3 = 27), Fig. 7 indicates that there is no non-trivial
traveling wave solution. On the other hand, as r3 increases, a saddle-type bifurcation
appears, so that two non-trivial traveling waves are generated, one of which is stable
with velocity θuvw and the other is unstable with velocity θ̃uvw. We find that θuvw < 0,
whichmeans that, thanks to the presence ofW , the direction of propagation is reversed
in the non-trivial stable traveling wave. This indicates that V drives U to extinction
everywhere as t → ∞. The three traveling wave solutions for r3 = 28.3 are reported
in Fig. 8. Unfortunately, the analytical proof of existence and stability of non-trivial
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716 L. Contento et al.

Fig. 8 Profiles of the solutions to (9)–(10) when r3 = 28.3 and the other parameters are specified as in (8).
From left to right, the trivial traveling wave (θuv = 2.575), the unstable non-trivial one (θ̃uvw = 1.509)
and the stable non-trivial one (θuvw = −2.938) are reported, where u, v and w are drawn in red, green and
blue, respectively

solutions to (9)–(10) is still open. In the following, we will denote the speeds of the
two stable one-dimensional traveling waves as cuv = |θuv| and cuvw = |θuvw|.

Another important property is the planar stability of these two stable traveling wave
solutions with speeds cuv and cuvw. We numerically confirm that both are planarly
stable in two dimensions when d1 = d2 = d3 = 1, as is the case for (8). However, we
note that planar stability does not necessarily hold for different values of the diffusion
rates [17]. We assume that all stable one-dimensional traveling wave solutions which
are discussed in this paper are also planarly stable.

2.2 Interaction of traveling waves in one spatial dimension

Before considering the interaction of two propagating fronts in two spatial dimensions,
whose resulting behaviour has been anticipated in Figs. 4, 5 and 6, we need to firstly
studywhat happens in one dimension. There are severalways inwhich the twodifferent
kinds of stable one-dimensional traveling waves shown in the previous section may
interact.

(i) Interaction of trivial traveling waves: The waves in this case move in opposite
directions with the same speed cuv . The waves approach each other and are
annihilated on collision, so that the final state as t → ∞ is the equilibrium
(r1, 0, 0) (see Fig. 9) [18].

(ii) Interaction of non-trivial traveling waves: Also in this case the waves move
in opposite directions, but the common speed is now cuvw. Similarly to (i), anni-
hilation of the waves occurs, so that the final state as t → ∞ is (0, r2, 0) (see
Fig. 10).
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Two-dimensional traveling waves in a competition-diffusion system 717

Fig. 9 Annihilation of one-dimensional trivial waves

Fig. 10 Annihilation of one-dimensional non-trivial waves for r3 = 27.5

(iii) Interaction of trivial and non-trivial traveling waves: Assume that both waves
move in the positive direction. Several cases have to be distinguished, depending
on the relative position and relative speed of the two waves.
(a) The trivial traveling wave is the leftmost one
(a-1) cuv > cuvw: Fig. 11 (r3 = 27.12) shows that after collision occurs the

rightmost wave continues to propagate unaffected, while the leftmost one
is replaced by a new non-trivial wave moving in the opposite direction as
if it were reflected.

(a-2) cuv > cuvw and cuv ≈ cuvw: Fig. 12 (r3 = 27.5) shows that the waves
merge and a single homoclinic-type traveling wave appears.
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718 L. Contento et al.

Fig. 11 Reflection of one-dimensional trivial and non-trivial waves for r3 = 27.12

Fig. 12 Occurrence of a homoclinic wave by merging of one-dimensional trivial and non-trivial waves for
r3 = 27.5

(a-3) cuv < cuvw: Fig. 13 (r3 = 28.3) shows that the gap between the two
waves keeps growing so that nothing happens, in the sense that there is
no interaction between the fronts.

(b) The non-trivial traveling wave is the leftmost one
(b-1) cuvw < cuv: As in case (a-3) the waves are non-interacting.
(b-2) cuvw > cuv: Fig. 14 (r3 = 28.3) shows that, differently from cases (a-1,2)

above, the two waves are annihilated on collision. In this case too, nothing
of interest seems to happen.

Unfortunately, (ii) and (iii) have not been discussed rigorously yet.
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Two-dimensional traveling waves in a competition-diffusion system 719

Fig. 13 Non-interacting one-dimensional trivial and non-trivial waves for r3 = 28.3

Fig. 14 Annihilation of one-dimensional non-trivial and trivial waves for r3 = 28.3

2.3 Interaction of propagating fronts in two dimensions

When we extend the one-dimensional waves to planar ones, it is obvious to see that
the latter interact in the same way as the former. Even in presence of curvature, the
basic interactions will (mostly) remain the same. This can give insight in the origin of
the patterns produced from the initial conditions shown in Fig. 2.

We start by noting that, in absence of W , the solution will tend to the right-moving
planar trivial traveling wave with speed cuv = 2.575, independently of the value of
r3. For r3 = 27, no non-trivial traveling wave exists, as seen in Fig. 7. Thus, when W
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invades near the interface betweenU and V , it is not able to survive for long, since the
front profile will tend to the trivial traveling wave, which is the only stable wave in this
case. As a result, competitive exclusion occurs and the species U becomes dominant,
as shown in Fig. 3.

For r3 = 27.12 instead, a stable non-trivial traveling wave exists and has speed
cuvw = 0.688, which is quite smaller than cuv . This corresponds to case (a-1) and
the situation is drastically changed. The reflection of colliding fronts generates addi-
tional spiral cores other than the central ones and the delicate balance between the
spiral dynamics and the reflection/annihilation of fronts generates the complex spatio-
temporal patterns shown in Fig. 4.Weobserve that in this case reflection is not perfectly
attained, i.e., the reflected front reverses direction a second time, transforming back
into a trivial front. This is due to the fact that, since in presence of curvature the fronts
are not parallel when they interact, the actual relative speed of the fronts is reduced
enough for reflection not to successfully occur.Wewill discuss this phenomenon again
later in Sect. 4.

For r3 = 27.5, cuvw = 1.925 is just slightly smaller than cuv . This corresponds
to case (a-2). In this case we know that colliding fronts merge in a homoclinic one,
giving rise to a wave train in one dimension. Then, a pair of spiral waves appears
in two dimensions, as shown in Fig. 5. This behaviour is the same exhibited by the
Belousov Zhabotinsky chemical reaction [19].

Finally, for r3 = 28.3 we have that cuvw = 2.938 is larger than cuv , which corre-
sponds to case (a-3), so that the two fronts annihilate on collision in one dimension.
However, unlike the previous cases inwhich the knowledge of one-dimensional behav-
iour gave us important clues about the patterns appearing in two dimensions, in this
case giving a prediction is more difficult, since in one dimension no structure is left
after annihilation. Instead, the fact that the interaction happens in two spatial dimen-
sions now plays a fundamental role. As we already observed, unless the fronts are
planar and parallel, they collide at a certain angle. As a result, annihilation does not
happen instantly on the whole length of the interface, but the points where destructive
interaction occurs move roughly in a straight line, giving rise to two moving wedge-
like patterns, as shown in Fig. 6. This last case suggests us the following conjecture: A
two-dimensional wedge-shaped traveling wave solution of (1) exists if the condition
cuv < cuvw is satisfied.

In the next sections, we will investigate numerically whether this conjecture holds
or not and discuss the mechanism behind the appearance of such waves.

3 Wedge-shaped traveling waves in two dimensions

3.1 Appearance of a wedge-shaped traveling wave

In the previous section, we have shown that the interaction of the stable non-trivial and
trivial waves of (1) produces diverse patterns in two spatial dimensions. We have also
emphasized that the pattern properties are mainly due to the type of wave interaction,
which depends on the ratio between the velocities of the one-dimensional traveling
waves, which is in turn a function of the free parameter r3. In this section, assuming
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Fig. 15 Structure of an
asymmetric wedge-shaped
traveling wave with velocity c. η
is the angle between the planar
fronts constituting the sides of
the wedge, while γ is the angle
between the wedge bisector and
the direction of the velocity c

U
W

V

c

that cuv < cuvw, which is the case for relatively large values of r3 (see Fig. 7), we
focus on wedge-shaped traveling wave solutions which propagate inR2 with constant
velocity and constant shape.

In one dimension, there is no interaction when a trivial traveling wave approaches
a non-trivial wave from behind, since the gap between the two steadily increases.
Conversely, when the faster non-trivial wave is the back wave and the slower trivial
wave is the front one, they approach each other and are annihilated on collision, as
shown in Fig. 14. We remark that in both interactions nothing interesting happens in
one dimension. However, if (1) with r3 = 28.3 and the other parameters as in (8)
is considered in two dimensions, we observe characteristic wedge-like patterns, as
shown in Fig. 6. This suggests the existence of truly two-dimensional traveling wave
solutions of the equation (1) in R

2. These waves would arise from the destructive
interaction of two planar fronts and, as a result, have a wedge-like shape, as shown
schematically in Fig. 15. The back side of such wedge would consist of the faster
non-trivial wave moving towards the inside of the wedge, while its front side would be
made up by the trivial wave directed outwards. In the neighborhood of the wedge tip,
the planar fronts collide and annihilate each other, as is expected fromone-dimensional
interaction behaviour. Rather surprisingly, the wedge in its entirety appears to move
at a constant velocity without changing shape.

Existence results for truly two-dimensional traveling wave solutions are still scarce.
For example, the Allen–Cahn equation has been shown to possess simple wedge-
shaped traveling wave solutions [22]. This equation admits only one kind of stable
traveling wave, which interacts destructively with itself. Thus a wedge can be built,
but its sides are both made up by the same stable wave. As a result, the traveling
wave is symmetric with respect to the wedge bisector and its velocity also lies on
such bisector. Recently, this result has been extended to the two-species competition-
diffusion system [21], showing the existence of symmetric-wedges composed by the
sole trivial front, which, as we have seen in Fig. 9, interacts destructively with itself.
For these two kinds of wedges, the angle between the fronts can assume any value
between 0 and π , i.e., we can have a symmetric wedge as long as its front velocities
are directed inwards.

The essential difference between our system (1) and the two systems mentioned
above is that in our case two distinct stable traveling waves are present instead of only
one. Thus, the velocity of ourwedge-shapedwave has not to obey the same restrictions,
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722 L. Contento et al.

that is, its direction is different from the wedge bisector and forms with it an angle
γ , as shown in Fig. 15. To our knowledge, the occurence of such non-symmetric
wedge-shaped traveling waves in reaction-diffusion systems has never been observed
before.

If such wedge-shaped traveling waves exist in R
2, given the speeds cuv and cuvw

associated to its sides, the following questions arise naturally:

(Q1) What is the angle between the two sides of the wedge?
(Q2) What is the velocity of the traveling wave?
(Q3) In particular, what is the direction of such velocity?

(Q2-3) will be answered in the next section. For the answer to (Q1), we will rely on
numerical simulation to gather evidence on the existence of such asymmetric wedge-
shaped traveling waves as the angle between the planar fronts varies.

3.2 The velocity of wedge-shaped traveling waves

In [26] a relation among the wedge angle η, the speeds cuv and cuvw of the constituent
planar waves and the velocity c of the wedge-shaped traveling wave has been pro-
posed. Such relation has been obtained by assuming that each planar front propagates
independently at its own speed and computing the velocity of the wedge tip, i.e., of
the intersection point of the two fronts. Geometrically, this procedure can be carried
out by tracing a parallel line to each front at a distance equal to the front speed, as
shown in Fig. 15. Then, if this conjecture is correct, the vector connecting the wedge
tip to the intersection of these two lines is the velocity of the wedge-shaped traveling
wave.

We remark that no information relative to the competition term of the equation is
used (except what is already contained in the front speeds), so that the same formula
can be extended to other systems, if they admit a couple of stable planar fronts which
interact destructively. Suppose that a reaction-diffusion system admits awedge-shaped
traveling wave solution with velocity c such that the angle between the sides is η

and the speed of the planar front associated to the left (respectively right) side is θl
(respectively θr ). We consider θl and θr to be signed speeds: a positive value indicates
that the corresponding front velocity is directed towards the inside of the wedge. In
the simple case of the symmetric wedge-shaped waves shown in [21], both sides are
composed by inward-moving trivial planar fronts, so that we have θl = θr = cuv > 0.
In the case of the hypothetical asymmetric wedge-shaped traveling wave shown in
Fig. 15, we have that the left side of the wedge is made up by a non-trivial planar wave
moving inwards, i.e., θl = cuvw > 0, while the right side consists of a trivial planar
wave moving outwards, i.e., θr = −cuv < 0.

The speed and direction formulas forwedge-shaped travelingwaves are then explic-
itly given by

|c|2 = θ2l + θ2r + 2θlθr cos η

sin2 η
, (11)

tan γ = ρ − 1

ρ + 1
tan

η

2
, (12)
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where γ is the angle between the wedge bisector and the direction of c (γ increases
clockwise), as shown in Fig. 15, and ρ is the signed speed ratio θl/θr . Note that in the
case of an asymmetric wedge-shaped traveling wave we have that ρ < 0.

Another possible justification to (11)–(12) can be given directly from the traveling
wave equation. Consider a generic reaction-diffusion system

ut = DΔu + f(u) in [0, T ] × R
2, (13)

where u : [0, T ]×R
2 → R

m (m is the number of equations),D ∈ R
m×m is a positive

diagonal matrix containing the diffusion coefficients and f : Rm → R
m is the reaction

term. Being a traveling wave solution of (13) with velocity c means solving

DΔU + ∇U c + f(U) = 0 in R2, (14)

where ∇U : R2 → R
m×2 is the Jacobian of U.

First, we remark that the velocity of a planar traveling wave is not unique, in the
sense that, given a planar wave with shape Up associated to a one-dimensional wave
with speed cTW , (Up, cp) solves the traveling wave equation (14) for any vector cp
whose normal component with respect to the front is equal to cTW . From now on,
among the admissible velocities of a planar traveling wave we take the velocity cp
oriented along the normal to the front, whose modulus is equal to the one-dimensional
wave speed cTW .

Let U : R
2 → R

m be a traveling wave solution of (13) with speed c. Suppose
that there exists a planar traveling wave (Ul , cl) of (13) such that in some asymptotic
direction the shape of U coincides with the shape of Ul , as is the case for a side of
a wedge-shaped traveling wave. For the sake of simplicity, suppose that it is actually
possible to findΩ ⊂ R

2 on whichU coincides withUl . Then, also (Ul , c) is a solution
of (14) on Ω , which means c must be one of the possible velocities of the planar
wave Ul . Thus, as discussed in the previous paragraph, we must have c − cl ⊥ cl
or equivalently ctcl = c2l , where ·t is the transpose operator. If we have another
planar traveling wave (Ur , cr ) of (13) satisfying the same conditions, such as the one
associated to the other side of the wedge, we obtain a second relation ctcr = c2r . By
combiningboth of them,weobtain a linear systemwhose solution gives us the formulas
(11)–(12). In Appendix Awe report some propositions formalizing this alternative but
equivalent derivation of the velocity of such two-dimensional traveling waves.

The method presented in this section allows us to determine the velocity of a two-
dimensionalwedge-shaped travelingwave, assuming that awavewith such asymptotic
behaviour exists. The conditions for the existence of such waves will be investigated
in the next section.

3.3 Existence of a critical angle for asymmetric wedge-shaped traveling waves

In order to increase our confidence in the existence of such wedge-shaped traveling
waves, we numerically solve the reaction-diffusion system (1) and the associated
traveling wave equation in two dimensions. In order to increase the reliability of such
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Fig. 16 Asymmetric wedge-shaped traveling wave with angle η = 0.4, for r3 = 28.3 and the other
parameters specified as in (8), obtained by numerically solving the two-dimensional travelingwave equation
associated to (1)

results, we employ a better numerical method than the one used in Sect. 1.More details
are presented in Appendix B.

Consider “wedge-like” initial conditions obtained by taking the two independent
planar fronts corresponding to each wedge side, orienting them so that they form an
angle equal to η and placing each of them in one half-plane. We will check if the
solution to the time-evolution problem (1)–(2), starting from such initial state, con-
verges to an asymmetric wedge-shaped traveling wave with fixed angle η and constant
velocity c, which we expect to be given by (11)–(12). If we observe such convergence,
the resulting traveling wave candidate can be further numerically improved by using
it as a starting guess for the two-dimensional traveling wave equation (14).

When η is relatively small (say, η = 0.4), the procedure explained above yields
with good confidence an asymmetric wedge-shaped traveling wave with angle η, as
shown in Fig. 16. We only show its shape in the proximity of the tip, since far from
it the behaviour tends rapidly to that of independently propagating planar fronts. The
computed value for the velocity c is (2.81711, 0.92533), which compares well against
the value (2.81226, 0.91318) derived from one-dimensional front speeds by using
(11)–(12). This gives us some numerical support to our conjecture about the existence
of asymmetric wedge-shaped traveling waves.

On the other hand, if η is relatively large (say, η = 0.8) we can no longer observe
convergence to a wedge-shaped traveling wave with angle η in the time-evolution
problem (1)–(2), as shown in Fig. 17. By repeating the same procedure for different
initial values of η, we observe that there seems to exist a threshold value for η over
which there is no longer convergence to a traveling wave. We thus expect that the
range of values of η for which a corresponding asymmetric wedge-shaped traveling
wave exists is limited to values under such threshold. We call such limiting value the
critical angle and denote it by ηc. As can be seen in Fig. 17, when η is greater than ηc,
the wedge angle gradually decreases starting from the tip. Surprisingly, the angle near
the tip eventually stabilizes and the final tip shape and velocity seem to be independent
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Fig. 17 Evolution in time of a wedge-like pattern with initial angle η = 0.8, for r3 = 28.3 and the other
parameters specified as in (8). The angle gradually decreases, starting from the tip, tending to ηc . Since
the reference frame is moving with the expected velocity for a wedge having angle η, the tip, which moves
instead with the velocity of the wedge-shaped traveling wave with angle ηc , is gradually left behind

of the initial value of η: According to what one could intuitively expect, this shape
and velocity are those of the tip of a wedge-shaped traveling wave with critical angle.
We think that, given enough time for the wedge of Fig. 17 to evolve, the sides of the
wedge near the tip will straighten up and form an angle equal to ηc. Our conjecture is
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Fig. 18 Interaction of a faster radially expanding non-trivial front with a slower planar trivial front where
the parameters are the same as the ones for Fig. 17

thus that, when the initial angle between the wedge sides is larger than ηc, the limit
shape of the time-evolution problem (1)–(2) is the wedge-shaped traveling wave with
critical angle.

The critical angle ηc arises naturally also in other situations related to wedge-
shaped traveling waves. Consider a planar trivial front which is followed by a radially
spreading non-trivial front. Their collision results in the creation of a couple of moving
wedges. The angle between the wedge sides rapidly increases and appears to converge
to the critical angle ηc, as shown in Fig. 18, while the tip velocity becomes that of a
wedge-shaped traveling wave with critical angle. We remark that this limit behaviour
is independent of the front curvature at the time of first interaction, although speed of
convergence seems to be dependent on it.

Numerical simulations show that the same critical angle ηc is naturally selected as
the angle of wedge-shaped traveling waves in several situations. There may thus be
a common principle underlying these phenomena, which may yield a way to com-
pute the critical angle value without resorting to numerical simulations. The simple
approximation which sees the fronts as independently propagating and considers their
intersection as the wedge tip, while able to give us the correct traveling wave velocity
when the wave actually exists, fails to explain why a wedge cannot form with an angle
larger than a certain threshold. However, it works unchanged in the situation in which
the back front is radially expanding. We start by observing that in this case the angle
η of the wedge at its tip is the angle between the planar front and the tangent to the
radial front, as shown in Fig. 19. It is also equal to the angle formed by the horizontal
direction and the segment connecting the wedge tip with the center of the radial wave.
The propagation of the radial front is in general slowed down by curvature effects, but,
since the curvature radius increases with time, the speed of such front tends asymp-
totically to the planar speed cuvw. We will assume that the radius r of the front at
time t can be written as cuvwt − δ(t), with δ(t) → 0 as t → ∞. The horizontal
component of the distance between the wedge tip and the center of the radial wave is
equal to the position of the planar front, i.e., cuvt +d, where d is the distance between
the center of the radial wave and the planar front at time t = 0. Thus we have that
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Fig. 19 Approximation of a
radial front catching up with a
planar wave, by using
independently propagating
fronts. O is the center of the
radial front; T is the intersection
of the two fronts where
annihilation occurs, i.e. the tip of
the nascent wedge; r is the
distance the radial front has
propagated; η is the wedge angle
at its tip; cuv is the speed of the
planar wave; cuvw is the speed
of the radial front

η(t) = arccos cuv t+d
cuvw t−δ(t) , which tends as t → ∞ to the value arccos cuv

cuvw
. In conclu-

sion, the approximation by independently moving fronts predicts the appearance of a
limit angle whose value is ηc := arccos cuv

cuvw
.

In order to apply this reasoning to the evolution of a wedge-shaped solution with
initial angle larger than ηc, a more intuitive explanation of the above derivation can
be useful. Note that the horizontal component of the velocity of the radial front is
cuvw cos η. When η is small, this value is larger than cuv and the radial front overtakes
the planar one, causing η to increase since the back front is curved. When η reaches
ηc, the two velocities are perfectly balanced along the horizontal direction: The angle
of the wedge stabilizes and the velocity of the tip no longer changes. Even if curvature
effects are accounted for, they result in a smaller propagation speed for the front when
the curvature radius is small, which means that balance is achieved at a lower angle.
As the curvature radius increases, this angle also increases tending to the critical one.

We may now apply a similar argument to the case of wedge-like initial conditions.
We will consider the two sides of the wedge as two independently moving half-lines,
which are annihilated on collision. For the sake of simplicity, we will orient the right
side of the wedge vertically, so that it moves horizontally with speed cuv . Similarly
to the previous situation, the velocity of left side has horizontal component equal to
cuvw cos η. When cuvw cos η > cuv , i.e., η < ηc, the tips of the two half-lines collide
and are annihilated, resulting in the normal propagation of the wedge-shaped traveling
wave, as shown in Fig. 20a. The same also happens when η = ηc, as shown in Fig. 20b.
When η > ηc instead, the tips do not collide, resulting in no destructive interaction
and thus no wedge-shaped traveling wave occurs, as shown in Fig. 20c.

This approximation is not able to describe how initial conditions with angle η larger
than ηc evolve to become a wedge with critical angle. Indeed, the boundary between
the regions dominated respectively by U and V cannot break in the way shown in
Fig. 20c. We have thus to refine our analysis. We start by assuming that each wedge
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(a) (b)

(c) (d)

Fig. 20 Approximation of the wedge formation phenomenon by two independently propagating fronts.
The point T is the wedge tip at the initial time, while T ′ (and T ′′ where present) is the tip after the fronts
have moved. The sections of the fronts which have collided and have been annihilated are drawn with
dashed lines. a When η < ηc , the result of independent propagation is still a wedge. b When η = ηc , the
result of independent propagation is a wedge with velocity c = cuvw . cWhen η > ηc , the wedge tip splits
and the front becomes interrupted, leading to no traveling wedge. d When η > ηc , if we assume that the
wedge tip becomes the origin of a radial front, in the limit we obtain a wedge with angle equal to ηc

tip acts as a source of a radial wave, as shown in Fig. 20d. If we neglect curvature
effects and assume that the speed of this radial wave is the same as the planar front
speed, we obtain that at any subsequent time instant the angle of the wedge tip will be
equal to ηc. As time progresses, the curvature of the non-planar part of the back side
will decrease, and the shape will tend to a wedge-shaped traveling wave with angle
ηc.

However, the simulation in Fig. 17 displays amore complicated transient behaviour.
We think that this is due to curvature effects, which slow the propagation of the
curved front, originating the curved tip which appears at t = 4. As the curvature
radius increases, the slowing effect is reduced and the fronts get faster. Eventually
they collide, making the curved tip disappear and bringing us back to the case where
curvature effects are negligible.

Finally, we remark that our proposed (informal) derivation for the value of ηc is
purely geometric in nature and the requirement that the fronts interact destructively
does not seem to be essential. A similar constraint on the angle should also appear
for colliding planar fronts which interact in different ways, as we will see in the next
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section. For the same reasons we expect the appearance of a critical angle in the
interaction between planar fronts also in systems other than (1).

4 Other two-dimensional traveling waves arising from planar front
interaction

When two parallel planar fronts collide in two dimensions, the resulting interaction is
essentially one-dimensional and thus introduces no new phenomena. Novel patterns
appear instead from the interaction between a faster radially expanding front and a
slower planar front. This is due to the fact that the interaction between the fronts does
not occur instantaneously among thewhole front length as in the former case. In partic-
ular, aswediscussed in the previous section,we expect that the angle atwhich the fronts
collide tends to the critical angle and the velocity of the point of interaction becomes
constant. These facts hint at the possibility that the patterns produced by such interac-
tions may tend to some two-dimensional traveling wave. Moreover, we would expect
similar waves to also exist for any angle of interaction smaller than the critical one.

In the previous section, we have observed this to be true when cuvw > cuv: The two
different fronts interact destructively in one dimension (Fig. 14), so that the interaction
between radial and planar fronts generates a couple of wedge-shaped waves. Now we
are interested in investigatingwhat happenswhen cuv > cuvw and the one-dimensional
fronts interact in a different way.We already know that, when cuv > cuvw, the possible
one-dimensional behaviours are either merging (Fig. 12) or reflection (Fig. 11). In two
dimensions we expect that the two colliding fronts become either a single homoclinic
front, generating a zipper-shaped traveling wave as shown in Fig. 21a, or a couple of
fronts moving in opposite directions, generating a biwedge-shaped traveling wave as
shown in Fig. 21b. Observe that, if such traveling waves exist, their velocities can be

(a) (b)

Fig. 21 Schematic structures of two-dimensional travelingwaves originating from the interaction of collid-
ing non-parallel planar fronts when cuv > cuvw . a Zipper-shaped traveling wave solution when interaction
in one dimension results in a homoclinic wave with speed ch . b Biwedge-shaped traveling wave solution
when interaction in one dimension results in reflection of the fronts
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Fig. 22 Interaction of a faster radially expanding trivial front with a slower planar non-trivial front for
r3 = 27.5 and the other parameters specified as in (8)

uniquely determined from just the speeds and collision angle of the first two fronts
by using (11)–(12). As seen in Sect. 3.2, for any planar front which makes up part of
a two-dimensional traveling wave, the relation c − cp ⊥ cp must hold, where cp is
the normal velocity of such planar front. Thus, as shown in Fig. 21, we can compute
easily the directions of propagation for the fronts created after collision. In particular,
notice how the bottommost “wedge” in Fig. 21b, which is composed by two non-trivial
fronts, is necessarily symmetric with respect to the direction of propagation.

We will now examine the results of radial-planar interaction for several parameter
values. In the case r3 = 27.5, there exists a stable homoclinic one-dimensional trav-
eling wave originating from the interaction of the trivial and non-trivial waves and its
speed is almost the same as that of the non-trivial front (see Fig. 12). Thuswe expect the
homoclinic front resulting from two-dimensional interaction to be practically parallel
to the non-trivial one, i.e., β = 0 in Fig. 21a. The numerical simulation of the radial-
planar interaction confirms our predictions, as shown in Fig. 22: The angle η between
the colliding fronts tends to the critical one and two zipper-shaped waves are gener-
ated at the points of collisions. As an example of a zipper-shaped traveling wave for η

smaller than the critical angle (in this caseηc ≈ 0.726), a numerical solution of the trav-
eling wave equation is shown in Fig. 23 for η = 0.5. In the reference frame where the
top wedge bisector is oriented vertically, the computed velocity is (2.33516, 1.28213),
which is near the value (2.32216, 1.31286) predicted by (11)–(12).

In the case r3 = 27.12, based on the one-dimensional interaction we would expect
reflection of the fronts to occur. However, as already noticed in Fig. 4, reflection does
not always occur smoothly for two-dimensional curved fronts. Instead, the numeri-
cal simulation of the radial-planar interaction reported in Fig. 24 shows that several
incomplete reflections happen in succession. The amplitude of these events becomes
the smaller the further from the collision point, and as a result the couple of interact-
ing fronts seem to tend to a single homoclinic one. Numerical continuation by AUTO
shows that a homoclinic one-dimensional traveling wave exists for r3 = 27.12 and
that its speed and the angle observed in Fig. 24 are compatible with the predictions of
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Fig. 23 A zipper-shaped traveling wave arising from the interaction of planar fronts forming an angle
η = 0.5, for r3 = 27.5 and the other parameters specified as in (8), obtained by numerically solving the
two-dimensional traveling wave equation associated to (1)

Fig. 24 Interaction of a faster radially expanding trivial front with a slower planar non-trivial front for
r3 = 27.12 and the other parameters specified as in (8). Initial conditions are the same as in Fig. 22

Fig. 21a. It seems that also in this case we may have a zipper-shaped traveling wave,
although with β �= 0 in Fig. 21a. Since the homoclinic wave appears to be unstable in
one dimension (it splits in two non-trivial waves moving in opposite directions), this
hypothetical two-dimensional wave could be unstable as well. A numerical solution
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Fig. 25 A zipper-shaped traveling wave arising from the interaction of planar fronts forming an angle
η = 0.7, for r3 = 27.12 and the other parameters specified as in (8), obtained by numerically solving the
two-dimensional traveling wave equation associated to (1)

of the two-dimensional traveling wave equation for η = 0.7 smaller than ηc ≈ 1.3
has been reported in Fig. 25. The computed velocity is (1.75323, 2.72414), while the
expected value based on (11)–(12) is (1.73669, 2.75121).

Thus, even when one-dimensional waves interact by reflection, planar waves in two
dimensions may merge in a homoclinic front if they do not interact parallelly. This
is not completely surprising. As we have seen in Sect. 2.2, the type of interaction in
one dimension is closely linked to the speed difference between the fronts: A high
speed difference leads to reflection, while speeds which are closer in value produce
merging in a homoclinic wave. In two dimensions, the relative speed at which the
fronts interact depends on the angle of collision: The larger η is, the smaller this
effective speed difference becomes. Thus, even if parallel planar fronts would reflect
on collision, considering non-parallel fronts may lead to homoclinic merging. On the
other hand, if we consider an angle η sufficiently smaller than the critical angle, we
can observe reflection and biwedge-shaped traveling waves also for r3 = 27.12, as
can be seen in Fig. 26.

In the previous paragraph, we have explained the imperfect reflection observed
in Figs. 4 and 24 as been caused by a reduction in the relative speed of the fronts,
which is a purely geometric effect. One could wonder if such a phenomenon is instead
due to instability effects. Indeed, for r3 = 27.12 we are near the turning point of
the bifurcation diagram for the non-trivial wave and thus near to its unstable branch
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Fig. 26 A biwedge-shaped traveling wave arising from the interaction of planar fronts forming an angle
η = 0.15, for r3 = 27.12 and the other parameters specified as in (8), obtained by numerically solving the
two-dimensional traveling wave equation associated to (1)

(see Fig. 7). In order to clear this doubt, we will show that this phenomenon can
be observed also when we are far from the unstable branch of the bifurcation curve,
thus discarding instability as the most probable mechanism for imperfect reflection.
In order to do that, however, we have to use different parameters. We will consider
the same parameter values as the ones in [17], i.e., take b23 to be a free parameter
and set r3 = 28 and the remaining parameters as in (8). The global structure of non-
trivial one-dimensional traveling waves as b23 varies is qualitatively the same as that
of Fig. 7. Similarly, the same basic one-dimensional interactions can be observed as
b23 changes. For example, for a high speed difference between the two stable waves
(e.g., for b23 = 0.4) reflection can be observed, while for nearly equal speeds (e.g.,
for b23 = 0.6) colliding fronts merge in homoclinic ones [17].

Firstly we consider radial-planar interaction for b23 = 0.4, as shown in Fig. 27. In
contrast to Fig. 24, a biwedge-shaped traveling wave appears. The angle between the
colliding fronts tends to the critical angle ηc ≈ 1.038 and β has the value predicted in
Fig. 26. No imperfect reflection is observed in this case, probably because the speed
difference between the fronts is large enough even after considering the effects of
non-parallel interaction. Obviously, reflection occurs also for all smaller angles. A
biwedged-shaped traveling wave with collision angle η = 0.6 has been for example
reported in Fig. 28. The computed velocity is (2.04019, 2.13925), while the value
predicted by (11)–(12) is (2.02910, 2.13961).
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Fig. 27 Interaction of a faster radially expanding trivial front with a slower planar non-trivial front for
r3 = 28, b23 = 0.4 and the other parameters specified as in (8). Initial conditions are the same as in Fig. 22

Fig. 28 A biwedge-shaped traveling wave arising from the interaction of planar fronts forming an angle
η = 0.6, for r3 = 28, b23 = 0.4 and the other parameters specified as in (8), obtained by numerically
solving the two-dimensional traveling wave equation associated to (1)

For values of b23 around 0.4 and above the unstable and stable branches of the non-
trivial one-dimensional traveling wave are far from each other [17]. Notwithstanding,
imperfect reflection can still be observed by tuning the value of b23. If we increase
the value of b23 starting from 0.4, the difference between the speeds of the trivial
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Fig. 29 Interaction of a faster radially expanding trivial front with a slower planar non-trivial front for
r3 = 28, b23 = 0.46 and the other parameters specified as in (8). Initial conditions are the same as in
Fig. 22

and non-trivial front gets smaller. If b23 = 0.6, it becomes small enough to observe
homoclinic merging in one dimension (and thus probably in two dimensions too),
but for intermediate values we may have a situation similar to Fig. 24, i.e., reflection
occurs in one dimension but homoclinic merging may be observed in two dimensions
depending on the value of the collision angles. This happens for example for b23 =
0.46, as shown in Fig. 29.Also in this casewe have usedAUTO to confirm the existence
of a homoclinic traveling wave, which appears to be unstable. The speed of such wave
is very close to the non-trivial front speed, which gives β = 0.

As a last case, we show the results of radial-planar interaction when the non-trivial
front is a standing wave. This happens for example when r3 = 28, b23 = 0.029 and
the other parameters are specified as in (8). In this case the one-dimensional behaviour
can be classified both as reflection and homoclinic merging, since the reflected front
is a standing wave too and the final profile is that of a standing homoclinic wave.
Thus, we expect to observe a zipper-shaped traveling wave with β = 0. Since one
of the waves is standing, the critical angle is ηc = π

2 : When a radial front and a
planar one interact, they will tend to become perpendicular to each other. The numer-
ical simulation for this case is reported in Fig. 30. A solution for a smaller angle
η = 0.7 is shown in Fig. 31. Its computed velocity is (1.36121, 3.80935), while the
expected one is (1.37048, 3.75444) (we remember that, as before, these are values
in the reference frame where the bisector of the topmost wedge is oriented verti-
cally).

5 Interaction of wedge-shaped waves

Numerical simulations of the interaction between wedge-shaped traveling waves are
presented in this section. Similarly to the symmetric traveling wave associated to
the trivial front, we expect that a symmetric traveling wave with arbitrary angle exists
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Fig. 30 Interaction of a faster radially expanding trivial front with a standing planar non-trivial front for
r3 = 28, b23 = 0.029 and the other parameters specified as in (8). Initial conditions are the same as in
Fig. 22

Fig. 31 A zipper-shaped traveling wave arising from the interaction of planar fronts forming an angle
η = 0.7, for r3 = 28, b23 = 0.029 and the other parameters specified as in (8), obtained by numerically
solving the two-dimensional traveling wave equation associated to (1)
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Fig. 32 Interaction of symmetric wedge-shaped non-trivial (bottom) and trivial (top) fronts for r3 = 28.3,
ηb = ηt = 2 and other parameters as in (8). By symmetry with respect to x = 0, only half of the domain
is shown

Fig. 33 Interaction of symmetric wedge-shaped trivial (bottom) and non-trivial (top) fronts for r3 = 27.5,
ηb = ηt = 2 and other parameters as in (8). By symmetry with respect to x = 0, only half of the domain
is shown

also for the non-trivial front. The interaction between trivial and non-trivial symmetric
wedges can be thought as a generalization of the interaction between planar fronts.
For the sake of simplicity, we consider only the situation in which the bisectors of
the two wedges lie on the same line. Let us denote by ct and cb the speed of the
fronts associated respectively to the top and the bottom wedge and by ηt and ηb their
respective angles. By formula (11) the speeds of the two wedges are cwt := ct/ sin ηt
and cwb := cb/ sin ηb. The wedges will interact if cwt < cwb; since we must have
ηt ≤ ηb in order for the wedge sides not to intersect, a necessary condition for
interaction is ct < cb. Being this setting completely symmetric with respect to the
common bisector of the wedges, numerical simulations will be performed on only half
of the domain. A sufficiently large domain (not completely shown in the plots) must
be taken in order for the boundary effects not to spread to the region of interest for the
length of the simulation.

Firstly we consider the case in which ηt = ηb. Results are reported in Figs. 32, 33,
34 and 35 and, with the exception of the case r3 = 27.12 (Fig. 34), the results are those
expected from the one-dimensional behaviour. For r3 = 28.3 we observe annihilation,
as shown in Fig. 32. For r3 = 27.5 the wedges merge in the homoclinic symmetric
wedge-shaped traveling wave, as shown in Fig. 33. For r3 = 28, b23 = 0.4 the top
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Fig. 34 Interaction of symmetric wedge-shaped trivial (bottom) and non-trivial (top) fronts for r3 = 27.12,
ηb = ηt = 2 and other parameters as in (8). By symmetry with respect to x = 0, only half of the domain
is shown

Fig. 35 Interaction of symmetric wedge-shaped trivial (bottom) and non-trivial (top) fronts for r3 = 28,
b23 = 0.4, ηb = ηt = 2 and other parameters as in (8). By symmetry with respect to x = 0, only half of
the domain is shown

wedge continues unaffected, while the bottom one is reflected, as shown in Fig. 35; the
reflected front will slowly become planar, since there are no symmetric wedge-shaped
traveling waves whose velocity is directed outwards. In the case r3 = 27.12 instead, as
we already observed when considering interaction of radial and planar fronts, imper-
fect reflection is observed where the fronts are curved, i.e., near the tips. Far from the
tips, where the fronts are parallel, complete reflection is instead achieved. Eventually,
two homoclinic fronts moving in opposite directions are created, while in the region
between them spiral cores appear and complex patterns are generated, as shown in
Fig. 34. It is unclear if the topmost front will converge to a homoclinic symmetric
wedge-shaped traveling wave, since the one-dimensional homoclinic wave is unstable
in this case.

Next, we consider the case in which ηt < ηb. In this case the wedges do not interact
instantly along all their length, but the two points where interaction occur travel along
the sides of the top wedge with constant speed. Near these two points we expect
to observe patterns similar to those produced by radial-planar interaction, while the
shape below them should become similar to the one observed in the ηt = ηb case. The
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Fig. 36 Interaction of symmetric wedge-shaped non-trivial (bottom) and trivial (top) fronts for r3 = 28.3,
ηb = 2.2, ηt = 1.9 and other parameters as in (8). By symmetry with respect to x = 0, only half of the
domain is shown

Fig. 37 Interaction of symmetric wedge-shaped trivial (bottom) and non-trivial (top) fronts for r3 = 27.5,
ηb = 2.25, ηt = 1.75 and other parameters as in (8). By symmetry with respect to x = 0, only half of the
domain is shown

Fig. 38 Interaction of symmetric wedge-shaped trivial (bottom) and non-trivial (top) fronts for r3 = 27.12,
ηb = 2.8, ηt = 1.8 and other parameters as in (8). By symmetry with respect to x = 0, only half of the
domain is shown

numerical simulations confirm this reasoning, as shown in Figs. 36, 37, 38, 39 and 40.
Observe that when r3 = 27.12 the behaviour depends on the angle between the sides
of different wedges, as happened for the traveling waves of Figs. 25 and 26. If this
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Fig. 39 Interaction of symmetric wedge-shaped trivial (bottom) and non-trivial (top) fronts for r3 = 27.12,
ηb = 2.2, ηt = 1.9 and other parameters as in (8). By symmetry with respect to x = 0, only half of the
domain is shown

Fig. 40 Interaction of symmetric wedge-shaped trivial (bottom) and non-trivial (top) fronts for r3 = 28,
b23 = 0.4, ηb = 2.2, ηt = 1.9 and other parameters as in (8). By symmetry with respect to x = 0, only
half of the domain is shown

angle is large (Fig. 38), the fronts merge into a homoclinic one, while if it is smaller
(Fig. 39), the fronts reflect on collision.

As a final example of possible interaction between wedge-shaped traveling waves,
we consider the collision of two asymmetric wedges. As before, we assume symmetry,
which in particular means that the angle of the two wedges is the same. This situation
is again described by ηt and ηb, the angles formed respectively between the two
topmost and the two bottommost sides of the wedges. We have that the wedge angle
is η = (ηb − ηt )/2. If the angles are chosen appropriately, the two wedges will move
toward each other and collide. After collision we may expect two symmetric wedge-
shaped fronts to be formed from respectively the top and the bottom sides of the
original two wedges. Since the condition for having collision between the asymmetric
wedges is equivalent to cwt > cwb, we may expect these two new symmetric wedges
to separate and the gap between them to become larger as time progresses. This is
confirmed by numerical simulation, as shown in Fig. 41.
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Fig. 41 Interaction of two asymmetric wedge-shaped fronts for r3 = 28.3, ηb = 2, ηt = 1.2 and other
parameters as in (8). By symmetry with respect to x = 0, only half of the domain is shown

6 Conclusions

In this paper we have presented several types of two-dimensional traveling waves,
all sharing the property of being asymptotically planar: They consist of several fronts
which converge and interact in a single point, but tend in shape to planar fronts at spatial
infinities. Many properties of these waves, such as their velocity and the conditions
for their existence, can be derived heuristically just by considering them as a bundle of
independently propagating planar fronts, neglecting the behaviour near the interaction
point.

The number of such two-dimensional waves we can build is limited by the number
of different (stable) planar fronts and by the number of possible interaction behav-
iour between such fronts. Simpler systems such as the Allen–Cahn equation or the
two-species competition-diffusion system have already been shown to exhibit wedge-
shaped traveling waves, albeit only of the symmetric type. This is the only possible
type of wave in such systems, since they admit only one stable planar wave which can
only interact destructively with itself. In a three-species competition-diffusion system
instead, the situation is drastically different: The possibility of competitor-mediated
coexistence is reflected in the existence of two different stable fronts and by control-
ling the strength of the exotic species, it is possible to change the way these two waves
interact. These two facts give rise to all the novel traveling wave shapes presented
in this paper. On the other hand, we think the additional complexity of such a three-
species system makes obtaining an existence proof for these waves more difficult. For
example, the proofs presented in [21,22] are not straightforward to generalize to our
case since they rely on the comparison principle, not applicable in our case. Moreover,
other than the existence problem, the stability of the two-dimensional traveling waves
presented in this paper should be further investigated.

We think it should be possible to construct even more complicated traveling waves
by using only planar fronts. Take for example r3 = 28, b23 = 0.4 and the other
parameters as in (8). Consider biwedge-like initial conditions where the top angle is
greater then ηc. Then, the collision angle naturally decreases to the critical one and
in the lower part of the domain several triangular patterns are generated, as shown
in Fig. 42a. In each of these triangles, two of the vertices correspond to reflection
events, while the other one is the tip of a symmetric-wedge, given by the annihilation
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(a) (b)

Fig. 42 A hypothetical composite wave when reflection occurs between the fronts. a Triangular patterns
appearing for biwedge-like initial conditions for r3 = 28, b23 = 0.4 and the other parameters specified as
in (8). b Prediction about the geometrical structure of a composite traveling wave. Note that this is only
possible if the topmost angle is the critical one

of two non-trivial fronts. If, as in this case, collision between the main fronts occurs
at the critical angle, any such triangle should move with the same velocity as the full
traveling wave, as shown in Fig. 42b. However, because of interactions between the
triangles and possibly because of their small size, this pattern is not stationary and
triangles merge and break up. Further investigation is needed to ascertain whether
such composite traveling waves actually exist or not.

Appendix A: Proof of the velocity formula for asymptotically planar trav-
eling waves

We will now give a more formal proof for the relation c − cp ⊥ cp, where c is the
velocity of a two-dimensional traveling wave whose shape in one asymptotic direction
tends to that of a planar front with velocity cp. This relation was used in Sect. 3.2 to
derive the formulas (11)–(12) for the velocity of asymptotically planar travelingwaves,
of which wedge-shaped traveling waves are an example.

Theorem Consider the following equation in the variables u : Rn → R
m and c ∈ R

n

DΔu + ∇u c + f(u) = 0 in Rn, (15)
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where D ∈ R
m×m is a positive diagonal matrix, ∇u : Rn → R

m×n is the Jacobian of
u and f : Rm → R

m.
Suppose that:

1. (u, c) and
(
up, cp

)
are solutions of (15) such that cp �= 0 and u,up ∈

C 2 (Rn,Rm);
2. f : Rm → R

m is Lipschitz continuous on the set u (Rn) ∪ up (Rn);
3. for every ε > 0 there exists Ωε ⊂ R

n bounded such that

∥
∥
(
u − up

) |Ωε

∥
∥
C 2(Ωε,Rm )

< ε. (16)

4. there exists a constant δ > 0 such that for every ε > 0 there exists αε ∈ R
m,

nε ∈ R
n and xε ∈ Ωε satisfying

∇up(xε) = αεntε, (17)

|nε| = 1, (18)

|αε| > δ, (19)

where |·| is the Euclidean norm.

Then, there exists a sequence εk → 0 and n ∈ R
n such that nεk → n and |n| = 1.

Moreover, we have that c − cp ⊥ n.

Proof By (18) we have that {nε}ε>0 is contained in the compact boundary of the unit
ball of Rn . Thus existence of a limit vector n ∈ R

n such that |n| = 1 is immediately
established.

Subtracting the equations obtained from (15) by substitution with (u, c) and(
up, cp

)
respectively, we get

D
(
Δu − Δup

) + ∇uc − ∇upcp + f(u) − f(up) = 0 in Rn .

If we add ∇upc to both sides, we obtain after rearrangement

∇up(c − cp) = D(Δup − Δu) + (∇up − ∇u)c + f(up) − f(u) in Rn .

Now fix ε > 0 and consider only x ∈ Ωε. We take the Euclidean norm on both sides.
By Lipschitz continuity of f and (16), we get

∣
∣∇up

(
c − cp

)∣
∣ < K ε in Ωε (20)

for K = trD + K ′ |c| + L , where tr is the matrix trace operator, K ′ is due to the
conversion from the operatorial norm of ∇up − ∇u to its maximum norm and L is
the Lipschitz constant for f .

Evaluating (20) at xε and using (17) we get,

∣
∣αεntε

(
c − cp

)∣
∣ < K ε.
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By applying the lower bound on |αε| given in (19), we obtain

K ε > |αε|
∣
∣ntε

(
c − cp

)∣
∣ > δ

∣
∣ntε

(
c − cp

)∣
∣ .

Since this inequality holds for every ε > 0, by considering it on the sequence {εk}k
and taking the limit we obtain nt

(
c − cp

) = 0, which is equivalent to saying that
c − cp ⊥ n. �
Corollary In the setting of the above Theorem, consider the following additional
hypothesis: up is a planar front and cp = ∣

∣cp
∣
∣n, where n is the unit vector normal to

the front. Then,
c − cp ⊥ cp. (21)

Proof Note that we may denote the normal to the front with the symbol n without any
abuse of notation. Indeed, we have that nε = n for all ε > 0 due to the front being
planar. By the above Theorem and by our choice of cp we get

nt
(
c − cp

) = ctp
∣
∣cp

∣
∣

(
c − cp

) = 0,

from which (21) immediately follows. �
Remark The lower bound on the norm of ∇up(xε) is essential. Otherwise, we could
take any two traveling wave solutions sharing one asymptotic equilibrium state and
the above Theorem would apply. For example, it could be applied to two different
orientations of the same planar front, which is clearly impossible.

Appendix B: Numerical solution of the traveling wave equation in two
dimensions

As stated at the beginning of Sect. 3.3, we need to find a numerical method appropriate
to the computation of traveling wave solutions. We are interested both in solving
the stationary problem given by the traveling equation (14) and the time-evolution
problem given by (1). The main difficulty lies in the fact that the domain in which
these problems are posed is the whole space (in our case R

2), whereas numerical
methods are in general limited to bounded domains. However, in the case of traveling
wave solutions the asymptotic behavior at spatial infinity is given. This means that
a bounded domain Ω is sufficient if it is large enough to cover the area where the
solution differs substantially from the asymptotic behaviour, which is where the non-
trivial and interesting features of the wave lie. The faster the solution converges to
the asymptotic state for |x | → ∞, the smaller the domain Ω can be taken. Apart
from the choice of Ω , we must determine which boundary conditions the numerical
solution should satisfy on ∂Ω . These conditions should be chosen such that also the
true traveling wave solution satisfies them, at least approximately.

As a simple and well-known example, consider the traveling wave equation (14)
in one spatial dimension. In order to specify the asymptotic behaviour, it is sufficient
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to set the two limit values of the solution for x → ±∞, as it is done for example
in the problem (5)–(6). In many cases, by choosing Ω = (−L , L) with L > 0 large
enough, we can capture all the most relevant information about the one-dimensional
traveling wave, since such information is often concentrated around the wave front.
Outside Ω , the solution is approximately equal to the asymptotic equilibrium states.
This means that the exact traveling wave not only approximately satisfies a couple
of Dirichlet boundary conditions on ∂Ω = {−L , L}, but it is also approximately
compatible with Neumann zero-flux boundary conditions, since its derivatives must
tend to 0 for x → ±∞.

Now consider the two-dimensional case. The asymptotic behaviour consists in two
or more fronts which propagate independently. While inR the possible choices for the
bounded domainΩ are essentially intervals, inR2 a great variety of shapes is possible
in theory. As for the boundary conditions, Dirichlet type conditions can be used for
any large enough choice of Ω , since the asymptotic behaviour is known. A possible
drawback is that the asymptotic state must be computed beforehand. In our case, since
the traveling wave is asymptotically planar, this computation can be reduced to a one-
dimensional traveling wave equation for each front. While such simplification helps
in term of computational time, using different discretizations for the one- and two-
dimensional problems may introduce an additional source of error. Moreover, when
studying the interaction of different waves, the value at the boundary changes with
time, making Dirichlet conditions inapplicable.

In order to derive boundary conditions other than Dirichlet, the asymptotic behav-
iour of the gradient of the traveling wave should be studied. Far from all the fronts the
solution tends to one of the equilibrium states and thus its gradient tends to 0. On the
other hand, for a point x ∈ R

2 in the vicinity of a front the solution asymptotically
satisfies

∂u
∂ν f (x)

(x) = 0, (22)

where ν f (x) is the unit vector perpendicular to the asymptotic direction of propagation
of the front nearest to x . Note that points for which the gradient is approximately 0
satisfy also condition (22). Then, we may take (22) as the boundary condition for
the whole ∂Ω . This is a case of an oblique boundary condition (see for example
[16]). This choice reduces to the Neumann zero-flux boundary conditions in the case
ν f (x) = ν(x) for every x ∈ ∂Ω , where ν(x) is the unit vector normal to ∂Ω at x .
This is also true if we let the shape of ∂Ω violate ν f = ν far from all the fronts, since
the gradient is approximately 0 there: this fact allows ∂Ω to be a closed curve. In
practice, this means that, if we want to use zero-flux boundary conditions, Ω must be
a polygon whose edges are normal to the front they intersect.

Thus, in the case ofwedge-shaped travelingwaves and rectangular domains as those
used in Figs. 3, 4, 5 and 6, zero-flux boundary conditions do not yield the correct result:
all fronts are forced to gradually become perpendicular to the boundary, which results
in the sides of the wedge becoming parallel and eventually colliding, leading to the
disappearance of the wedge feature. While a rectangular domain may be employed by
implementing the oblique boundary conditions in the numerical method, we preferred
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to use the simpler zero-flux conditions by adopting a polygonal domain whose edges
are perpendicular to the fronts. For example, in our computations for wedge-shaped
traveling waves we use a pentagonal domain with the two topmost edges normal to
the wedge sides, the base orthogonal to the wedge bisector and the remaining two
edges parallel to the fronts. More complicated domains are needed for zipper- and
biwedge-shaped traveling waves, as can be seen for example in Fig. 28. In order to
deal with non-rectangular domains, we employ a continuous piecewise-linear finite
element discretization using the software FreeFem++ [10]. Adaptive mesh refinement
is also adopted in order to reduce the size of the discretized system.

Other well-known difficulties concerning the traveling equation (14) are that c is an
unknown to be solved for, which leads to a non-square linear system in the discretized
problem, and the solution is no longer unique, since the traveling wave equation is
invariant with respect to translation. These two problems can be solved at the same
time by specifying additional constraints. In particular, we enforce integral phase
conditions [3], which are also used by the popular continuation package AUTO [6] in
the context of numerical computation of orbits ofODEs [5] (in one dimension traveling
waves are essentially homoclinic orbits of the ODE associated to the traveling wave
equation). Since in our case the position of two planar fronts uniquely determines the
position of the full travelingwave, we can apply two one-dimensional phase conditions
to two edges of ∂Ω instead of one two-dimensional phase condition to the whole Ω .

We are also interested in solving the time-evolution problem (1), especially in order
to obtain an approximate solution to bootstrap the Newton solver for the associated
two-dimensional traveling wave equation. Here the difficulty is that traveling waves
leave the computational domain Ω in a finite time. As usual in such cases, we employ
a moving reference frame, which is equivalent to consider the time-evolution problem
associated to the traveling wave equation (14). Since the velocity of the traveling
wave is not known a priori, we have to adapt the frame velocity to the current velocity
of the wave in order to keep it centered inside Ω . To this purpose, we periodically
track the points where two of the planar fronts intersect the boundary and use their
velocities to compute the velocity of the whole wave by applying formulas (11)–(12).
This expedient is adequate for our needs, though we remark that more elegant, but
more complicated, methods may be employed. For example, the frame velocity can
be considered as a variable evolving with time and by imposing the phase condition at
all times a partial differential algebraic equation (PDAE) can be obtained. Using the
method of lines this PDAE can be reduced to a differential algebraic equation (DAE)
and solved numerically. This approach, which is called freezing the traveling wave,
has been proposed independently in [2] and [25]. An introduction to the theory and
numerical methods for DAEs can be found in [24] instead.
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