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Abstract We discuss the error analysis of linear interpolation on triangular elements.
We claim that the circumradius condition is more essential than the well-known max-
imum angle condition for convergence of the finite element method, especially for the
linear Lagrange finite element. Numerical experiments show that this condition is the
best possible. We also point out that the circumradius condition is closely related to
the definition of surface area.
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1 Introduction

In numerical analysis, linear interpolation on triangular elements is one of the more
fundamental conceptions. Specifically, as meshes become finer, it is an important tool
in understanding why and how finite element approximations converge to an exact
solution.
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66 K. Kobayashi, T. Tsuchiya

Let � ⊂ R
2 be a bounded polygonal domain. Suppose that we would like to solve

the Poisson equation of finding u ∈ H1
0 (�) for a given f ∈ L2(�) such that

− �u = f in �. (1)

With a triangulation τ of �, we define the FEM solution uh by

∫
�

∇uh · ∇vhdx =
∫

�

f vhdx, ∀vh ∈ Sτ , (2)

where P1 is the set of all polynomials whose degree is at most 1 and

Sτ :=
{
vh ∈ H1

0 (�)
∣∣ vh

∣∣
K ∈ P1,∀K ∈ τ

}
.

Let K ⊂ R
2 be a triangle with apices xi , i = 1, 2, 3. We shall always consider K to

be a closed set in R
2. For a continuous function f ∈ C0(K ), the linear interpolation

IK f ∈ P1 is defined by

(IK f )(xi ) = f (xi ), i = 1, 2, 3.

If f ∈ C0(�), the linear interpolation Iτ f is defined by (Iτ f )|K = IK f . Céa’s lemma
claims that the error |u − uh |1,2,� is estimated as

|u − uh |1,2,� ≤ inf
vh∈Sτ

|u − vh |1,2,� ≤ |u − Iτ u|1,2,� =
(∑

K∈τ

|u − IK u|21,2,K

)1/2

.

Therefore, the interpolation error |u − IK u|1,2,K provides an upper bound of |u −
uh |1,2,�.

It has been known that we need to impose a geometric condition to K to obtain an
error estimation of |u − IK u|1,2,K . We mention the following well-known results. Let
hK be the diameter of K and ρK be the maximum radius of the inscribed circle in K .

– The minimum angle condition, Zlámal [21]. Let θ0, 0 < θ0 < π/3, be a constant.
If any angle θ of K satisfies θ ≥ θ0 and hK ≤ 1, then there exists a constant
C = C(θ0) independent of hK such that

‖v − IK v‖1,2,K ≤ ChK |v|2,2,K , ∀v ∈ H2(K ).

– The regularity (inscribed ball) condition, see, for example, Ciarlet [6].
Let σ > 0 be a constant. If hK /ρK ≤ σ and hK ≤ 1, then there exists a con-
stant C = C(σ ) independent of hK such that

‖v − IK v‖1,2,K ≤ ChK |v|2,2,K , ∀v ∈ H2(K ).
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Circumradius condition for piecewise linear triangular elements 67

– The maximum angle condition, Babuška-Aziz [2], Jamet [9]. Let θ1, 2π/3 ≤
θ1 < π , be a constant. If any angle θ of K satisfies θ ≤ θ1 and hK ≤ 1, then there
exists a constant C = C(θ1) independent of hK such that

‖v − IK v‖1,2,K ≤ ChK |v|2,2,K , ∀v ∈ H2(K ).

It is easy to show that the minimum angle condition is equivalent to the regularity
condition [6, Exercise 3.1.3,p130]. Since its discovery, the maximum angle condition
was believed to be the most essential condition for convergence of solutions of the
finite element method.

However, Hannukainen–Korotov–Křížek pointed out that “the maximum angle con-
dition is not necessary for convergence of the finite element method” by showing sim-
ple numerical examples [8]. We double checked the first numerical experiment in [8]
with slightly different triangulations and obtained the same result for the error associ-
ated with the finite element approximations. Therefore, the question arises: “What is
the essential condition to impose on triangulation for convergence of the finite element
method?”. One of the aims here is to give a partial answer to this question. Suppose
that a sequence {τn}∞n=1 of triangulations of � is given. Let RK be the circumradius
of a triangle K and Rτn := maxK∈τn RK . We claim that the condition

lim
n→∞ Rτn = 0 (3)

is more essential than the maximum angle condition. The condition (3) is called the
circumradius condition.

We moreover point out that the circumradius condition is closely related to the
definition of surface area. In the 19th century, people believed that surface area could
be defined as the limit of the area of inscribed polygonal surfaces. In the 1880s,
Schwarz and Peano independently presented their famous example that refutes this
expectation. See [5,15,16]. We shall observe in Sect. 3 that, in Schwarz’s example,
the limit of the inscribed polygonal surfaces is equal to the area of the cylinder if and
only if the circumradius of triangles converges to 0.

We shall also show that the graph of f ∈ W 2,1(�) has finite area AL( f ). Moreover,
the areas of its inscribed polygonal surfaces converge to AL( f ) if the sequence of
triangulations satisfies the circumradius condition. See Theorem 6 in Sect. 3.

Let us summarize the notation and terminology to be used. The Lebesgue and
Sobolev spaces on a domain � ⊂ R

2 are denoted by L p(�) and W m,p(�), m = 1, 2,
1 ≤ p ≤ ∞. As usual, W m,2(�) is denoted by Hm(�). The norms and seminorms of
L p(�) and W m,p(�) are denoted by ‖·‖m,p,� and | · |m,p,�, m = 0, 1, 2, 1 ≤ p ≤ ∞.
For a polygonal domain � ⊂ R

2, a triangulation τ is a set of triangles which satisfies
the following properties: (recall that each K is a closed set.)

(i)
⋃
K∈τ

K = �, and intK ∩ intK ′ = ∅ for any K , K ′ ∈ τ with K �= K ′.

(ii) If K ∩ K ′ �= ∅ for K , K ′ ∈ τ , K ∩ K ′ is either their apices or their edges.

For a triangulation τ , we define |τ | := maxK∈τ diamK .
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68 K. Kobayashi, T. Tsuchiya

Let � ⊂ R
2 be a bounded Lipschitz domain. By Sobolev’s imbedding theorem,

we have the continuous inclusion W 2,p(�) ⊂ C0(�) for any p ∈ [1,∞]. Note that
for p = 1 Morry’s inequality is not applicable and the inclusion W 2,1(�) ⊂ C0(�)

is not so obvious. For a proof of the critical imbedding, see [1, Theorem 4.12] and [4,
Lemma 4.3.4].

2 Kobayashi’s formula, the circumradius condition, and Schwarz’s example

Recently, we made progress on the error analysis of linear interpolation on triangular
elements. Liu–Kikuchi presented an explicit form of the constant C in the maximum
angle condition [12]. Being inspired by Liu–Kikuchi’s result, Kobayashi, one of the
authors, obtained the following remarkable result with the assistance of numerical
validated computation [10].

Theorem 1 (Kobayashi’s formula) Let A, B, C be the lengths of the three edges of K
and S be the area of K . Define the constant C(K ) by

C(K ) :=
√

A2 B2C2

16S2 − A2 + B2 + C2

30
− S2

5

(
1

A2 + 1

B2 + 1

C2

)
,

then the following estimate holds:

|v − IK v|1,2,K ≤ C(K )|v|2,2,K , ∀v ∈ H2(K ).

Let RK be the radius of the circumcircle of K . From the formula RK = ABC/4S, we
realize C(K ) < RK and obtain a corollary of Kobayashi’s formula.

Corollary 2 For any triangle K ⊂ R
2, the following estimate holds:

|v − IK v|1,2,K ≤ RK |v|2,2,K , ∀v ∈ H2(K ).

Let θK ≥ π/3 be the maximum angle of K . By the law of sines, we have hk =
2RK sin θK . Therefore, if there is a constant θ1, 2π/3 ≤ θ1 < π such that θK ≤ θ1,
then hK ≥ (2 sin θ1)RK and limhK →0 RK = 0. This means that, under the assumption
hK → 0, (i) the maximum angle condition implies the circumradius condition.

Let � ⊂ R
2 be a bounded domain and an arbitrary v ∈ H2(�) is taken and fixed.

Consider now the isosceles triangle K ⊂ � depicted in Fig. 1. If 0 < h < 1 and α > 1,
then hα < h and the circumradius of K is RK = hα/2+h2−α/8. Hence, Kobayashi’s
formula and its corollary yield that, if 1 < α < 2, |v − IK v|1,2,K ≤ RK |v|2,2,K and
RK → 0 as h → 0, whereas the maximum angle of K approaches π . This means

Fig. 1 An example of triangles
which violates the maximum
angle condition but RK → 0 as
h → 0

h

hα
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Circumradius condition for piecewise linear triangular elements 69

that, when hK → 0, (ii) the circumradius condition does not necessarily imply the
maximum angle condition.

Gathering from (i) and (ii), we infer that the circumradius of a triangle is a more
important indicator than its minimum and maximum angles.

Without the assistance of numerical validated computation, the authors then proved
for arbitrary p ∈ [1,∞] the following theorem.

Theorem 3 (The circumradius condition [11]) For an arbitrary triangle K with RK ≤
1, there exists a constant C p independent of K such that the following estimate holds:

‖v − IK v‖1,p,K ≤ C p RK |v|2,p,K , ∀v ∈ W 2,p(K ), 1 ≤ p ≤ ∞. (4)

For the case p = 2, the estimate (4) was shown by Rand [17, Theorem 7.10] in his
Ph.D. dissertation but it was not published in a research paper.

Combining Céa’s lemma and Corollary 2 or Theorem 3, we immediately obtain the
following estimation.

Theorem 4 Let u be the exact solution of (1) and uh be the FEM solution of (2).
Suppose that u ∈ H2(�). Then we have, for Rτ ≤ 1,

‖u − uh‖1,2,� ≤ C Rτ |u|2,2,�, Rτ := max
K∈τ

RK , (5)

where the positive constant C depends only on C2 and �.

Note that it follows from Corollary 2 that C2 = 1. However, proving this without
using validated numerical computation is not easy.

The isosceles triangle in Fig. 1 reminded the authors of Schwarz’s example. As
is well understood, the length of a curve is defined as the limit of the length of the
inscribed polygonal edges. Hence, one might think that the area of a surface could
be defined in a similar manner. Actually, mathematicians in the 19th century believed
that the area of surface is the limit of the areas of inscribed polygonal surfaces.

In the 1880s, Schwarz and Peano independently showed, however, that this defini-
tion does not work [5,15,16,20]. Let � be a rectangle of height H and width 2πr . Let
m, n be positive integers. Suppose that this rectangle is divided into m equal strips,
each of height H/m. Each strip is then divided into isosceles triangles whose base
length is 2πr/n, as depicted in Fig. 2. Then, the piecewise linear map ϕτ : � → R

3

2πr

H

Fig. 2 Schwarz’s example
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70 K. Kobayashi, T. Tsuchiya

is defined by “rolling up this rectangle” so that all vertexes are on the cylinder of
height H and radius r . Then, the cylinder is approximated by the inscribed polygonal
surface which consists of 2mn congruent isosceles triangles. Because the height of
each triangle is

√
(H/m)2 + r2(1 − cos(π/n))2 and the base length is 2r sin(π/n),

the area AE of the inscribed polygonal surface is1

AE = 2mnr sin
π

n

√(
H

m

)2

+ r2
(

1 − cos
π

n

)2

= 2πr
sin π

n
π
n

√√√√H2 + π4r2

4

( m

n2

)2
(

sin π
2n

π
2n

)4

.

If m, n → ∞, we observe

lim
m,n→∞ AE = 2πr

√
H2 + π4r2

4
lim

m,n→∞
( m

n2

)2
,

in particular,

lim
m,n→∞ AE = 2πr H if and only if lim

m,n→∞
m

n2 = 0.

As we are now aware that the circumradius is an important factor, we compute the
circumradius R of the isosceles triangle in Schwarz’s example. By a straightforward
computation, we find that

R =
H2

m + π2r2 m
n2

(
sin π

2n
π
2n

)2

2

√
H2 + π4r2

4

(
m
n2

)2 (
sin π

2n
π
2n

)4

and immediately realize that

lim
m,n→∞ AE = 2πr H ⇐⇒ lim

m,n→∞
m

n2 = 0 ⇐⇒ lim
m,n→∞ R = 0. (6)

This fact strongly suggests that the circumradius of triangles in a triangulation is
essential for error estimations of linear interpolations.

With (6) in mind, we perform a numerical experiment similar to the one in [8]. Let
� := (−1, 1) × (−1, 1), f (x, y) := a2/(a2 − x2)3/2, and g(x, y) := (a2 − x2)1/2

with a := 1.1. Then we consider the following Poisson equation: Find u ∈ H1(�)

such that
− �u = f in �, u = g on ∂�. (7)

1 The subscript ‘E’ of AE stands for ‘Elementary’.
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Fig. 3 The triangulation of � with N = 12 and α = 1.6 and the errors for FEM solutions in H1-norm. The
horizontal axis represents the maximum diameter of the triangles and the vertical axis represents H1-norm
of the errors of the FEM solutions. The number next to the symbol indicates the value of α

Fig. 4 Replotted data: the
errors in H1-norm of FEM
solutions measured using the
circumradius. The horizontal
axis represents the maximum
circumradius of the triangles
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The exact solution of (7) is u(x, y) = g(x, y) and its graph is a part of the cylinder.
For a given positive integer N and α > 1, we consider the isosceles triangle with base
length h := 2/N and height 2/�2/hα� ≈ hα , as depicted in Fig. 1. For comparison,
we also consider the isosceles triangle with base length h and height h/2 for α = 1. We
triangulate � with this triangle, as shown in Fig. 3. The behavior of the error is given
in Fig. 3. The horizontal axis represents the mesh size measured by the maximum
diameter of triangles in the meshes and the vertical axis represents the error associated
with FEM solutions in H1-norm. The graph clearly shows that the convergence rates
worsen as α approaches 2.0. For α = 2.1, the FEM solutions even diverge. We replot
the same data in Fig. 4, in which the horizontal axis represents the maximum of the
circumradius of triangles in the meshes. Figure 4 shows convergence rates are almost
the same in all cases if we measure these with the circumradius.

From the results of the numerical experiments, we draw the following conclusions:
suppose that we consider the Poisson equation (7).
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72 K. Kobayashi, T. Tsuchiya

– In our example, although the triangulation does not satisfy the maximum angle
condition, the FEM solutions converge to the exact solution and the error behaves
exactly as the estimation (5) predicts. If the triangulation does not satisfy the cir-
cumradius condition, the FEM solutions diverge even if meshes become finer with
respect to the maximum diameter of the triangles. From this observation, we infer
that, for convergence of the FEM solutions, the circumradius solution is more
essential than the maximum angle condition and is the best possible as a geometric
condition for triangulation.2

– The numerical experiments in [8] show that, in certain combinations of an exact
solution and triangulation, FEM solutions can converge to an exact solution,
although triangulation does not satisfy the maximum angle condition. We notice
that their triangulations do not satisfy the circumradius condition either. Hence,
the circumradius condition is not necessary for convergence of the finite element
method.

These conclusions answer, partially but not completely, the question which Hannukai-
nen–Korotov–Křížek posed. We infer from the numerical experiments that matching
between exact solutions and geometry of triangulation seems important. Further and
deeper understanding of how FEM solutions converge to an exact solution is strongly
desired.

3 The circumradius condition and the definition of surface area

At the present time, the most general definition of surface area is that of Lebesgue.
Let � := (a, b) × (c, d) ⊂ R

2 be a rectangle and τn be a sequence of triangulation
of � such that limn→∞ |τn| = 0. Let f ∈ C0(�) be a given continuous function. Let
fn ∈ Sτn be such that { fn}∞n=1 converges uniformly to f on �. Note that the graph of
z = fn(x, y) is a set of triangles and its area is defined as a sum of these triangular
areas. We denote this area by AE ( fn) and have

AE ( fn) =
∫

�

√
1 + |∇ fn|2dx .

Let � f be the set of all such sequences {( fn, τn)}∞n=1. Then the area AL( f ) =
AL( f ;�) of the graph z = f (x, y) is defined by

AL( f ) = AL( f ;�) := inf{( fn ,τn)}∈� f
lim inf
n→∞ AE ( fn).

This AL( f ) is called the surface area of z = f (x, y) in the Lebesgue sense. For a
fixed f , AL( f ;�) is additive and continuous with respect to the rectangular domain
�. Tonelli then presented the following theorem.

2 By the statement (i) given after Corollary 2, we realize that if the circumradius condition does not hold
then the maximum angle condition does not hold either.
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Circumradius condition for piecewise linear triangular elements 73

For a continuous function f ∈ C0(�), we define W1(x), W2(y) by

W1(x) := sup
τ(y)

∑
i

∣∣ f (x, yi−1) − f (x, yi )
∣∣, x ∈ (a, b),

W2(y) := sup
τ(x)

∑
j

∣∣ f (x j−1, y) − f (x j , y)
∣∣, y ∈ (c, d),

where τ(y), τ(x) are subdivisions c = y0 < y1 < · · · < yN = d and a = x0 <

x1 < · · · < xM = b, respectively and ‘sup’ are taken for all such subdivisions. Then,
a function f has bounded variation in the Tonelli sense if

∫ b

a
W1(x)dx +

∫ d

c
W2(y)dy < ∞.

Also, a function f is called absolutely continuous in the Tonelli sense if, for almost
all y ∈ (c, d) and x ∈ (a, b), the functions g(x) := f (x, y) and h(y) := f (x, y) are
absolutely continuous on (a, b) and (c, d), respectively.

Theorem 5 (Tonelli) For a continuous function f ∈ C(�) defined on a rectangular
domain �, its graph z = f (x, y) has finite area AL( f ) < ∞ if and only if f has
bounded variation in the Tonelli sense. If this is the case, we have

AL( f ) ≥
∫

�

√
1 + f 2

x + f 2
y dx. (8)

In the above inequality, the equality holds if and only if f is absolutely continuous in
the Tonelli sense.

For a proof of this theorem, see [18, Chapter V, pp.163–185]. It follows from
Tonelli’s theorem that if f ∈ W 1,∞(�) then the area AL( f ) is finite and the equality
holds in (8). In the following theorem we consider the case f ∈ W 2,1(�).

Theorem 6 Let � ⊂ R
2 be a rectangular domain. If f ∈ W 2,1(�), then its graph has

finite area, that is, AL( f ) < ∞, and the equality holds in (8). Moreover, if a sequence
{τn}∞n=1 of triangulations of � satisfies the circumradius condition, then we have

lim
n→∞

∫
�

√
1 + |∇ Iτn f |2dx = AL( f ) =

∫
�

√
1 + |∇ f |2 dx.

Proof At first, we notice f is of bounded variation and absolutely continuous in the
Tonelli sense. Let ω := {x} × (c, d) for x ∈ (a, b). We consider the trace operator
γ : W 2,1(�) → W 1,1(ω) defined by (γ f )(y) := f (x, y). Then, γ is a bounded linear
operator and it is easy to see that

∑
τ(y)

∣∣(γ f )(yi−1) − (γ f )(yi )
∣∣ ≤

∫ d

c

∣∣(γ f )′(y)
∣∣dy, W1(x) ≤

∫ d

c

∣∣ fy(x, y)
∣∣dy.
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74 K. Kobayashi, T. Tsuchiya

Similarly, we obtain W2(y) ≤ ∫ b
a | fx (x, y)|dx and Fubini’s theorem implies that f

has bounded variation in the Tonelli sense. Hence, Theorem 5 yields AL( f ) < ∞ and
(8) holds. We show that f is absolutely continuous in the Tonelli sense in exactly the
same manner. Therefore, the equality holds in (8).

For the piecewise linear interpolation Iτn f , we have

AE (Iτn f ) = AL(Iτn f ) =
∫

�

√
1 + (Iτn f )2

x + (Iτn f )2
y dx.

Hence, |AL( f ) − AE (Iτn f )| is estimated as

|AL ( f ) − AE (Iτn f )| ≤
∫

�

∣∣∣
√

1 + f 2
x + f 2

y −
√

1 + (Iτn f )2
x + (Iτn f )2

y

∣∣∣ dx

≤
∫

�

∣∣( fx + (Iτn f )x
) (

fx − (Iτn f )x
) + (

fy + (Iτn f )y
) (

fy − (Iτn f )y
)∣∣√

1 + f 2
x + f 2

y +
√

1 + (Iτn f )2
x + (Iτn f )2

y

dx

≤ | f − Iτn f |1,1,�

≤ C1 Rτn | f |2,1,� → 0 as Rτn → 0,

because
∣∣ fx + (Iτn f )x

∣∣√
1 + f 2

x + f 2
y +

√
1 + (Iτn f )2

x + (Iτn f )2
y

≤ 1,

∣∣ fy + (Iτn f )y
∣∣√

1 + f 2
x + f 2

y +
√

1 + (Iτn f )2
x + (Iτn f )2

y

≤ 1.

Thus, Theorem 6 is proved. ��
Note that, from Schwarz’s example, Theorem 6 is the best possible with respect

to the geometric condition for triangulation. At this point, one might be tempted to
define the surface area using the circumradius condition in the following way:

Definition 7 Let � ⊂ R
2 be a bounded polygonal domain. Suppose that a sequence

{τn} of triangulation of � satisfies the circumradius condition. Then, for a continuous
function f ∈ C0(�), the area AC R( f ) of the surface z = f (x, y) is defined by

AC R( f ) := lim
n→∞ AE (Iτn f ).

Theorem 6 claims that, for f ∈ W 2,1(�), AC R( f ) is well-defined and AC R( f ) =
AL( f ) < ∞. The example given by Besicovitch shows that AC R( f ) is not well-
defined in C0(�) in general [3]. That is, there exists f ∈ C0(�) and two triangulation
sequences {τn}∞n=1, {μn}∞n=1 of � which satisfy the circumradius condition such that
AL( f ) < ∞ and

lim
n→∞ AE (Iτn f ) �= lim

n→∞ AE (Iμn f ).
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Circumradius condition for piecewise linear triangular elements 75

Therefore, we present the following problem. Let X be a Banach space such that
W 2,1(�) ⊂ X ⊂ L1(�).

Problem 8 (1) Determine the largest function space X such that AC R( f ) is well-
defined for any f ∈ C0(�) ∩ X .

(2) With X defined in (1), prove or disprove whether AC R( f ) = AL( f ) for any
f ∈ C0(�) ∩ X with AL( f ) < ∞.

4 Concluding remarks: history repeats itself

We have shown that the circumradius condition is more essential than the maximum
angle condition for convergence of FEM solutions. Also, we have pointed out a close
relationship between the circumradius condition and the definition of surface area.
In concluding, we draw readers’ attention to the similarity of two histories. After
Schwarz and Peano found their counter example, mathematicians naturally tried to
find a proper definition of surface area. The authors are unfamiliar with the history
behind that quest. Instead, we suggest that readers look at [16, Chapter I] from which
we mention the following remarks.

Let S ⊂ R
3 be a general parametric surface. If there exists a Liptschitz map

ϕ : � → R
3 defined on a domain � ⊂ R

2 such that S = ϕ(�), S is called rectifiable.
Let � be a rectangle and ϕ : � → R

3 be a rectifiable surface. Suppose that we have
a sequence {τn}∞n=1 of triangulation of � such that |τn| → 0 as n → ∞. Then, the
rectifiable surface ϕ has linear interpolations Iτn ϕ. Rademacher showed [13,14] that if
{τn}∞n=1 satisfies the minimum angle condition we have limn→∞ AE (Iτn ϕ) = AL(ϕ).
Then, Young showed [19] that if {τn}∞n=1 satisfies the maximum angle condition we
have limn→∞ AE (Iτn ϕ) = AL(ϕ). See also the comment by Fréchet [7] on Young’s
result.3

This means that the minimum and maximum angle conditions were already found
about 50 years before they were rediscovered by FEM exponents. This is an interesting
example of the proverb History repeats itself.
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