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Abstract In this paper, we propose a parameterized splitting (PS) iteration method
for solving complex symmetric linear systems. The convergence theory of the method
is established and the spectral properties of the corresponding iteration matrix are
analyzed. The explicit expression for the spectral radius of the iteration matrix is given.
In addition, the optimal choice of the iteration parameter is discussed. It is shown that
the eigenvalues of the preconditioned matrix are cluster at 1. Numerical experiments
illustrate the theoretical results and also examine the numerical effectiveness of the
new parameterized splitting iteration method served either as a preconditioner or as a
solver.
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1 Introduction

Consider the iteration solution of the linear system

A u = b, A = W + ıT ∈ C
n×n, (1.1)
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266 G.-F. Zhang and Z. Zheng

where u,b ∈ C
n, and W, T ∈ R

n×n are real, symmetric and positive semi-definite
matrices with at least one of them, e.g., W being positive definite. Here and in the
sequel, we use ı = √−1 to denote the imaginary unit.

Complex symmetric linear systems of this kind arise in many problems in scientific
computing and engineering applications, including diffuse optical tomography [1],
FFT-based solution of certain time-dependent PDEs [11], quantum mechanics [15],
molecular scattering [13], structural dynamics [12], and lattice quantum chromo dy-
namics [13] and so on. For more examples about the practical backgrounds of this
class of problems, we refer to [8] and the references therein.

Let u = x+ ıy, b = f + ıg, x, y, f, g ∈ R
n . Then (1.1) can be equivalently written

as

(W + ıT)(x + ıy) = f + ıg,

or

(Wx − Ty) + ı(Wy + Tx) = f + ıg.

That is to say, Wx − Ty = f and Tx + Wy = g. Therefore the complex symmetric
linear systems (1.1) can be equivalently transformed into the following two-by-two
block form

Au ≡
(

W −T
T W

) (
x
y

)
=

(
f
g

)
≡ b; (1.2)

see [7].
Linear system (1.2) can be formally regarded as a special case of the generalined

saddle-point problem. In many cases W and T are large sparse matrices and iterative
techeniques are preferable for solving (1.2). In order to solve (1.2) more effectively
using the iteration methods, usually efficient splitting of the coefficient matrix A
determines the asymptotic convergence rate of the corresponding iteration method.
Many efficient iterative methods have been proposed in the literature, see [3–7,9,10,
17]. One can see [8] for a comprehensive survey.

By making use of the special structure of the coefficient matrix A ∈ C
n×n , Bai et al.

[4] proposed the modified Hermitian and skew-Hermitian splitting (MHSS) iteration
method:

MHSS Iteration Method: Given an initial guess u(0), for k = 0, 1, 2, · · · until
u(k) converges, compute

⎧⎨
⎩

(αI + W)u

(
k+ 1

2

)
= (αI − ıT)u(k) + b,

(αI + T)u(k+1) = (αI + ıW)u

(
k+ 1

2

)
− ıb,

α is a given positive constant and I ∈ R
n×n is a unit matrix. Recently, Bai et al. [5]

further presented preconditioned MHSS (PMHSS) iteration method:
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A splitting iteration for complex symmetric linear systems 267

⎧⎨
⎩

(αV + W)u

(
k+ 1

2

)
= (αV − ıT)u(k) + b,

(αV + T)u(k+1) = (αV + ıW)u

(
k+ 1

2

)
− ıb,

(1.3)

and PMHSS iteration method (Real Version [7]).
In this paper, by making use of the special structure of the coefficient matrix A ∈

C
n×n , a new parameterized splitting (PS) iteration method is presented and some of

its basic properties is studied. The explicit expression for the spectral radius of the
iteration matrix is given and the optimal choice of the iteration parameter is discussed.
An advantage of the PS method is that the solution of the linear system with complex
coefficient matrix is avoided and only two linear sub-systems with real and symmetric
positive definite coefficient matrix need to be solved at each step.

The remainder of the paper is organized as follows. In Sect. 2, the PS method is
described. The convergence theory of the PS method is established. The spectral prop-
erties of the corresponding iteration matrix are discussed, and the explicit expression
for the spectral radius of the iteration matrix is given. In addition, the optimal choice
of the iteration parameter is discussed. In Sect. 3, some implementation aspects are
briefly discussed. Some properties of the preconditioned matrix are analyzed. It is
shown that the eigenvalues of the preconditioned matrix are cluster at 1. Results of the
numerical experiments on a few model problems are given in Sect. 4. Finally, in Sect.
5 we offer brief concluding remarks to end the paper.

2 The PS iteration method

We split the coefficient matrix A in (1.2) into the sum of the following matrices:

A = M(α) − N(α), (2.1)

where

M(α) :=
(

W + 2αTW−1T 0

(1 − α)T
1

2
W

)
, N(α) :=

(
2αTW−1T T

−αT −1

2
W

)
. (2.2)

Based on this splitting, we establish the following parameterized splitting (PS)
iteration method for the linear systems (1.1):
The PS Iteration Method: Let u(0) = (

x(0)T
, y(0)T )T ∈ R

2n be an arbitrary ini-

tial guess. For k = 0, 1, 2, · · · until the iteration sequence

{(
x(k)T

, y(k)T
)T

}∞

k=0

converge, compute the next iteration
(

x(k+1)T
, y(k+1)T

)T
according to the following

procedure:

{
(W + 2αTW−1T)x(k+1) = f + 2αTW−1Tx(k) + Ty(k),

y(k+1) = −y(k) + 2W−1
(
g − αTx(k) − (1 − α)Tx(k+1)

)
.

(2.3)
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268 G.-F. Zhang and Z. Zheng

where α is a given constant.
The PS iteration method (2.3) can be rewritten in matrix-vector form as

u(k+1) = L(α)u(k) + M−1(α)b, k = 0, 1, 2, · · · (2.4)

where L(α) = M−1(α)N(α), u(k) =
(

x(k)T
, y(k)T

)T
and α is a given positive

constant, or equivalently,

(
W + 2αTW−1T 0

(1 − α)T
1

2
W

) (
x(k+1)

y(k+1)

)
=

(
2αTW−1T T

−αT −1

2
W

) (
x(k)

y(k)

)
+

(
f
g

)
.

Obviously,

L(α) =
(

W + 2αTW−1T 0

(1 − α)T
1

2
W

)−1 (
2αTW−1T T

−αT −1

2
W

)
(2.5)

is the iteration matrix of the PS iteration method (2.3). Therefore, the PS iteration
scheme is induced by the matrix splitting A = M(α)−N(α), M(α) and N(α) defined
in (2.2). It follows that the splitting matrix M(α) can be used as a preconditioner for
the coefficient matrix A ∈ R

2n×2n in (1.2).
The following Lemma 2.1 give out the condition that the coefficient matrix A is

nonsingular.

Lemma 2.1 ([7]) Let A ∈ R
2n×2n be the block two-by-two matrix defined as in (1.2),

with both W ∈ R
n×n and T ∈ R

n×n being symmetric positive semi-definite matrices.
Then A is nonsingular if and only if null(W)∩ null(T) = {0}.
Lemma 2.2 ([16]) Consider the real quadratic equation x2 − δ1x + δ2 = 0, where
δ1 and δ2 are real numbers. Both roots of the equation are less than one in modules if
and only if |δ2| < 1 and |δ1| < 1 + δ2.

Next, we discuss the convergence of the PS iteration method.

Lemma 2.3 Let both W ∈ R
n×n and T ∈ R

n×n be symmetric and positive definite
matrices. Assume that λ is an eigenvalue of the iteration matrix L(α) defined as in

(2.5), and
(
vT

1 , vT
2

)T
is the corresponding eigenvector. If α >

1

2
, then λ �= −1 and

v1 �= 0. Moreover, if v2 = 0, then |λ| < 1.

Proof Since
(
λ,

(
vT

1 , vT
2

)T
)

is an eigenpair of the matrix L(α). Then we have

(
2αTW−1T T

−αT −1

2
W

) (
v1
v2

)
= λ

(
W + 2αTW−1T 0

(1 − α)T
1

2
W

)(
v1
v2

)
,
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A splitting iteration for complex symmetric linear systems 269

or equivalently

{
2αTW−1Tv1 + Tv2 = λ(W + 2αTW−1T)v1,

(λ + 1)Wv2 = 2(λα − λ − α)Tv1.
(2.6)

If λ = −1 , from (2.6) we obtain

{
(W + 4αTW−1T)v1 + Tv2 = 0,

(1 − 2α)Tv1 = 0.
(2.7)

Since α >
1

2
, W and T are symmetric and positive definite matrices, from (2.7) it

follows that v1 = 0 and v2 = 0, which contradicts with the assumption that
(
vT

1 , vT
2

)T

is the eigenvector of L(α).
If v1 = 0, λ �= −1, from (2.6) we have (λ + 1)Wv2 = 0. It follows that v2 = 0,

which is a contradiction.
If v2 = 0. Define

σ1 := vT
1 Wv1

vT
1 v1

, σ2 := vT
1 TW−1Tv1

vT
1 v1

. (2.8)

We easily see that σ1 > 0 and σ2 > 0.
From (2.6) we obtain

2αTW−1Tv1 = λ(W + 2αTW−1T)v1. (2.9)

By left-multiplying
vT

1

vT
1 v1

on both sides in (2.9) we have

2ασ2 = λ(σ1 + 2ασ2).

Hence, λ = 2ασ2

σ1 + 2ασ2
. Therefore we see that |λ| < 1 holds when α > 0.

Applying Lemmas 2.2 and 2.3, we can obtain the convergence result in the following
theorem.

Theorem 2.4 Let A ∈ R
2n×2n be the block two-by-two matrix defined as in (1.2),

with both W ∈ R
n×n and T ∈ R

n×n being symmetric positive definite. If α >
1

2
, then

the PS iteration method (2.3) is convergent. Moreover, the spectral radius ρ(L(α)) of
the PS iteration matrix has the following explicit expression:

ρ(L(α)) =
∣∣∣∣2ασ2 − 2σ2 − σ1

σ1 + 2ασ2

∣∣∣∣ ,
where σ1 and σ2 defined as in (2.8)
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270 G.-F. Zhang and Z. Zheng

Proof Let λ be an eigenvalue of the iteration matrix L(α) and (vT
1 , vT

2 )T be the corre-
sponding eigenvector. From Lemma 2.2 we know that λ �= −1. Since W is a symmetric
positive definite matrix, we see that (λ + 1)W is nonsingular. Hence, from the second
equation in (2.6) we obtain

v2 = 2(λα − λ − α)

λ + 1
W−1T.

From the first equation in (2.6) we have

2αTW−1Tv1 + 2(λα − λ − α)

λ + 1
TW−1Tv1 = λ(W + 2αTW−1T)v1, (2.10)

which, left multiplication
vT

1

vT
1 v1

and together with the definition of σ1 and σ2, leads to

λ2(σ1 + 2ασ2) − λ(2ασ2 − 2σ2 − σ1) = 0. (2.11)

Both roots of the the quadratic equation (2.11) are λ1 = 0 and λ2 = 2ασ2 − 2σ2 − σ1

σ1 + 2ασ2
.

Noting that α >
1

2
, σ1 > 0, and σ2 > 0, by simple computations we obtain

ρ(L(α)) =
∣∣∣∣2ασ2 − 2σ2 − σ1

σ1 + 2ασ2

∣∣∣∣ < 1,

i.e., the PS iteration method converges to the unique solution u� = x� + ıy� ∈ C
n of

the complex symmetric linear systems (1.1) for any initial guess.
Theorem 2.4 gives the explicit expression for the spectral radius of the iteration

matrix L(α). It shows that the eigenvalues of the iteration matrix of the PS iteration
method are real and nonnegative.

Next, we discuss how to choose the iteration parameter α. For the optimal choice
αopt of the parameter α, we have the following result.

Theorem 2.5 Suppose that the conditions of Theorem 2.4 are satisfied. Let a1, an

and b1, bn be the largest and the smallest eigenvalues of the matrix W and TW−1T,
respectively. Then if we choose

α = 1

2
+ 1

2

√
(bn + a1)(b1 + an)

b1bn
,

then

ρ(L(α)) = b1a1 − bnan(√
b1bn + b1a1 + √

b1bn + b1an
)2 = min.
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A splitting iteration for complex symmetric linear systems 271

That is to say, the optimal parameter αopt = 1

2
+ 1

2

√
(bn + a1)(b1 + an)

b1bn
.

Proof Let σ := σ2

σ1
. Denote by b1 ≥ b2 ≥ · · · ≥ bn > 0 and a1 ≥ a2 ≥ · · · ≥ an > 0

the eigenvalues of the matrice TW−1T and W, respectively. By using of the Rayleigh

quotient principle we can know that 0 <
bn

a1
≤ σ ≤ b1

an
.

Define

f (α, σ ) := 2ασ − 2σ − 1

1 + 2ασ
,

where α >
1

2
and σ ∈

[
bn

a1
,

b1

an

]
. By straightforward computations we have

∂ f

∂σ
= (2α − 2)(1 + 2ασ) − 2α(2ασ − 2σ − 1)

(1 + 2ασ)2 = 2(2α − 1)

(1 + 2ασ)2 .

As α >
1

2
, we know that fσ (α, σ ) > 0. It means that f (α, σ ) is a strictly increase func-

tion for σ when α >
1

2
. Therefore, if the condition

∣∣∣∣ f

(
α,

bn

a1

)∣∣∣∣ =
∣∣∣∣ f

(
α,

b1

an

)∣∣∣∣ holds,

then we minimize the spectral radius of the iteration matrix L(α). If

∣∣∣∣ f

(
α,

bn

a1

)∣∣∣∣ =∣∣∣∣ f

(
α,

b1

an

)∣∣∣∣, we obtain

f

(
α,

bn

a1

)
= − f

(
α,

b1

an

)
.

After straightforward computations we get

4α2 b1bn

a1an
− 4α

b1bn

a1an
= b1

an
+ bn

a1
+ 1.

It follows that

αopt = 1

2
+ 1

2

√
(bn + a1)(b1 + an)

b1bn
.

Therefore, it holds that

ρ(L(αopt )) = b1a1 − bnan(√
b1bn + b1a1 + √

b1bn + b1an
)2 .
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272 G.-F. Zhang and Z. Zheng

Evidently,

ρ(L(αopt )) <

( √
a1√

bn + a1 + √
b1 + an

)2

< 1.

3 Krylov subspace acceleration

Even with the optimal choice αopt of the parameter α, the convergence of the stationary
iteration is typically too slow for the method to compete. For this reason, we propose
using the preconditioned Krylov subspace method like GMRES or its restarted version
G M RE S(	) to accelerate the convergence of the PS iteration method.

The PS method may also result from the matrix splitting A = M(α) − N(α), with
A, M(α) and N(α) being defined as in (2.1)–(2.2). It then follows that the splitting
matrix M(α) can be used as a preconditioner A. The PS iteration method can be
rewritten in correct form as:

u(k+1) = u(k) + M(α)−1r(k), r(k) := b − Au(k).

Then the linear systems (1.2) are equivalent to the following linear systems

(I − L(α))u = M−1(α)Au = c,

where c = M(α)−1b. This equivalent (left-preconditioned) system can be solved with
GMRES. Hence, the matrix M(α) can be seen as a preconditioner for GMRES method.
Equivalently, we can say that GMRES method is used to accelerate the convergence
of the splitting iteration method applied to A u = b.

Application of the preconditioner M(α) with GMRES requires solving a linear
system of the form

M(α)u =
(

W + 2αTW−1T 0

(1 − α)T
1

2
W

) (
x
y

)
=

(
r1
r2

)
,

at each iteration step, where r = (
rT

1 , rT
2

)T
represents the current residual vector

and u = (
xT , yT )T

represents the generalized residual vector. Note that the matrix
(W + 2αTW−1T) is symmetric positive definite. This can be done by first solving

(W + 2αTW−1T)x = r1

with the conjugate gradient(CG) or preconditioned CG (PCG) obtain xT , then we get
yT from the following equality

y = 2W−1(r2 − (1 − α)Tx) = 2W−1r2 − 2(1 − α)W−1Tx.

123



A splitting iteration for complex symmetric linear systems 273

The spectral properties of the preconditioning matrix M(α)−1A are established in
the following theorem.

Theorem 3.1 Suppose that the conditions of Theorem 2.5 are satisfied. M(α) is the
preconditioner defined as in (2.2). Let λ be the eigenvalue of the matrix M(α)−1A
and (ũT , ṽT)T be the corresponding eigenvector. Then the eigenvalues of the precon-

ditioned matrix M(α)−1A are 1 (with algebraic multiplicity n) and λ = 2σ3 + 2σ4

σ3 + 2ασ4
,

where

σ3 = ũT Wũ
ũT ũ

, σ4 = ũT TW−1Tũ
ũT ũ

.

Proof Since λ is an eigenvalue of the matrix M(α)−1A and (ũT , ṽT)T is the corre-
sponding eigenvector. Then we have

(
W −T
T W

) (
ũ
ṽ

)
= λ

(
W + 2αTW−1T 0
(1 − α)T 1

2 W

) (
ũ
ṽ

)
,

or equivalently

{
Wũ − Tṽ = λ(W + 2αTW−1T)ũ,

Tũ + Wṽ = λ(1 − α)Tũ + 1
2λWṽ.

(3.1)

From the second equality in 3.1 we have

ṽ = 2(1 − λ + λα)

λ − 2
W−1Tũ. (3.2)

Substituting (3.2) into the first equality in (3.1) we obtain

Wũ − 2(1 − λ + λα)

λ − 2
TW−1Tũ = λ(W + 2αTW−1T)ũ. (3.3)

Which, left multiplication
ũT

ũT ũ
and together with the definition of σ3 and σ4, leads to

λ2(σ − 3 + 2ασ − 4) − λ(2ασ − 4 + 3σ3 + 2σ4) + (2σ4 + 2σ3) = 0. (3.4)

Both roots of the quadratic equation (3.4) are λ = 1 and λ = 2σ3 + 2σ4

σ3 + 2ασ4
. This

completes the proof.

From Theorem 3.1 we can see that if we choose α = 1+ σ3

2σ4
, then the eigenvalues

of the preconditioned matrix M(α)−1A are cluster at 1.
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4 Numerical experiments

In this section we use two numerical examples from [2–5] to assess the feasibility and
effectiveness of the PS and PS-preconditioned method in terms of the iteration count
(denoted as IT), the relative residual error (denoted as RES) and the computing time (in
seconds, denoted as CPU), when it is employed either as a solver or as a preconditioner
for solving the system of linear equations (1.1). Besides comparing the efficiency of
the PS with the PMHSS methods which refer to (1.2), we also examine its numerical
behavior as preconditioners for the (full) GMRES method and its restarted variants,

say, GMRES(	). All runs are started from the initial vector
(

x(0)T
, y(0)T

)T = 0, and

the iteration is terminated once the current iteration satisfying

RES =
√

‖f − Wx(k) + Ty(k)‖2 + ‖g − Tx(k) − Wy(k)‖2√‖f‖2 + ‖g‖2
≤ 10−6.

Example 4.1 ([2–5]) The system of linear equations (1.1) is of the form

[(
K + 3 − √

3

τ
I

)
+ ı

(
K + 3 + √

3

τ
I

)]
u = b,

where τ is the time step-size and K is the five-point centered difference matrix ap-
proximating the negative Laplacian operator L = −� with homogenous Dirich-
let boundary conditions, on a uniform mesh in the unit square [0, 1] × [0, 1] with
the mesh-size h = 1

m+1 . The matrix K ∈ R
n×n possesses the tensor-product form

K = I ⊗ Bm + Bm ⊗ I, with Bm = h−2tr idiag(−1, 2,−1) ∈ R
m×m . Hence, K is an

n × n block-tridiagonal matrix, with n = m2. We take

W = K + 3 − √
3

τ
I, T = K + 3 + √

3

τ
I,

τ = h and the right-hand side vector b with its j th entry [b] j being given by

[b] j = (1 − ı) j

τ( j + 1)2 , j = 1, 2, · · · , n.

This complex symmetric system of linear equations arises in centered difference
discretizations of the R22 − Páde approximations in the time integration of parabolic
partial differential equations [2]. For more details, we refer to [2].

Here and the next tables the iteration parameters αexp used in PMHSS iteration
method as well as the corresponding PMHSS preconditioner are chosen according to
the strategy described in [5]. For Example 1, the optimial iteration parameter αopt =
1

2
+ 1

2

√
(bn + a1)(b1 + an)

b1bn
= 1.23 for PS iteration method. However, taking α =

αexp in the neighborhood of αopt is normally a very good choice in practice.
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A splitting iteration for complex symmetric linear systems 275

Table 1 IT, CPU and ERR(1e-7) for PS, PMHSS, GMRES and GMRES(20) methods for Example 4.1

Method m m = 16 m = 24 m = 32 m = 48 m = 64

PS αexp 1.25 1.25 1.25 1.25 1.25

IT 9 10 10 10 11

CPU 0.0036 0.0205 0.0599 0.2756 0.9595

ERR 7.3 1.7 2.3 3.1 7.8

PMHSS αexp 1.09 1.28 1.36 1.45 1.35

IT 21 21 21 21 21

CPU 0.0187 0.0460 0.1441 0.6850 2.0045

ERR 7.7 7.0 7.6 7.0 7.5

GMRES IT 25 27 29 37 48

CPU 0.0794 0.1812 0.4676 1.2869 3.3239

ERR 9.7 9.9 9.9 9.9 9.9

GMRES(20) IT 47 71 101 138 167

CPU 0.0697 0.1720 0.4209 1.1440 2.1975

ERR 9.9 9.8 9.9 9.9 9.9

Numerical results for Example 4.1 are listed in Tables 1 and 2. In Table 1, we show
the numbers of iteration steps (IT), the computing times (CPU) and the relative residual
errors (RES) for the PS method, the PMHSS method, the GMRES and the GMRES(20),
when the problem sizes are equal to 16 × 16, 24 × 24, 32 × 32, 48 × 48, 64 × 64,

respectively. In Table 2, we list the results for PS- and PMHSS-preconditioned GMRES
and GMRES(10) methods, respectively.

From Table 1 we see that the iteration counts of the GMRES and GMRES(20)
methods grow rapidly with problem size, while that of PS and PMHSS methods
almost remain constantly. In other words the PS and the PMHSS methods are almost
independent of the problem sizes. Moreover, as a solver, PS method costs much less
iteration step and CPU time than PMHSS method, GMRES and GMRES(20).

In Table 2 we report the numerical results for preconditioned GMRES and GM-
RES(10) with PS and PMHSS. From the Table we observe that when M(α) used as
a preconditioner, PS performs better than PMHSS both in iteration counts and CPU
times. Moreover, the iteration steps of PS-preconditioned keep a constant.

Example 4.2 ([4]) The systems of linear equations (1.1) is of the form

(W + iT)u = b,

with

T = I ⊗ B + B ⊗ I and W = 10(I ⊗ Bc + Bc ⊗ I) + 9
(

e1eT
m + emeT

1

)
⊗ I,

where B = tr idiag(−1, 2,−1) ∈ R
m×m , Bc = B − e1eT

m − emeT
1 ∈ R

m×m , and e1
and em are the first and the mth unit basis vectors in R

m , respectively. We take the right-
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276 G.-F. Zhang and Z. Zheng

Table 2 IT, CPU and ERR(1e-7) for preconditioned GMRES and GMRES(10) for Example 4.1

Method Preconditioner m m = 16 m = 24 m = 32 m = 48 m = 64

GMRES PS αexp 0.515 0.515 0.515 0.515 0.515

IT 2 2 2 2 2

CPU 0.0071 0.0441 0.1807 0.6384 1.2370

ERR 1.2 1.4 8.4 3.3 2.5

GMRES PMHSS αexp 0.52 1.05 1.84 1.55 1.50

IT 6 7 7 8 8

CPU 0.0175 0.0482 0.1524 0.7400 1.8935

ERR 7.0 6.7 7.2 5.4 6.6

GMRES(10) PS αexp 0.508 0.508 0.508 0.508 0.508

IT 3 3 3 3 3

CPU 0.0056 0.0375 0.1648 0.6228 1.0170

ERR 5.3 7.7 9.3 1.0 3.4

GMRES(10) PMHSS αexp 0.56 0.90 1.64 1.84 3.67

IT 6 7 7 7 8

CPU 0.0175 0.0484 0.1528 0.7426 1.8842

ERR 7.1 6.7 7.4 6.4 7.9

hand side vector b to be the form b = (1 + ı)A1, with 1 being the vector of all entries
equal to 1. Here T and W correspond to the five-point centered difference matrices
approximating the negative Laplacian operator with homogeneous Dirichlet boundary
conditions and periodic boundary conditions, respectively, on a uniform mesh in the
unit square [0, 1]×[0, 1] with the mesh-size h = 1/(m +1). Although this problem is
an artificially constructed one, it is quite challenging for iterative solvers and therefore
we include it in our tests.

Numerical results for Example 4.2 are listed in Tables 3 and 4. Table 3 shows
the numbers of iteration steps (IT), the computing times (CPU) and the computing
residual error (RES) with respect to the PS method, the PMHSS method, and GMRES
and GMRES(20) methods. In Table 4 we show the results obtained with GMRES and
GMRES(10) preconditioned with the PS- and PMHSS-preconditionees, respectively.

From Table 3 we see that the PS iteration method performs much better than GM-
RES and GMRES(20) both in terms of iteration counts and in terms of CPU times.
Compared with PMHSS iteration method, the PS method has an advantage in CPU
times.

From Table 4 we see that the iteration counts with the PMHSS and PS-Preconditio-
ned GMRES(20) methods almost remain constantly. In addition, we observe that when
M(α) used as a preconditioner, PS performs better than PMHSS in iteration steps and
CPU times.
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Table 3 IT, CPU and ERR(1e-7) for PMHSS, PS, GMRES and GMRES(20) methods for Example 4.2

Method m m = 16 m = 24 m = 32 m = 48 m = 64

PS αexp 7.0 7.0 7.0 7.0 6.5

IT 52 54 60 70 78

CPU 0.0074 0.0558 0.1945 1.1251 2.0926

ERR 8.6 9.9 8.5 9.9 9.2

PMHSS αexp 0.61 0.66 0.42 0.49 0.57

IT 33 33 34 34 34

CPU 0.0291 0.1411 0.3336 1.1517 2.6327

ERR 7.6 9.6 7.7 8.0 8.1

GMRES IT 18 34 43 76 90

CPU 0.0454 0.0892 0.2047 1.2103 2.7746

ERR 9.5 9.5 9.9 9.9 9.9

GMRES(20) IT 61 94 126 189 253

CPU 0.0435 0.1235 0.3046 1.3168 2.7341

ERR 7.6 8.2 9.5 9.3 9.9

Table 4 IT, CPU and ERR(1e-7) for preconditioned GMRES and GMRES(10) for Example 4.2

Method Preconditioner m m = 16 m = 24 m = 32 m = 48 m = 64

GMRES PS αexp 0.605 0.605 0.605 0.605 0.605

IT 3 3 3 3 4

CPU 0.0056 0.0677 0.1645 0.9947 2.5324

ERR 1.3 3.3 6.0 4.1 5.8

GMRES PMHSS αexp 4.37 5.24 7.06 4.85 2.71

IT 5 6 6 6 7

CPU 0.0134 0.0852 0.2437 1.1045 2.6355

ERR 7.8 9.2 8.7 9.0 6.7

GMRES(10) PS αexp 0.564 0.564 0.564 0.564 0.564

IT 4 5 5 5 5

CPU 0.0056 0.0863 0.1682 1.0024 2.0847

ERR 5.1 3.3 9.1 3.3 4.5

GMRES(10) PMHSS αexp 6.62 4.27 6.82 5.91 8.67

IT 5 5 5 5 7

CPU 0.0133 0.0844 0.2511 1.0217 2.6523

ERR 7.1 6.7 7.4 6.4 7.9

5 Conclusions

In this paper, we have established and analyzed a new parameterized splitting iteration
method for solving an important class of complex symmetric linear systems based on
a parameterized splitting of the coefficient matrix. Numerical experiments have shown
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that the new splitting iteration method served either as a preconditioner or as a solver
may yield satisfactory results when applied to the complex symmetric linear systems
of practical interest.
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