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Abstract We discuss the convergence rate of the QR algorithmwithWilkinson’s shift
for tridiagonal symmetric eigenvalue problems. It is well known that the convergence
rate is theoretically at least quadratic, and practically better than cubic for most matri-
ces. In an effort to derive the convergence rate, the limiting patterns of some lower
right submatrices have been intensively investigated. In this paper, we first describe
a new limiting pattern of the lower right 3-by-3 submatrix with a concrete example,
and then prove that the convergence rate of this new pattern is strictly cubic. In addi-
tion, we stress that our analysis identifies three classes of the limiting patterns of the
tridiagonal QR algorithm with Wilkinson’s shift.

Keywords Numerical linear algebra · Eigensolver · QR algorithm ·
Symmetric tridiagonal matrices · Wilkinson’s shift · Convergence rate

Mathematics Subject Classification 65F15 · 15A18

1 Introduction

The standard method for computing the eigenvalues of a real symmetric matrix A con-
sists of two phases. First, A is transformed to a tridiagonal matrix T by an appropriate
orthogonal similarity transformation. Then some iterative method is applied to T to
compute its eigenvalues. There are several approaches in the second phase. Among

The author is supported by JSPS Grant-in-Aid for Young Scientists (Grant Number 25790096).

B Kensuke Aishima
Kensuke_Aishima@mist.i.u-tokyo.ac.jp

1 The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13160-015-0171-y&domain=pdf


466 K. Aishima

them, the historical QR algorithm is still widely used as a reliable tool, particularly
with Wilkinson’s shift for accelerating the convergence. In this paper we consider the
convergence behavior of this algorithm.

Hence, we write a symmetric irreducible tridiagonal matrix as

T =

⎛
⎜⎜⎜⎜⎝

α1 β1

β1 α2
. . .

. . .
. . . βm−1

βm−1 αm

⎞
⎟⎟⎟⎟⎠

. (1)

The eigenvalues of T are all distinct [7], which are denoted as λ1 > · · · > λm here.
The shifted QR algorithm is described as

T (n) − s(n) I = Q(n) R(n), (2)

T (n+1) = R(n)Q(n) + s(n) I (3)

for n = 0, 1, . . ., where Q(n) is orthogonal, R(n) is upper triangular with nonnegative
diagonal elements, and s(n) is a shift. Similarly to (1), tridiagonal elements of T (n) are
denoted by

T (n) =

⎛
⎜⎜⎜⎜⎜⎝

α
(n)
1 β

(n)
1

β
(n)
1 α

(n)
2

. . .

. . .
. . . β

(n)
m−1

β
(n)
m−1 α

(n)
m

⎞
⎟⎟⎟⎟⎟⎠

. (4)

In (2), one way to determine an efficient shift s(n) is to consider the lower right 2-by-2
submatrix, and pick its eigenvalue closer to α

(n)
m . This is the so called Wilkinson shift.

For this algorithm, there is a long history of convergence analysis. Global conver-
gence (i.e. limn→∞ β

(n)
m−1 = 0 for any initial matrix) was first proved by Wilkinson in

[10], and then another elegant proof was given byHoffmann–Parlett [1]. Regarding the
convergence rate, Wilkinson [10] theoretically proved that it is at least quadratic, after
which Hoffmann–Parlett [1] showed that for most matrices convergence better than
cubic is achieved. Today, the convergence scenarios are classified by the asymptotic
behavior of the lower right elements as follows.

– if limn→∞(α
(n)
m−1 − α

(n)
m ) = 0, then quadratic convergence only;

– if limn→∞(α
(n)
m−1 − α

(n)
m ) = D �= 0, then cubic convergence at least;

if, in addition, limn→∞ β
(n)
m−2 = 0, then the rate is better than cubic.

This view was not explicitly described in any literature, as far as the authors know.
However, in actual fact, this view was first implied by Hoffmann–Parlett [1], and
then followed by other researchers [7,8,11] (for more detail, see Sects. 2 and 3).
In the present study, we focus on the situation limn→∞(α

(n)
m−1 − α

(n)
m ) = D �=
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Convergence of the QR algorithm with Wilkinson’s shift 467

0, limn→∞ β
(n)
m−2 = C �= 0 where the rate is at least cubic. This situation is rela-

tively exceptional. In fact, concrete matrices that belong to this case have not been
found in any literature, and most initial matrices result in the case limn→∞ β

(n)
m−2 = 0

where the rate is better than cubic. Mathematically strictly speaking, however, it is
desired to determine if such an exceptional example actually exists and, if so, derive
its exact convergence rate.

In this paper, we first point out an example where limn→∞(α
(n)
m−1 − α

(n)
m ) = D �=

0, limn→∞ β
(n)
m−2 = C �= 0 are observed. Next, we prove limn→∞(α

(n)
m−2 − α

(n)
m ) =

−D in this case. In other words, we prove that there exists a matrix with the new
limiting pattern of the lower right 3-by-3 matrix

lim
n→∞

⎛
⎜⎝

α
(n)
m−2 β

(n)
m−2 0

β
(n)
m−2 α

(n)
m−1 β

(n)
m−1

0 β
(n)
m−1 α

(n)
m

⎞
⎟⎠ =

⎛
⎝

λl − D C 0
C λl + D 0
0 0 λl

⎞
⎠ ,

where C �= 0 and D �= 0. Although several literatures imply that the rate of this
case is at least cubic, we theoretically show a stronger result that the rates of all the
examples belonging to this limiting pattern are “strictly” cubic. Our analysis is based
on the result by Jiang–Zhang [3, Lemma 1]. Also note that our analysis identifies three
classes of the limiting patterns of the tridiagonal QR algorithm withWilkinson’s shift.

This paper is organized as follows.After a brief summary ofWilkinson’s results [10]
in Sect. 2, we summarize the limiting matrix patterns owing to Hoffmann–Parlett [1]
in Sect. 3. Then in Sect. 4, we present an example where the new limiting pattern above
is observed. In Sect. 5, we review a part of the convergence analysis by Jiang–Zhang
[3] for our convergence analysis. In Sect. 6, we prove that the convergence rate for the
new limiting pattern is strictly cubic, and we give a convergence theorem that covers
all the 3-by-3 limiting submatrices. Section 7 is devoted to the conclusions.

Remark 1 Strictly speaking, in order for our classifications by limiting matrices to
work for every initial matrix, it should be also proved that the 3-by-3 submatrix in
question always tends to a constant matrix (without exhibiting any oscillatory behav-
iors). Actually this holds true. This fact might have been noticed by the experts in this
research field because its proof is almost the same as those by [2,6,9] for the unshifted
QR algorithm. However, the present authors do not know any reference where the
proof for the shifted algorithm is explicitly stated. For the readers’ convenience, in
the present paper a stronger result stating all of the tridiagonal elements in fact tend
to constants is shown in Appendix A.

Remark 2 In this paper, we assume that all the diagonal elements of R(n) in (2) are
nonnegative in the QR algorithm. Even if some diagonal elements of R(n) are not non-
negative, the absolute values of the subdiagonal elements |β(n)

1 |, . . . , |β(n)
m−1| behave

in the same way. We explain it more precisely below. Let T̂ (n) (n = 0, 1, . . .) be
the tridiagonal matrices computed by the QR algorithm where some diagonal ele-
ments of R(n) are not nonnegative. Then T̂ (n) = D(n)T (n)D(n) for n = 0, 1, . . . are
satisfied where D(n) are certain diagonal sign matrices. This is proved by induction.
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468 K. Aishima

Obviously D(0) = I is a sign matrix. Note that the Wilkinson’s shift s(n) for T̂ (n)

is the same as T (n). Hence, any QR decomposition of T̂ (n) − s(n) I is described
as (D(n)Q(n)D(n+1))(D(n+1) R(n) D(n)) for a sign matrix D(n+1). Then, we have
T̂ (n+1) = D(n+1)T (n+1)D(n+1). Therefore, the absolute values of the subdiagonal
elements T̂ (n+1) are equivalent to those of T (n+1). Thus, in some sense, we also cover
the convergence analysis of T̂ (n) by replacing β

(n)
1 , . . . , β

(n)
m−1 with |β(n)

1 |, . . . , |β(n)
m−1|

in the following sections.

2 QR algorithm with Wilkinson’s shift

In this section, Wilkinson’s convergence theorems in [10] are summarized. In the
QR algorithm with Wilkinson’s shift, the global convergence (in the sense that
limn→∞ β

(n)
m−1 = 0 for any initial matrix) is theoretically guaranteed, and the con-

vergence rate is at least quadratic as the next theorem indicates.

Theorem 1 (Wilkinson [10]) Suppose the QR algorithm with Wilkinson’s shift is
applied to an irreducible tridiagonal matrix T . Then we have

lim
n→∞ β

(n)
m−1 = 0,

∣∣∣β(n+1)
m−1

∣∣∣ = O

(∣∣∣β(n)
m−1

∣∣∣2
)

(5)

for all initial matrices.

Here we like to point out that, although not explicitly written, from the discussions
in [10] we can deduce two important facts.

First, Wilkinson’s paper [10] implies limn→∞ α
(n)
m = λl . In other words, α

(n)
m con-

verges to a fixed eigenvalue λl . It is easy to see that (21) on p. 412 of [10] corresponds
to

α(n+1)
m = s(n) + r (n)

mm cos θ(n), (6)

where r (n)
mm is the lower right element of R(n), and θ(n) is the last angle of the Givens

rotation to delete the last subdiagonal element. Obviously, r (∞)
mm = 0. Hence, we have

lim
n→∞

∣∣∣α(n+1)
m − α(n)

m

∣∣∣ ≤ lim
n→∞

∣∣∣α(n+1)
m − s(n)

∣∣∣ + lim
n→∞

∣∣∣α(n)
m − s(n)

∣∣∣ = 0. (7)

This shows that α(n)
m converges to a fixed eigenvalue.

Second, Wilkinson’s paper [10] implies the cubic convergence of β
(n)
m−1 in a certain

case. The first inequality in (62) on p. 418 of [10] corresponds to

∣∣∣β(n+1)
m−1

∣∣∣ ≤
∣∣∣β(n)

m−1

∣∣∣3
∣∣∣α(n)

m−1 − s(n)

∣∣∣
(
δ − 3β(n)

m−1

) +
∣∣∣β(n)

m−1

∣∣∣3
(
δ − 3β(n)

m−1

)2 (8)
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for all sufficiently large n, where δ = mini �=l |λi − λl |. It is easy to see that, if

limn→∞(α
(n)
m−1 − s(n)) = D �= 0, then |β(n+1)

m−1 | = O(|β(n)
m−1|3). Therefore, the follow-

ing theorem is established.

Theorem 2 Suppose the QR algorithm with Wilkinson’s shift is applied to an irre-
ducible tridiagonal matrix T . Then limn→∞ α

(n)
m = λl holds for some l. If the lower

right 2-by-2 submatrix converges to the limiting matrix

lim
n→∞

(
α

(n)
m−1 β

(n)
m−1

β
(n)
m−1 α

(n)
m

)
=

(
λl + D 0

0 λl

)
, (9)

where D �= 0, then |β(n+1)
m−1 | = O(|β(n)

m−1|3). If the lower right 2-by-2 submatrix
converges to the limiting matrix

lim
n→∞

(
α

(n)
m−1 β

(n)
m−1

β
(n)
m−1 α

(n)
m

)
=

(
λl 0
0 λl

)
, (10)

then |β(n+1)
m−1 | = O(|β(n)

m−1|2).

3 Convergence rate analysis by Hoffmann–Parlett [1]

Actually, quite often it is observed that the convergence rate is better than cubic. This
phenomena is mathematically described in the next theorem, which states that if the
second lower right element β

(n)
m−2 converges to 0, then the convergence rate of the

lower right element β(n)
m−1 is better than cubic.

Theorem 3 (Hoffmann–Parlett [1]) Suppose the QR algorithm with Wilkinson’s shift
is applied to an irreducible tridiagonal matrix T . If the lower right 3-by-3 submatrix
converges to the limiting matrix

lim
n→∞

⎛
⎜⎝

α
(n)
m−2 β

(n)
m−2 0

β
(n)
m−2 α

(n)
m−1 β

(n)
m−1

0 β
(n)
m−1 α

(n)
m

⎞
⎟⎠ =

⎛
⎝

∗ 0 0
0 λk 0
0 0 λl

⎞
⎠ , (11)

where k �= l, then |β(n+1)
m−1 | = O(|β(n)

m−2|2|β(n)
m−1|3). If the lower right 3-by-3 submatrix

converges to the limiting matrix

lim
n→∞

⎛
⎜⎝

α
(n)
m−2 β

(n)
m−2 0

β
(n)
m−2 α

(n)
m−1 β

(n)
m−1

0 β
(n)
m−1 α

(n)
m

⎞
⎟⎠ =

⎛
⎝

∗ C 0
C λl 0
0 0 λl

⎞
⎠ , (12)

where C �= 0, then |β(n+1)
m−1 | = O(|β(n)

m−1|2).
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470 K. Aishima

More precisely, in (12), Hoffmann–Parlett do not assume limn→∞ α
(n)
m−1

= limn→∞ α
(n)
m = λl but limn→∞(α

(n)
m−1 − s(n)) = 0. However, it is easy to

see that limn→∞ α
(n)
m−1 = limn→∞ α

(n)
m = λl is mathematically equivalent to

limn→∞(α
(n)
m−1 − s(n)) = 0 in the same way as the previous section. Combining

the above theorem with Theorem 2, we have the following corollary.

Corollary 1 The convergence rate of β
(n)
m−1 is summarized as follows.

– if limn→∞(α
(n)
m−1 − α

(n)
m ) = 0, then quadratic convergence only;

– if limn→∞(α
(n)
m−1−α

(n)
m ) = D �= 0, then cubic convergence at least; if, in addition,

limn→∞ β
(n)
m−2 = 0, then the rate is better than cubic.

In most cases, the limiting matrix satisfies (11), and thus the actual convergence
speed is better than cubic [1,7,8,11]. In the case (11), Parlett demonstrates the
asymptotic ratio |β(n+1)

m−1 |/|β(n)
m−2|2|β(n)

m−1|3 approaches a computable limit under the

assumption that limn→∞ β
(n)
m−3 = 0 and limn→∞ α

(n)
m−3 = λ j for some j [7, The-

orem 8.11.1]. The possibility of the loss of cubic convergence, i.e., the occurrence
of (12), was discussed in several studies (see [1,7,8,11]). For example, Parlett [7] and
Wang [8] show that, in the case (12), the limiting pattern of the lower right 3-by-3
matrix is

lim
n→∞

⎛
⎜⎝

α
(n)
m−2 β

(n)
m−2 0

β
(n)
m−2 α

(n)
m−1 β

(n)
m−1

0 β
(n)
m−1 α

(n)
m

⎞
⎟⎠ =

⎛
⎝

λl C 0
C λl 0
0 0 λl

⎞
⎠ (13)

and limn→∞ β
(n)
m−3 = 0. But it is still mathematically open whether or not there in fact

exists such a matrix that leads to the case (except the case m = 3, for which a rigorous
analysis is given in [4]; see Remark 3 below). However, we notice that the 3-by-3
limiting submatrix is described in a simple way (13) in the case limn→∞(α

(n)
m−1 −

α
(n)
m ) = 0. Also in the case limn→∞ β

(n)
m−2 = 0, the corresponding limiting pattern is

clearly described as (11).
We here focus on the other situation: limn→∞(α

(n)
m−1 − α

(n)
m ) = D �= 0 and

limn→∞ β
(n)
m−2 = C �= 0. Does it never happen? If it happens, what is the limit-

ing pattern of the lower right 3-by-3 matrix including limn→∞ α
(n)
m−2? What is the

exact convergence rate?
Below we show an answer to these questions; it turns out that such a situation

can actually happen (we show an example), and there the convergence rate is strictly
cubic.
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Convergence of the QR algorithm with Wilkinson’s shift 471

4 A numerical experiment

Let us apply the QR algorithm with Wilkinson’s shift to a 101-by-101 matrix

T (0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 100

100
. . .

. . .

. . . 0 100
100 0 1

1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (14)

whose eigenvalues are 0, ±ck (k = 1, . . . , 50). Also let T (n)
2 be the lower right 3-by-3

submatrix of T (n); for n = 0 we see

T (0)
2 =

⎛
⎝

0 100
100 0 1

1 0

⎞
⎠ . (15)

Then we find the following convergence behavior of T (n)
2 for n = 3, 4, 5:

T (3)
2 =

⎛
⎝
1.80 2.55
2.55 −1.81 2.55 × 10−14

2.55 × 10−14 −1.21 × 10−28

⎞
⎠ ,

T (4)
2 =

⎛
⎝
1.80 2.53
2.53 −1.81 −1.96 × 10−42

−1.96 × 10−42 −7.18 × 10−85

⎞
⎠ ,

T (5)
2 =

⎛
⎝
1.81 2.53
2.53 −1.81 −8.88 × 10−127

−8.88 × 10−127 −1.47 × 10−253

⎞
⎠ .

Thus it tends to

lim
n→∞

⎛
⎜⎝

α
(n)
m−2 β

(n)
m−2 0

β
(n)
m−2 α

(n)
m−1 β

(n)
m−1

0 β
(n)
m−1 α

(n)
m

⎞
⎟⎠ =

⎛
⎝

λl − D C 0
C λl + D 0
0 0 λl

⎞
⎠ , (16)

where λl = 0, C ≈ 2.5, D ≈ −1.8. The observed convergence rate of β
(n)
m−1 is

cubic: |β(n+1)
m−1 |/|β(n)

m−1|3 ≈ 0.11. Despite the long history of the convergence analysis
for Wilkinson’s shift, no similar example has been pointed out in the research field
of numerical linear algebra, as far as the authors know. In this sense, one of the
contribution of this paper is the finding of the matrix (16). In the following sections,
we prove that the convergence rate of (16) is strictly cubic.
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5 Convergence rate analysis by Jiang-Zhang [3]

For the convergence analysis of (16), we review the paper [3] by Jiang and Zhang in
1985. It implies |β(n+1)

m−1 | = O(|β(n)
m−2|2|β(n)

m−1|3) in the case limn→∞ β
(n)
m−2 = 0, though

the convergence analysis in [3] focuses on their own shift strategy where both Wilkin-
son’s shift and the Rayleigh quotient shift are exploited. The convergence rate analysis
for the Wilkinson’s shift is described on p. 270 in [3] in the case limn→∞ β

(n)
m−2 = 0.

Let T (n)
k be the k × k leading principal submatrix of T (n) and

d(n)
k := det

(
T (n)

k − s(n) I
)

(k = 1, . . . , m). (17)

The following lemma is crucial [3, Lemma2].

Lemma 1 ([3]) For any shift strategy in the tridiagonal QR algorithm,

∣∣∣β(n+1)
m−1

∣∣∣ =
∣∣∣β(n)

m−1d(n)
m γ (n)

∣∣∣
∣∣∣∣
(

d(n)
m−1

)2 +
(
β

(n)
m−1γ

(n)
)2∣∣∣∣

(18)

hold for all n, where

(
γ (n)

)2 =
(

d(n)
m−2

)2 +
(
β

(n)
m−2d(n)

m−3

)2 +
(
β

(n)
m−2β

(n)
m−3d(n)

m−4

)2 + · · ·

+
(
β

(n)
m−2β

(n)
m−3 . . . β

(n)
2 d(n)

1

)2 +
(
β

(n)
m−2β

(n)
m−3 . . . β

(n)
1

)2
(19)

for all n.

In order to derive the convergence rate, let us consider the right-hand side of (18).
It is easy to see that

lim
n→∞ d(n)

m−1 =
∏
i �=l

(λi − λl) �= 0 (20)

in view of limn→∞ β
(n)
m−1 = 0 and s(∞) = λl . Noting (17) and the definition of the

Wilkinson’s shift, we have

d(n)
m =

[(
α(n)

m −s(n)
) (

α
(n)
m−1−s(n)

)
−

(
β

(n)
m−1

)2]
d(n)

m−2−
(
α(n)

m −s(n)
) (

β
(n)
m−2

)2
d(n)

m−3

= −
(
β

(n)
m−1

)2 (
β

(n)
m−2

)2
d(n)

m−3(
α

(n)
m−1 − s(n)

) . (21)
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Convergence of the QR algorithm with Wilkinson’s shift 473

Sinceweassumehere that limn→∞ β
(n)
m−2 = 0, limn→∞(α

(n)
m−1−s(n)) = λk−λl �= 0

holds for some k, l. Therefore, we have

∣∣∣d(n)
m

∣∣∣ ∼
∣∣∣β(n)

m−2

∣∣∣2
∣∣∣β(n)

m−1

∣∣∣2
∣∣∣d(n)

m−3

∣∣∣
|λk − λl | (22)

as n → ∞. Furthermore, |γ (n)| in (18) is bounded because β
(n)
k (1 ≤ k ≤ m − 1) and

d(n)
k (1 ≤ k ≤ m) in (19) are bounded for all n. In addition, limn→∞ β

(n)
m−1 = 0 holds.

Therefore, we obtain |β(n+1)
m−1 | = O(|β(n)

m−2|2|β(n)
m−1|3) from (18), (20) and (22).

Although the situation: β
(∞)
m−2 �= 0, α

(∞)
m−1 − s(∞) �= 0 is not explicitly considered

in [3], it is easy to see from the above discussion that |β(n+1)
m−1 | = O(|β(n)

m−1|3) is realized
in this case. In the next section, we prove that the convergence rate of β

(n)
m−1 is strictly

cubic based on Lemma 1.

6 Convergence theorem covering the new limiting pattern

In this section, we prove that all the possible limiting patterns are (11), (13), and (16).
Note that (16) is the new pattern. Based on Lemma 1, we prove that the convergence
rate of (16) is strictly cubic. As a result, we have a convergence theorem that covers
all the possible limiting patterns.

First of all, we note the following lemma. See Appendix B for the proof.

Lemma 2 If limn→∞ β
(n)
m−2 = C �= 0, then |λl −λl−1| = |λl −λl+1| holds. Moreover,

the lower right 3-by-3 matrix of T (n) converges as

lim
n→∞

⎛
⎜⎝

α
(n)
m−2 β

(n)
m−2 0

β
(n)
m−2 α

(n)
m−1 β

(n)
m−1

0 β
(n)
m−1 α

(n)
m

⎞
⎟⎠ =

⎛
⎝

λl − D C 0
C λl + D 0
0 0 λl

⎞
⎠ (23)

for D ∈ R such that
√

C2 + D2 = |λl − λl−1| = |λl − λl+1|.

As stated above, [7,8] showed that, if limn→∞ β
(n)
m−2 = C �= 0 and limn→∞(α

(n)
m−1−

α
(n)
m ) = D = 0, then the limiting pattern of the 3-by-3 matrix is (13). Lemma 2 is a

generalization of this result to D ∈ R.
Fortunately, in the case limn→∞(α

(n)
m−1 − α

(n)
m ) = D �= 0, we can obtain

limn→∞ |β(n+1)
m−1 |/|β(n)

m−2|2|β(n)
m−1|3 using (18) in Lemma 1. Recall that λk is the closest

eigenvalue to λl . Let λ j be the second closest one. We derive the following lemma
from (18).
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Lemma 3 If limn→∞(α
(n)
m−1 − α

(n)
m ) = D �= 0, then

lim
n→∞

∣∣∣β(n+1)
m−1

∣∣∣
∣∣∣β(n)

m−2

∣∣∣2
∣∣∣β(n)

m−1

∣∣∣3
= |ρ2|

|λk − λl |3
∣∣λ j − λl

∣∣ |ρ1|
, (24)

where

|ρ1| = |D|/|λk − λl |, (25)

|ρ2| =
√
1 − |β(∞)

m−3|2/|λ j − λl |2. (26)

In addition,

0 < |ρ1| = |D|/|λk − λl | ≤ 1 (27)

holds. Even if limn→∞(α
(n)
m−1 − α

(n)
m ) = 0,

lim sup
n→∞

∣∣∣β(n+1)
m−1

∣∣∣
∣∣∣β(n)

m−1

∣∣∣2
≤ 1

|λk − λl | (28)

holds.

See Appendix B for the proof. In fact, (24) is an extension of [7, Theorem 8.11.1]:

lim
n→∞

∣∣∣β(n+1)
m−1

∣∣∣
∣∣∣β(n)

m−2

∣∣∣2
∣∣∣β(n)

m−1

∣∣∣3
= 1

|λk − λl |3
∣∣λ j − λl

∣∣

under the assumption: α
(∞)
m−2 = λ j , α

(∞)
m−1 = λk, β

(∞)
m−2 = 0, β

(∞)
m−3 = 0. In addition,

(24) also covers the answer to [7, Exercise 8.11.3]. In other words, in the case β
(∞)
m−2 =

0, α
(∞)
m−3 = λl(= α

(∞)
m ), β

(∞)
m−3 �= 0, we have

lim
n→∞

∣∣∣β(n+1)
m−1

∣∣∣
∣∣∣β(n)

m−2

∣∣∣2
∣∣∣β(n)

m−1

∣∣∣3
=

√
1 −

∣∣∣β(∞)
m−3

∣∣∣2 /
∣∣λ j − λl

∣∣2

|λk − λl |3
∣∣λ j − λl

∣∣ = 0,

where the first equality is due to (24), (25) and (26), the second equality is due to (69)
in Appendix B. Also note that (28) is proved by Wilkinson [10]. We prove this based
on Lemma 1 in Appendix B.

Using Lemmas 2 and 3, we have the following classification.
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Theorem 4 Suppose the QR algorithm with Wilkinson’s shift is applied to an irre-
ducible tridiagonal matrix T . Let λl = α

(∞)
m , and λk be the closest eigenvalue to λl .

Moreover, let λ j be the second closest one. All the possible limiting 3-by-3 matrices
are divided into three patterns. Based on the limiting patterns, the convergence rates
are classified as follows. If the lower right 3-by-3 submatrix converges to the limiting
matrix

lim
n→∞

⎛
⎜⎝

α
(n)
m−2 β

(n)
m−2 0

β
(n)
m−2 α

(n)
m−1 β

(n)
m−1

0 β
(n)
m−1 α

(n)
m

⎞
⎟⎠ =

⎛
⎝

∗ 0 0
0 λk 0
0 0 λl

⎞
⎠ , (29)

where k �= l, then the convergence rate is better that cubic:

lim
n→∞

∣∣∣β(n+1)
m−1

∣∣∣
∣∣∣β(n)

m−2

∣∣∣2
∣∣∣β(n)

m−1

∣∣∣3
= |ρ2|

|λk − λl |3
∣∣λ j − λl

∣∣ , (30)

|ρ2| =
√
1 −

∣∣∣β(∞)
m−3

∣∣∣2 /
∣∣λ j − λl

∣∣2 ≤ 1. (31)

If the lower right 3-by-3 submatrix converges to the limiting matrix

lim
n→∞

⎛
⎜⎝

α
(n)
m−2 β

(n)
m−2 0

β
(n)
m−2 α

(n)
m−1 β

(n)
m−1

0 β
(n)
m−1 α

(n)
m

⎞
⎟⎠ =

⎛
⎝

λl − D C 0
C λl + D 0
0 0 λl

⎞
⎠ , (32)

where C �= 0, D �= 0,
√

C2 + D2 = |λk − λl | = |λ j − λl |, then the convergence
rate is strictly cubic:

lim
n→∞

∣∣∣β(n+1)
m−1

∣∣∣
∣∣∣β(n)

m−1

∣∣∣3
= |C |2

|λk − λl |3 |D| . (33)

If the lower right 3-by-3 submatrix converges to the limiting matrix

lim
n→∞

⎛
⎜⎝

α
(n)
m−2 β

(n)
m−2 0

β
(n)
m−2 α

(n)
m−1 β

(n)
m−1

0 β
(n)
m−1 α

(n)
m

⎞
⎟⎠ =

⎛
⎝

λl C 0
C λl 0
0 0 λl

⎞
⎠ , (34)

where C �= 0, |C | = |λk − λl | = |λ j − λl |, then the convergence rate is at least
quadratic:

lim sup
n→∞

|β(n+1)
m−1 |

|β(n)
m−1|2

≤ 1

|λk − λl | . (35)
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Proof If β
(∞)
m−2 = 0, then |D| = |λk − λl | in Lemma 3. Hence, we have (30). If

β
(∞)
m−2 �= 0, then β

(∞)
m−3 = 0 because the block size of T (∞) is at most 2. See Appendix

A for its proof. In addition, |λk − λl | = |λ j − λl | is proved in Appendix A. Hence,
we obtain (33) by Lemma 3. Lemma 3 also shows (35). ��

As noted above, the previous analysis did not explicitly point out the limiting
pattern (32), though the cubic convergence of this pattern is guaranteed by Theorem 2.
In our experience, this limiting pattern is relatively rare compared to the previously
known case (29), but not extremely rare so that it can be left outside our consideration
(see also Remark 3 below).We here also like to emphasize that the above classification
covers all the possible limiting patterns.

Our analysis in this section is based on the elegant result [3, Lemma2] that is derived
by cleverly utilizing the special features of the shifted tridiagonal QR algorithm and
Cramer’s rule.Note that Theorem4 in this section is the stronger result thanCorollary 1
that was previously implied by several literatures [1,7,8,11]. By carefully reading
these literatures, we immediately find that all the existing proofs of Corollary 1 are
also based on some special features of the tridiagonal QR algorithm. However, it is
also possible to prove Corollary 1 based on the general gap theorem that is one of the
useful perturbation theorems. In Appendix C, we describe another proof of Corollary 1
along this line: the gap theorem and the Jacobi transformation. The alternative proof
is readily accessible to many readers in the research field of numerical linear algebra.

Remark 3 The above result is closely related to the work by Leitte–Saldanha–
Tomei [4], which considered the case of 3-by-3matrices, and proved in the language of
dynamical systems theory that there exists a 3-by-3matrix that converges only quadrat-
ically by the QR iteration with Wilkinson’s shift. More precisely, they considered the
matrix

T̃ =
⎛
⎝
0 1 0
1 0 0
0 0 0

⎞
⎠ , (36)

and regarded the QR iterations with Wilkinson’s shift as maps generating a discrete
dynamical system in the space of symmetric tridiagonal matrices with the same spec-
trum as T̃ (see the original paper for the detail). Then they proved that there exists an
open neighborhood of T̃ such that (i) the iteration maps a point (matrix) back to the
set, (ii) the convergence is strictly quadratic if it tends to T̃ and cubic otherwise, and
(iii) the Hausdorff dimension of the set of such initial points that leads to the quadratic
convergence is 1.

Although the main topic of [4] is the existence of the quadratic cases, if we view
the result from the opposite direction, it is also claiming that there are quite many
initial matrices close to T̃ resulting in cubic convergence (observe (iii) of [4], which
states that the quadratic cases are “very thin” [4]). This strongly suggests that cubic
convergence can be observed even when β

(n)
m−2 does not tend to 0 (since it should stay

around 1). In this way, the work [4] suggests a similar result as above in the case of
3-by-3 matrices, although explicit initial matrix examples are not given. By shrinking
the size of the example (14) in the present paper, it is easy to obtain a 3-by-3 example
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T (0) =
⎛
⎝

0 100
100 0 1

1 0

⎞
⎠ , (37)

which actually tends to the form (16) cubically.

7 Conclusions and future works

We pointed out a limiting matrix pattern (32) where the convergence rate is strictly
cubic as (33). Taking into account the fact that all the elements always converge
(see Appendix A), we see that the classification by Theorem 4 covers all the possible
scenarios, starting from any initial matrix.

It is still open, however, whether or not there actually exists a strictly quadratic case
for 4-by-4 or largermatrices, i.e., if the limiting case (34) actually occurs. Furthermore,
even if it is confirmed, still there remains the possibility that the estimate |β(n+1)

m−1 | =
O(|β(n)

m−1|2) is an overestimate, and the actual rate is cubic. These issues are left as
future works. (Recall that for 3-by-3 matrices they have been completely settled in [4];
see Remark 3).

Acknowledgments The author is grateful to Professor Takayasu Matsuo and Professor Beresford Parlett
for their valuable comments and suggestions. The author also thanks the anonymous reviewer for the helpful
comments.

Appendix A: Proof of convergence

We prove here that all the tridiagonal elements of T (n) converge for any initial matrix
T (0). To this end, we consider a general shift s(n) satisfying the following conditions:

(i) The shift s(n) converges to a certain eigenvalue s(∞) = λl ;
(ii) |s(n) − λl | = o(cn) for a positive constant c < 1.

Note thatWilkinson’s shift satisfies the two conditions: (i) has been proved by [8]; then
the convergence rate by the shifts s(n) → λl is at least quadratic because |s(n) −λl | ≤
|s(n) − α

(n)
m | + |α(n)

m − λl | ≤ 2|β(n)
m−1| by the definition of Wilkinson’s shift and

Gershgorin’s circle theorem, and then we have |β(n+1)
m−1 | = O(|β(n)

m−1|2) byWilkinson’s
proof, which implies (ii).

In what follows, we prove that all the tridiagonal elements T (n) always converge for
such general shifts. The following convergence proof might have been noticed by the
experts in this research field because its proof is almost the same as those by [2,6,9]
for the unshifted QR algorithm. However, to the best of the authors’ knowledge, the
proof for the shifted algorithm is not explicitly stated in any reference. For the readers’
convenience, we prove it as follows.

Theorem 5 Suppose that the QR algorithm with a general shift satisfying the above
conditions (i) and (ii) is applied to an irreducible tridiagonal matrix T . Then, T (n)

converges to a block diagonal matrix whose block size is at most 2. Further, the lower
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right diagonal element T (n)(m, m) converges to λl and the lower right off-diagonal
element T (n)(m, m − 1) converges to 0.

Proof First of all, we show several important facts for the convergence analysis. Sim-
ilarly to the discussion in [6] and [9, Chapter8, §28], let Q̃(n), R̃(n) be

Q̃(n) = Q(0) . . . Q(n−1),

R̃(n) = R(n−1) . . . R(0).

By the orthogonal matrix Q̃(n), T (n) is described as

T (n) =
(

Q̃(n)
)T

T Q̃(n). (38)

in view of T (n+1) = R(n)Q(n) + s(n) I = (Q(n))T(Q(n) R(n) + s(n) I )Q(n) =
(Q(n))TT (n)Q(n). Using (38), we see

Q̃(n) R̃(n) = Q̃(n−1)
(

T (n−1) − s(n−1) I
)

R̃(n−1)

=
(

T − s(n−1) I
)

Q̃(n−1) R̃(n−1)

=
(

T − s(n−1) I
)

. . .
(

T − s(0) I
)

. (39)

Let p(l) denote a permutation of the indices l (l = 1, . . . , m). Then in view of the
condition (i) we can place the shifted eigenvalues in a descending order as

∣∣∣λp(1) − s(∞)
∣∣∣ ≥ · · · ≥

∣∣∣λp(m−1) − s(∞)
∣∣∣ >

∣∣∣λp(m) − s(∞)
∣∣∣ = 0. (40)

The last inequality follows from (i) (note that all the eigenvalues are distinct since T
is irreducible).

Next, we focus on the eigendecomposition

T = XΛXT, (41)

where X is the orthogonal matrix consisting of the eigenvectors and Λ is the diagonal
matrix with the eigenvalues: diag(λp(1), . . . , λp(m)). Then we see

(
T − s(0) I

)
. . .

(
T − s(n−1) I

)
= XΛ(n) XT, (42)

where
Λ(n) =

(
Λ − s(0) I

)
. . .

(
Λ − s(n−1) I

)
. (43)

From (38) and (41), we have T (n) = (Q̃(n))TXΛXT Q̃(n). If all the inequalities are
strict in (40), T (n) converges to Λ. Actually, T (n) = (Q̃(n))TXΛXT Q̃(n) always con-
verges to a block diagonal matrix whose block size is at most 2. In order to prove it, we
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firstly apply the LU factorization XT = LU . Note that XT constructed by the normal-
ized eigenvectors of an irreducible tridiagonal matrix is always LU factorizable [2,5].
Hence, we see

(
T − s(0) I

)
. . .

(
T − s(n−1) I

)
= XΛ(n)L

(
Λ(n)

)−1
Λ(n)U. (44)

Combining it with (39) we have

Q̃(n) R̃(n) = XΛ(n)L(Λ(n))−1Λ(n)U. (45)

To reveal the relationship between Q̃(n) and X , we discuss the behavior of the QR
factorization of Λ(n)L(Λ(n))−1 as follows. Let DΛ(n) be an orthogonal matrix

diag

(
n−1∏
l=0

|λp(1) − s(l)|
(λp(1) − s(l))

, . . . ,

n−1∏
l=0

|λp(m) − s(l)|
(λp(m) − s(l))

)
. (46)

It is easy to see that

DΛ(n)Λ
(n) = diag

(
n−1∏
l=0

|λp(1) − s(l)|, . . . ,
n−1∏
l=0

|λp(m) − s(l)|
)

. (47)

In the right-hand side of (45), we have

Λ(n)L
(
Λ(n)

)−1 = D−1
Λ(n)

(
DΛ(n)Λ

(n)L
(

DΛ(n)Λ
(n)

)−1
)

DΛ(n) , (48)

and by applying the QR factorization we see

DΛ(n)Λ
(n)L

(
DΛ(n)Λ

(n)
)−1 = P(n)Γ (n), (49)

where P(n) is an orthogonal matrix, Γ (n) is an upper triangular matrix whose diag-
onal elements are positive. Let DU be an orthogonal matrix DU = diag(|u11|/u11,

. . . , |umm |/umm). Then we see

Q̃(n) = X D−1
Λ(n) P(n) D−1

U , (50)

R̃(n) = DU Γ (n)DΛ(n)Λ
(n)U (51)

from (45), (48), and (49). Therefore, we have

T (n) = DU

(
P(n)

)T
ΛP(n)D−1

U (52)

from (38) and (41).

123



480 K. Aishima

Since our aim is to prove the convergence of all the elements of T (n), let us discuss
the behavior of the orthogonal matrix P(n) as n → ∞. To this end, we focus on (49).
The lower left elements are

(
DΛ(n)Λ

(n)L
(

DΛ(n)Λ
(n)

)−1
)

i j
= li j

n−1∏
l=0

∣∣∣∣∣
λp( j) − s(l)

λp(i) − s(l)

∣∣∣∣∣ (i > j) (53)

from (47). Obviously limn→∞(DΛ(n)Λ(n)L(DΛ(n)Λ(n))−1)i j = 0, when |λp(i) −
s(∞)| > |λp( j) − s(∞)|. Otherwise, from (40) and the condition (ii), we have

∣∣∣∣∣
λp( j) − s(l)

λp(i) − s(l)

∣∣∣∣∣ =
∣∣∣∣∣
λp( j) − λp(m) + λp(m) − s(l)

λp(i) − λp(m) + λp(m) − s(l)

∣∣∣∣∣ = 1 + o(cl). (54)

Since a sequence of the size o(cl) with 0 < c < 1 absolutely converges,
(DΛ(n)Λ(n)L(DΛ(n)Λ(n))−1)i j represented by the infinite product (53) is convergent:

lim
n→∞ DΛ(n)Λ

(n)L
(

DΛ(n)Λ
(n)

)−1 = L̃. (55)

The resulting matrix L̃ is not only unit lower triangular, but also block diagonal with
the block sizes at most 2, because if the equality |λp(k) − s(∞)| = |λp(k+1) − s(∞)|
in (40) holds, then both inequalities |λp(k−1) − s(∞)| > |λp(k) − s(∞)| and
|λp(k+1) −s(∞)| > |λp(k+2) −s(∞)| are satisfied thanks to the fact that the eigenvalues
are all distinct. Hence, the orthogonal matrix P(n) given by the QR factorization of
DΛ(n)Λ(n)L(DΛ(n)Λ(n))−1 is convergent:

lim
n→∞ P(n) = P̃, (56)

where P̃ is a block diagonal matrix whose block size is at most 2. It then follows that

lim
n→∞ T (n) = DU P̃TΛP̃ D−1

U (57)

from (52). Therefore, T (n) converges to a block diagonal matrix whose block size is
at most 2. ��

Appendix B: Proofs of Lemmas 2 and 3

We prove here Lemmas 2 and 3 in turn.
By the discussion in Appendix A, λp(m−1), λp(m−2) are the eigenvalues of the 2×2

submatrix
(

α
(∞)
m−2 β

(∞)
m−2

β
(∞)
m−2 α

(∞)
m−1

)
. (58)
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In view of β(∞)
m−2 �= 0, we see |λp(m−2) −λp(m)| = |λp(m−1) −λp(m)|. The eigenvalues

are real and distinct, which implies (λp(m−2) −λp(m))+(λp(m−1) −λp(m)) = 0. Since
the sum of the eigenvalues of the matrix (58) is equal to the trace of that, we have
(α

(∞)
m−2 − s(∞)) + (α

(∞)
m−1 − s(∞)) = 0. In other words,

lim
n→∞

(
α

(n)
m−2 − s(n) β

(n)
m−2

β
(n)
m−2 α

(n)
m−1 − s(n)

)
=

(−D C
C D

)
(59)

holds for constants C and D. Obviously, the eigenvalues of the matrix (59) are
±√

C2 + D2. It then follows that

√
C2 + D2 = ∣∣λp(m−2) − λp(m)

∣∣ = ∣∣λp(m−1) − λp(m)

∣∣ . (60)

This completes the proof of Lemma 2.
Next, we we prove Lemma 3 based on Lemma 1. Actually, in Lemma 1,

lim
n→∞

∣∣∣γ (n)
∣∣∣ =

∏
1≤i≤m−2

∣∣λp(i) − λp(m)

∣∣ > 0 (61)

holds. We prove (61) below. If limn→∞ β
(n)
m−2 = 0, then limn→∞ α

(n)
m−1 = λp(m−1)

holds. Therefore, we obtain

lim
n→∞

∣∣∣γ (n)
∣∣∣ = lim

n→∞
∣∣∣d(n)

m−2

∣∣∣ = lim
n→∞

∏
1≤i≤m−2

∣∣λp(i) − λp(m)

∣∣

from (17) and (19). Next, we consider the situation limn→∞ β
(n)
m−2 �= 0. It is easy to

see that, if limn→∞ β
(n)
m−2 �= 0, then limn→∞ β

(n)
m−3 = 0 because the block size of

T (∞) is at most 2. Combining it with (17), we have

lim
n→∞ d(n)

m−3 =
∏

1≤i≤m−3

(
λp(i) − λp(m)

) �= 0. (62)

In addition, we see

lim
n→∞(γ (n))2 = lim

n→∞

[(
d(n)

m−2

)2 +
(
β

(n)
m−2d(n)

m−3

)2]
(63)

in (19). Noting β
(∞)
m−3 = 0 and (17), we see that

lim
n→∞ |γ (n)| = lim

n→∞

√(
α

(n)
m−2 − s(n)

)2 +
(
β

(n)
m−2

)2|d(n)
m−3|

=
√(

α
(∞)
m−2 − λp(m)

)2 +
(
β

(∞)
m−2

)2 ∏
1≤i≤m−3

|λp(i) − λp(m)| (64)
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holds. Therefore, we obtain (61) from (59) and (60).
Obviously,

lim
n→∞ d(n)

m−1 = lim
n→∞

∏
1≤i≤m−1

(
λp(i) − s(n)

)
�= 0 (65)

holds. Moreover, if D �= 0, then

∣∣∣d(n)
m

∣∣∣ ∼
∣∣∣β(n)

m−2

∣∣∣2
∣∣∣β(n)

m−1

∣∣∣2
∣∣∣d(n)

m−3

∣∣∣
|D| (66)

in the same way as (22).
From (18), (61), (65), and (66), we have

lim
n→∞

∣∣∣β(n+1)
m−1

∣∣∣
∣∣∣β(n)

m−2

∣∣∣2
∣∣∣β(n)

m−1

∣∣∣3
=

∣∣∣d(∞)
m−3

∣∣∣
|D| ∣∣λp(m−1) − λp(m)

∣∣2 ∏
1≤i≤m−2

∣∣λp(i) − λp(m)

∣∣ . (67)

Noting |ρ1| is defined as (25), we have

lim
n→∞

∣∣∣β(n+1)
m−1

∣∣∣
∣∣∣β(n)

m−2

∣∣∣2
∣∣∣β(n)

m−1

∣∣∣3
=

∣∣∣d(∞)
m−3

∣∣∣
|ρ1|

∣∣λp(m−1) − λp(m)

∣∣3 ∏
1≤i≤m−2

∣∣λp(i) − λp(m)

∣∣ (68)

from (67).
We investigate the behavior of |d(n)

m−3|. First of all, we assume β
(∞)
m−3 �= 0. Then

β
(∞)
m−4 = 0 and β

(∞)
m−2 = 0. Similarly to (59) and (60),

∣∣∣α(∞)
m−3 − λp(m)

∣∣∣2 +
∣∣∣β(∞)

m−3

∣∣∣2 = ∣∣λp(m−3) − λp(m)

∣∣2 = ∣∣λp(m−2) − λp(m)

∣∣2 (69)

holds. Noting β
(∞)
m−4 = 0, we have

∣∣∣d(∞)
m−3

∣∣∣ =
∣∣∣α(∞)

m−3 − λp(m)

∣∣∣
∏

1≤i≤m−4

∣∣λp(i) − λp(m)

∣∣

=
√∣∣λp(m−3) − λp(m)

∣∣2 −
∣∣∣β(∞)

m−3

∣∣∣2
∏

1≤i≤m−4

∣∣λp(i) − λp(m)

∣∣

in the same way as (59) and (60). Moreover, noting
∣∣λp(m−3) − λp(m)

∣∣ = ∣∣λp(m−2)
−λp(m)

∣∣, we obtain
∣∣∣d(∞)

m−3

∣∣∣ =
√
1 −

∣∣∣β(∞)
m−3

∣∣∣2 /
∣∣λp(m−2) − λp(m)

∣∣2 ∏
1≤i≤m−3

∣∣λp(i) − λp(m)

∣∣ . (70)
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Actually, it is easy to see that (70) covers the case β
(∞)
m−3 = 0. Therefore, we obtain

lim
n→∞

∣∣∣β(n+1)
m−1

∣∣∣
∣∣∣β(n)

m−2

∣∣∣2
∣∣∣β(n)

m−1

∣∣∣3
=

√
1 −

∣∣∣β(∞)
m−3

∣∣∣2 /
∣∣λp(m−2) − λp(m)

∣∣2

|ρ1|
∣∣λp(m−1) − λp(m)

∣∣3 ∣∣λp(m−2) − λp(m)

∣∣

= |ρ2|
|ρ1|

∣∣λp(m−1) − λp(m)

∣∣3 ∣∣λp(m−2) − λp(m)

∣∣ , (71)

where the first equality is due to (68) and (70), the second equality is due to the
definition of |ρ2| in (26). This completes the proof of (24).

The final task is to derive (28) in the case α
(∞)
m−1 = α

(∞)
m . In (21), |β(n)

m−1|/|α(n)
m−1 −

s(n)| ≤ 1 in view of the definition of Wilkinson’s shift. Hence,

lim sup
n→∞

∣∣∣d(n)
m

∣∣∣
∣∣∣β(n)

m−1

∣∣∣
≤

∣∣∣β(∞)
m−2

∣∣∣2
∣∣∣d(∞)

m−3

∣∣∣

from (21). Also noting
∣∣∣β(∞)

m−2

∣∣∣ = ∣∣λp(m−1) − λp(m)

∣∣ = ∣∣λp(m−2) − λp(m)

∣∣,β(∞)
m−3 = 0,

we have

lim sup
n→∞

∣∣∣d(n)
m

∣∣∣
∣∣∣β(n)

m−1

∣∣∣
≤

∏
1≤i≤m−1

∣∣λp(i) − λp(m)

∣∣ .

Therefore, we obtain (28) from (18), (61), and (65).

Appendix C: Convergence analysis based on perturbation theory

In this section, using perturbation theory we prove Corollary 1. In other words, we
prove the following facts:

– if limn→∞(α
(n)
m−1 − α

(n)
m ) = 0, then |β(n+1)

m−1 | = O(|β(n)
m−1|2);

– if limn→∞(α
(n)
m−1 − α

(n)
m ) = D �= 0, then |β(n+1)

m−1 | = O(|β(n)
m−2|2|β(n)

m−1|3).
In what follows, we use the so-called gap theorem [7, Theorem 11.7.1].

Lemma 4 ([7]) Let y be a unit vector, A be a symmetric matrix, and λl be the eigen-
value of A closest to yT Ay. Then

∣∣∣yT Ay − λl

∣∣∣ ≤
∥∥Ay − (

yT Ay
)

y
∥∥2

mini �=l
∣∣λi − yT Ay

∣∣

holds.
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First of all, we note

∣∣∣β(n+1)
m−1

∣∣∣ ∼
∣∣λp(m) − s(n)

∣∣
∣∣λp(m−1) − s(n)

∣∣
∣∣∣β(n)

m−1

∣∣∣ (72)

as n → ∞ for the general shifts satisfying β
(∞)
m−1 = 0 and the condition (i) in Appen-

dix A. Although this fact might be noticed by the experts, the authors do not know
the literature where its proof is explicitly written. Hence, we prove (72) below. Recall
that T (n)

k for k = 1, . . . , m are the k × k leading principal submatrix of T (n) and

d(n)
k = det(T (n)

k − s(n) I ) for k = 1, . . . , m defined in (17). Then, (65) holds for

the general shifts in view of the condition (i) and limn→∞ β
(n)
m−1 = 0. Obviously,

d(n)
m = ∏

1≤i≤m(λp(i) − s(n)). Furthermore, noting that γ (n) in (19) is bounded and

limn→∞ β
(n)
m−1 = 0, in (18) we have

∣∣∣β(n+1)
m−1

∣∣∣ ∼
∣∣(λp(m) − s(n))γ (n)

∣∣
∏

1≤i≤m−1

∣∣λp(i) − s(n)
∣∣
∣∣∣β(n)

m−1

∣∣∣ (73)

as n → ∞. From (61), we have (72).
For the discussion below, we describe the relation (72) more precisely. For any

ε1 > 0, ∣∣∣β(n+1)
m−1

∣∣∣ ≤
∣∣λp(m) − s(n)

∣∣
∣∣λp(m−1) − s(n)

∣∣
∣∣∣β(n)

m−1

∣∣∣ (1 + ε1) (74)

holds for all sufficiently large n.
In order to reveal the convergence rate, let us estimate |λp(m) − s(n)|. To this end,

suppose we apply one step of the Jacobi method for the lower right 2-by-2 submatrix
of T (n). Then we see from [7, Chapter9] that the angle θ(n) of Givens rotation for
annihilating β

(n)
m−1 satisfies

tan
(
2θ(n)

)
= 2β(n)

m−1

α
(n)
m−1 − α

(n)
m

, (75)

where θ(n) is chosen in the interval [−π/4, π/4]. It means that the transformedmatrix
can be described as

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . ∗ ∗
∗ ∗ ∗ z(n)

∗ ∗ 0
z(n) 0 s(n)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where
z(n) = β

(n)
m−2 sin(θ

(n)). (76)
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Note that s(∞) = λp(m). Let

δ = min
i �=m

∣∣∣λp(i) − s(∞)
∣∣∣ > 0. (77)

For any ε2 > 0, noting Lemma 4 with y := (0, 0, . . . , 1)T, we have

∣∣∣λp(m) − s(n)
∣∣∣ ≤ |z(n)|2

δ − ε2
(78)

for all sufficiently large n. In addition, it is easy to see that, for any ε3 > 0,

∣∣∣λp(m−1) − s(n)
∣∣∣ ≥ δ − ε3 (79)

for all sufficiently large n.
Now we consider the case of |α(n)

m−1 − α
(n)
m | → D �= 0. We obtain

∣∣∣β(n+1)
m−1

∣∣∣ ≤
∣∣∣β(n)

m−1

∣∣∣ ∣∣z(n)
∣∣2 |1 + ε1|

|δ − ε2| |δ − ε3|

=
∣∣∣β(n)

m−1

∣∣∣
∣∣∣β(n)

m−2 sin(θ
(n))

∣∣∣2 |1 + ε1|
|δ − ε2| |δ − ε3|

=
∣∣∣β(n)

m−1

∣∣∣3
∣∣∣β(n)

m−2

∣∣∣2 |1 + ε1|
∣∣∣α(n)

m−1 − α
(n)
m

∣∣∣2 |δ − ε2| |δ − ε3|
(80)

for all sufficiently large n by using (74), (79), (78), (76), (75) in turn. We see
ε1, ε2, ε3 → 0 and |α(n)

m−1 − α
(n)
m | → |D| > 0 as n → ∞. Therefore, |β(n+1)

m−1 | =
O(|β(n)

m−2|2|β(n)
m−1|3).

Finally, we prove the quadratic convergence in the case |α(n)
m−1 − α

(n)
m | → 0. Since

the estimate (80) by the Jacobi transformation cannot derive the quadratic convergence
in the case |α(n)

m−1 − α
(n)
m | → 0, we give another estimate based on Lemma 4. For any

ε4 > 0, we see

∣∣∣λp(m) − α(n)
m

∣∣∣ ≤
∣∣∣β(n)

m−1

∣∣∣2

δ − ε4
(81)

for all sufficiently large n from Lemma 4 with y := (0, 0, . . . , 1)T, A := T (n). From
the definition of Wilkinson’s shift, |α(n)

m − s(n)| ≤ |β(n)
m−1| holds. Hence,

∣∣∣λp(m) − s(n)
∣∣∣ ≤

∣∣∣λp(m) − α(n)
m

∣∣∣ +
∣∣∣α(n)

m − s(n)
∣∣∣ ≤

∣∣∣β(n)
m−1

∣∣∣2

δ − ε4
+

∣∣∣β(n)
m−1

∣∣∣ (82)

for all sufficiently large n. Thus, we have
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∣∣∣β(n+1)
m−1

∣∣∣ ≤
∣∣∣β(n)

m−1

∣∣∣2
(
δ − ε4 + β

(n)
m−1

)
|1 + ε1|

|δ − ε3| |δ − ε4|

for all sufficiently large n from (74), (79), (82). We see ε3, ε4 → 0 and β
(n)
m−1 → 0 as

n → ∞. Therefore, |β(n+1)
m−1 | = O(|β(n)

m−1|2). This completes the proof.
Although the convergence analysis above is readily accessible to the readers in

the research fields of the numerical linear algebra, we also note that the right-hand
side of (80) in our proof is an overestimate in the case of |λp(m−1) − λp(m)| <

|λp(m−2) − λp(m)| because we have

lim
n→∞

1∣∣∣α(n)
m−1 − α

(n)
m

∣∣∣2 |δ|2
= 1

|D|2 ∣∣λp(m−1) − λp(m)

∣∣2

>
1

|D| ∣∣λp(m−2) − λp(m)

∣∣ ∣∣λp(m−1) − λp(m)

∣∣2

= 1∣∣λp(m−1) − λp(m)

∣∣3 ∣∣λp(m−2) − λp(m)

∣∣ |ρ1|
≥ |ρ2|∣∣λp(m−1) − λp(m)

∣∣3 ∣∣λp(m−2) − λp(m)

∣∣ |ρ1|

= lim
n→∞

∣∣∣β(n+1)
m−1

∣∣∣
∣∣∣β(n)

m−2

∣∣∣2
∣∣∣β(n)

m−1

∣∣∣3
, (83)

where the first equality is due to the assumptionα
(∞)
m−1−α

(∞)
m = D and the definition of

δ in (77), the next inequality is due to (27) and the above condition |λp(m−1)−λp(m)| <

|λp(m−2) − λp(m)|, the next equality is due to (25), the next inequality is due to (26),

and the last equality is due to (24). Also note that, in the case of β
(∞)
m−2 = C �= 0,

the above relation (83) holds because we have the strict inequality in (83) from (60).
Therefore, the right-hand side of (80) is an overestimate.
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