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1 Introduction

A standard numerical method used in petroleum reservoir simulation for solving
second-order elliptic partial differential equations is block-centered finite differences
[3,6]. Block-centered finite differences, sometimes called cell-centered finite differ-
ences, can be thought as the lowest order Raviart–Thomas mixed element method, see
[7], with proper quadrature formulation [9]. In [10] a block-centered finite difference
method for linear elliptic problem with diagonal diffusion coefficient was introduced,
and second-order approximates both to velocity and to pressure can be obtained. Then
in [1] and [2] cell-centered finite differences for linear elliptic problem with tensor
diffusion coefficients were considered, and in [8] a block-centered finite difference
method for the nonlinear Darcy–Forchheimer model was considered. In [11] a cell-
centered finite difference method for elliptic problems on quadrilateral grids based on
the lowest order Brezzi–Douglas–Marini mixed element [4] was considered.

In [10] a block-centered finite difference method for parabolic problem with back-
ward Euler approximation in time variable was also introduced and analyzed. Then
in [5] an explicit/implicite, conservative domain decomposition procedure for par-
abolic problems based on block-centered finite difference was introduced. But these
papers just considered the case when the diffusion coefficients are independent of
time variable, and their analysis can not been expanded straightforwardly to the case
when the diffusion coefficients depends on time variable. This limits the application
of block-centered finite difference method.

In this paper we consider the block-centered finite difference methods for parabolic
equation with a time-dependent diffusion coefficient. We present two block-centered
finite difference schemes, one is backward Euler scheme with first-order accuracy
in time increment while the other is the Crank–Nicolson scheme with second-order
accuracy in time increment. We demonstrate that the proposed schemes are second-
order accuracy in space meshsize both for the original unknown, called pressure in
porous media flow, and its derivatives, called velocity in porous media flow, in dis-
crete L2 norms on non-uniform rectangular grid. These error estimates are super-
convergence. The key step to the super-convergence analysis, is to construct a proper
relation between the velocity u and the difference of the pressure p, see Lemma 4.2
below for detail. Then we carry out some numerical examples to show the accuracy
of the presented block-centered finite difference schemes.

The paper is organized as follows. In Sect. 2 we give the problem and some notations.
In Sect. 3 we present the block-centered finite difference methods. In Sect. 4 we
present the numerical analysis for the presented methods. In Sect. 5 some numerical
experiments using the blocked centered finite difference methods are carried out.

Through out the paper we use C , with or without subscript, to denote a positive
constant, which could have different values at different appearances.

2 The problem and some notations

In this section we consider the following parabolic problem with time-dependent
diffusion coefficient in a two dimensional domain,
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Block-centered finite difference methods for parabolic equation 683

⎧
⎪⎪⎨

⎪⎪⎩

∂p

∂t
− ∇ · (a(x, y, t)∇ p) = f, (x, y, t) ∈ � × (0, T ),

p(x, y, t) = p0(x, y), (x, y) ∈ �,

a(x, y, t)∇ p · n = 0, (x, y, t) ∈ ∂� × (0, T ).

(2.1)

Introduce u = −a∇ p it becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂p

∂t
+ ∇ · u = f, (x, y, t) ∈ � × (0, T ),

u = −a(x, y, t)∇ p,

p(x, y, 0) = p0(x, y), (x, y) ∈ �,

u · n = 0, (x, y, t) ∈ ∂� × (0, T ).

(2.2)

Here n represents the unit exterior normal vector to the boundary of �, f (x, y, t) ∈
L2(�), a scalar function, represents the source and sink of the systems. a = (ax , ay) =
(ax (x, y, t), ay(x, y, t)) represents the diffusion coefficient. We suppose that f and
a are bounded smooth functions and there exist positive constants α and C such that

α ≤ ax ≤ C, α ≤ ay ≤ C. (2.3)

Usually for compressible flow in porous media, p represents the pressure while

u = (ux , uy) = −a∇ p = −
(

ax ∂p

∂x
, ay ∂p

∂y

)

(2.4)

represents the Darcy velocity of the fluid, so in this paper we call p pressure and u
Darcy velocity.

We consider the block-centered finite difference method for the model problem. We
use the partitions and notations like in [10]. For simplicity suppose � = (0, 1)×(0, 1).

Let N > 0 be a positive integer. Set

�t = T/N ; tn = n�t for n ≤ T/N .

The two dimensional domain � = (0, 1) × (0, 1) is partitioned by δx × δy , where

δx : 0 = x1/2 < x3/2 < · · · < xNx −1/2 < xNx +1/2 = 1,

δy : 0 = y1/2 < y3/2 < · · · < yNy−1/2 < yNy+1/2 = 1.

For i = 1, . . . , Nx and j = 1, . . . , Ny , define

xi = xi−1/2 + xi+1/2

2
,

hi = xi+1/2 − xi−1/2, h = max
i

hi ,

hi+1/2 = hi+1 + hi

2
= xi+1 − xi ,
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684 H. Rui, H. Pan

y j = y j−1/2 + y j+1/2

2
,

k j = y j+1/2 − y j−1/2, k = max
j

k j ,

k j+1/2 = k j+1 + k j

2
= y j+1 − y j ,

�i, j = (xi−1/2, xi+1/2) × (y j−1/2, y j+1/2),

�i+1/2, j = (xi , xi+1) × (y j−1/2, y j+1/2),

�i, j+1/2 = (xi−1/2, xi+1/2) × (y j , y j+1).

For a function g(x, y, t), let gn
l,m denote g(xl , ym, tn) where l may take values

i, i + 1/2 for non-negative integers i , and m may take values j, j + 1/2 for
non-negative integers j . For discrete functions with values at proper discrete points,
define

[dt g]n
l,m = gn

l,m − gn−1
l,m

�t
,

[dx g]n
i+1/2, j = gn

i+1, j − gn
i, j

hi+1/2
,

[dy g]n
i, j+1/2 = gn

i, j+1 − gn
i, j

k j+1/2
,

[Dx g]n
i, j = gn

i+1/2, j − gn
i−1/2, j

hi
,

[Dy g]n
i, j = gn

i, j+1/2 − gn
i, j−1/2

k j
,

For discrete functions {θn
l,m} and {gn

l,m} define the discrete inner products, norms
and semi-norms as follows,

(θ, g)M = (θ, g)Mx ,My =
Nx∑

i=1

Ny∑

j=1

hi k jθi, j gi, j ,

‖ f ‖2
M = ( f, f )Mx ,My ,

(θ, g)x = (θ, g)Tx ,My =
Nx∑

i=2

Ny∑

j=1

hi−1/2k jθi−1/2, j gi−1/2, j ,

‖θ‖2
x = (θ, θ)x ,

(θ, g)y = (θ, g)Mx ,Ty =
Nx∑

i=1

Ny∑

j=2

hi k j−1/2θi, j−1/2gi, j−1/2,

‖θ‖2
y = (θ, θ)y .
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Block-centered finite difference methods for parabolic equation 685

Here for simplicity we omit the superscript n. For simplicity from now on we always
omit the superscript n if the omission does not cause conflicts.

3 Block-centered finite difference methods

In this section we consider the block-centered finite difference methods for parabolic
problem with time-dependent diffusion coefficient.

Denote by {W x,n
i+1/2, j }, {W y,n

i, j+1/2} and {Zn
i, j } the block-centered finite differ-

ence approximations to {ux (xi+1/2, y j , tn)}, {uy(xi , y j+1/2, tn)} and {p(xi , y j , tn)},
respectively. Their values are defined by the backward Euler scheme and the Crank–
Nicolson scheme, respectively.

Set the boundary condition and the initial approximation as follows,

{
W x,n

1/2, j = 0, W x,n
Nx +1/2, j = 0, j = 1, . . . , Ny,

W y,n
i,1/2 = 0, W y,n

i,Ny+1/2 = 0, i = 1, . . . , Nx .
(3.1)

Z0
i, j = p0

i, j , W x,0
i+1/2, j = ux,0

i+1/2, j , W y,0
i, j+1/2 = uy,0

i, j+1/2, (3.2)

for i = 1, . . . , Nx , j = 1, . . . , Ny . Here

ux,0 = −
[

ax ∂p

∂x

]0

, uy,0 = −
[

ay ∂p

∂y

]0

.

The schemes are as follows.

Scheme I For n ≥ 1 find {W x,n
i+1/2, j }, {W y,n

i, j+1/2} and {Zn
i, j } such that

[dt Z ]n
i, j + [Dx W x ]n

i, j + [Dy W y]n
i, j = f n

i, j , (3.3)

W x,n
i+1/2, j = −[ax dx Z ]n

i+1/2, j , (3.4)

W y,n
i, j+1/2 = −[aydy Z ]n

i, j+1/2. (3.5)

Scheme II For n ≥ 1 find {W x,n
i+1/2, j }, {W y,n

i, j+1/2} and {Zn
i, j } such that

[dt Z ]n
i, j + [Dx W x ]n

i, j +[Dx W x ]n−1
i, j

2 + [Dy W y ]n
i, j +[Dy W y ]n−1

i, j
2 = f n−1/2

i, j ,

(3.6)

W x,n
i+1/2, j = −[ax dx Z ]n

i+1/2, j , (3.7)

W y,n
i, j+1/2 = −[aydy Z ]n

i, j+1/2. (3.8)

It is clear that the approximate solution of Scheme I or Scheme II exists uniquely.
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686 H. Rui, H. Pan

4 Numerical analysis

In this section we verify that if the analytical solution u and p are sufficiently
smooth, then Z and W = (W x , W y) are second-order approximations to p and u,
respectively.

For simplicity we sometimes omit the superscript n if the omission does not cause
conflicts, and use the notation pl,m(t) or pl,m to denote p(xl , ym, t) for suitable (l, m).

We give some lemmas first.

Lemma 4.1 If p is sufficiently smooth then there holds

⎧
⎨

⎩

∂pi+1/2, j
∂x = [dx p]i+1/2, j − 1

8

[
dx

(
h2 ∂2 p

∂x2

)]

i+1/2, j
+ εx

i+1/2, j (p),

∂pi, j+1/2
∂y = [dy p]i, j+1/2 − 1

8

[
dy

(
k2 ∂2 p

∂y2

)]

i, j+1/2
+ ε

y
i, j+1/2(p),

(4.1)

with the following approximate properties

εx
i+1/2, j (p) = O(h2), ε

y
i, j+1/2(p) = O(k2). (4.2)

Here hi and k j are looked as discrete functions,

[

dx

(

h2 ∂2 p

∂x2

)]

i+1/2, j
= 1

hi+1/2

(

h2
i+1

∂2 pi+1, j

∂x2 − h2
i
∂2 pi, j

∂x2

)

,

[

dy

(

k2 ∂2 p

∂y2

)]

i, j+1/2
= 1

k j+1/2

(

k2
j+1

∂2 pi, j+1

∂y2 − k2
j
∂2 pi, j

∂y2

)

.

Proof Using Taylor’s expansion we have that for any t < T

pi+1, j (t) = pi+1/2, j (t) + hi+1

2

∂pi+1/2, j (t)

∂x
+ h2

i+1

8

∂2 pi+1/2, j (t)

∂x2

+1

2

xi+1∫

xi+1/2

(x − xi+1)
2 ∂3 p

∂x3 (x, y j , t) dx

= pi+1/2, j (t) + hi+1

2

∂pi+1/2, j (t)

∂x

+h2
i+1

8

⎡

⎢
⎣

∂2 pi+1, j (t)

∂x2 −
xi+1∫

xi+1/2

∂3 p

∂x3 (x, y j , t) dx

⎤

⎥
⎦

+1

2

xi+1∫

xi+1/2

(x − xi+1)
2 ∂3 p

∂x3 (x, y j , t) dx . (4.3)
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Similarly

pi, j (t) = pi+1/2, j (t) − hi

2

∂pi+1/2, j (t)

∂x
+ h2

i

8

⎡

⎢
⎣

∂2 pi, j (t)

∂x2 −
xi∫

xi+1/2

∂3 p

∂x3 (x, y j , t) dx

⎤

⎥
⎦

+1

2

xi∫

xi+1/2

(x − xi )
2 ∂3 p

∂x3 (x, y j , t) dx . (4.4)

Using Eqs. (4.3) and (4.4) and by direct calculation we have that

∂pi+1/2, j (t)

∂x
= [dx p(t)]i+1/2, j − 1

8

[

dx

(

h2 ∂2 p(t)

∂x2

)]

i+1/2, j
+ εx

i+1/2, j (p(t)),

(4.5)

where

εx
i+1/2, j (p(t)) = 1

2hi+1/2

xi+1∫

xi+1/2

(
h2

i+1

4
− (x − xi+1)

2

)
∂3 p

∂x3 (x, y j , t) dx

− 1

2hi+1/2

xi∫

xi+1/2

(
h2

i

4
− (x − xi )

2

)
∂3 p

∂x3 (x, y j , t) dx

= O(h2). (4.6)

We complete the proof of the first approximation in Eq. (4.1).
Similarly, setting

ε
y
i, j+1/2(p(t)) = 1

2k j+1/2

y j+1∫

y j+1/2

(
k2

j+1

4
− (y − y j+1)

2

)
∂3 p

∂x3 (xi , y, t) dx

−1

2

y j∫

y j+1/2

(
k2

j

4
− (y − y j )

2

)
∂3 p

∂x3 (xi , y, t) dx

= O(k2), (4.7)

completes the proof of the second one in Eq. (4.1). ��
Define

δn
i, j =

[
h2

8

∂2 p

∂x2 + k2

8

∂2 p

∂y2

]n

i, j
=

[
h2

i

8

∂2 pn
i, j

∂x2 + k2
j

8

∂2 pn
i, j

∂y2

]

. (4.8)
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Lemma 4.2 If p is sufficiently smooth then there holds

{[ 1
ax ux

]

i+1/2, j = −[dx (p − δ)]i+1/2, j − ε̃x
i+1/2, j (p)

[ 1
ay uy

]

i, j+1/2 = −[dy(p − δ)]i, j+1/2 − ε̃
y
i, j+1/2(p),

(4.9)

with the following approximate properties

ε̃x
i+1/2, j (p) = O(h2 + k2), ε̃

y
i, j+1/2(p) = O(h2 + k2). (4.10)

Proof From the first equation of (4.1) we have that

[
1

ax
ux

]

i+1/2, j
= −∂pi+1/2, j

∂x

= −[dx p]i+1/2, j + 1

8

[

dx

(

h2 ∂2 p

∂x2

)]

i+1/2, j
− εx

i+1/2, j (p)

= −[dx (p − δ)]i+1/2, j −
[

dx

(
k2

8

∂2 p

∂y2

)]

i+1/2, j
− εx

i+1/2, j (p).

Set

ε̃x
i+1/2, j (p) = εx

i+1/2, j (p) +
[

dx

(
k2

8

∂2 p

∂y2

)]

i+1/2, j
. (4.11)

Since

[

dx

(

k2 ∂2 p

∂y2

)]

i+1/2, j
= k2

j

[

dx

(
∂2 p

∂y2

)]

i+1/2, j
= O(k2),

we get the first equation of (4.9) with the estimate of ε̃x
i+1/2, j (p).

The other part can be proven by set

ε̃
y
i, j+1/2(p) = ε

y
i, j+1/2(p) +

[

dy

(
h2

8

∂2 p

∂x2

)]

i, j+1/2
. (4.12)

��
The next lemma can be proven similar to [10].

Lemma 4.3 Let {V x
i+1/2, j }, {V y

i, j+1/2}, {W x
i+1/2, j }, {W y

i, j+1/2} and {qx
i, j }, {q y

i, j } be

discrete functions with W x
1/2, j = W x

Nx +1/2, j = W y
i,1/2 = W y

i,Ny+1/2 = 0. Then
there holds

{
(dx qx , W x )x = −(qx , Dx W x )M ,

(dyq y, W y)y = −(q y, Dy W y)M .
(4.13)
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We consider the numerical analysis now. Define

{
ep,n

i, j = (Z − p)n
i, j ,

ex,n
i+1/2, j = (W x − ux )n

i+1/2, j , ey,n
i, j+1/2 = (W y − uy)n

i, j+1/2.
(4.14)

From Lemma 4.2, (3.4) and (3.5) we have that

[
1

ax
(W x − ux )

]

i+1/2, j
= −[dx (Z − p + δ)]i+1/2, j + ε̃x

i+1/2, j (p).

[
1

ay
(W y − uy)

]

i, j+1/2
= −[dy(Z − p + δ)]i, j+1/2 + ε̃

y
i, j+1/2(p).

That is
[

1

ax
ex

]

i+1/2, j
= −[dx (e

p + δ)]i+1/2, j + ε̃x
i+1/2, j (p). (4.15)

[
1

ay
ey

]

i, j+1/2
= −[dy(e

p + δ)]i, j+1/2 + ε̃
y
i, j+1/2(p). (4.16)

From Eq. (2.2) we have that

dt pn
i, j + [Dx ux ]n

i, j + [Dyuy]n
i, j = f n

i, j + ε
1,n
i, j , (4.17)

where

ε
1,n
i, j = dt pn

i, j − ∂pn
i, j

∂t
+ [Dx ux ]n

i, j − ∂ux,n
i, j

∂x
+ [Dyuy]n

i, j − ∂uy,n
i, j

∂y

= O(�t + h2 + k2). (4.18)

Here we have used the fact that xi is the midpoint of (xi−1/2, xi+1/2) and y j is the
midpoint of (y j−1/2, y j+1/2).

From (4.17) and (3.6) we have that

dt (Z − p)n
i, j + [Dx (W x − ux )]n

i, j + [Dy(W y − uy)]n
i, j = −ε

1,n
i, j . (4.19)

Denote by

ε
2,n
i, j = dtδ

n
i, j = dt

(
h2

8

∂2 p

∂x2 + k2

8

∂2 p

∂y2

)n

i, j
= h2

i

8
dt

(
∂2 p

∂x2

)n

i, j
+ k2

j

8
dt

(
∂2 p

∂y2

)n

i, j
.

(4.20)

When p is sufficiently smooth, it is clear that

ε
2,n
i, j = O(h2 + k2). (4.21)
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From (4.19) we have that

dt (e
p + δ)n

i, j + [Dx ex ]n
i, j + [Dyey]n

i, j = −ε
1,n
i, j + ε

2,n
i, j . (4.22)

Multiplying (4.22) by (ep + δ)n
i, j hi k j and making summation on i, j for 1 ≤ i ≤

Nx , 1 ≤ j ≤ Ny we have that

(dt (e
p + δ)n, (ep + δ)n)M + (Dx ex,n, (ep + δ)n)M + (Dyey,n, (ep + δ)n)M

= (−ε1,n + ε2,n, (ep + δ)n)M . (4.23)

By Lemma 4.3 we have that

(dt (e
p + δ)n, (ep + δ)n)M − (ex,n, dx (e

p + δ)n)x − (ey,n, dy(e
p + δ)n)y

= (−ε1,n + ε2,n, (ep + δ)n)M . (4.24)

Noting

(dt (e
p + δ)n, (ep + δ)n)M = 1

2
dt‖(ep + δ)n‖2

M + �t

2
‖dt (e

p + δ)n‖2
M

and using (4.15) and (4.16) we have that

1

2
dt‖(ep + δ)n‖2

M + �t

2
‖dt (e

p + δ)n‖2
M +

(

ex,n,
1

ax,n
ex,n

)

x
+

(

ey,n,
1

ay,n
ey,n

)

y

= (−ε1,n + ε2,n, (ep + δ)n)M + (ex,n, ε̃x,n(p))x + (ey,n, ε̃ y,n(p))y . (4.25)

By Schwarz’s inequality we have that

1

2
dt‖(ep + δ)n‖2

M + �t

2
‖dt (e

p + δ)n‖2
M +

∥
∥
∥
∥

1√
ax,n

ex,n
∥
∥
∥
∥

2

x
+

∥
∥
∥
∥

1√
ay,n

ey,n
∥
∥
∥
∥

2

y

= (−ε1,n + ε2,n, (ep + δ)n)M + (ex,n, ε̃x,n(p))x + (ey,n, ε̃ y,n(p))y

≤ 1

2
‖(ep + δ)n‖2

M + 1

2

(

‖ 1√
ax,n

ex,n‖2
x + ‖ 1√

ay,n
ey,n‖2

y

)

+C1(‖ε1,n + ε2,n‖2
M + ‖ε̃x,n(p)‖2

x + ‖ε̃ y,n(p)‖2
y). (4.26)

Summing (4.26) for n from 1 to m, m ≤ N we have that

‖(ep + δ)m‖2
M +

m∑

n=1

�t2‖dt (e
p + δ)n‖2

M

+
m∑

n=1

�t

(

‖ 1√
ax,n

ex,n‖2
x + ‖ 1√

ay,n
ey,n‖2

y

)
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≤
m∑

n=1

�t‖(ep + δ)n‖2
M + ‖(ep + δ)0‖2

M

+2C1

n∑

n=1

�t (‖ε1,n + ε2,n‖2
M + ‖ε̃x,n(p)‖2

x + ‖ε̃ y,n(p)‖2
y). (4.27)

Using the estimates of ε1,n, ε2,n, ε̃x,n(p), ε̃ y,n(p)‖y , by Gronwall’s inequality we
have that

‖(Z − p + δ)m‖2
M +

m∑

n=1

�t2‖(dt (Z − p + δ)n‖2
M

+
m∑

n=1

�t

(

‖ 1√
ax,n

(W x − ux )n‖2
x + ‖ 1√

ay,n
(W y − uy)n‖2

y

)

≤ C‖(Z − p + δ)0‖2
M + C

m∑

n=1

�t (‖ε1,n + ε2,n‖2
M + ‖ε̃x,n(p)‖2

x + ‖ε̃ y,n(p)‖2
y)

≤ C(�t2 + h4 + k4). (4.28)

Theorem 4.4 Suppose the analytical solution is sufficiently smooth. For Scheme I
there exists a positive constant C independent of h, k and �t such that

‖(Z − p)m‖M +
(

m∑

n=1

�t (‖(W x − ux )n‖2
x + ‖(W y − uy)n‖2

y)

) 1
2

≤ C(�t + h2 + k2), m ≤ N . (4.29)

Proof Combining (4.28) with the estimate for δ completes the proof. ��
Next we estimate (W y − ux ) and (W y − uy).
Multiplying (4.22) by dt (Z − p + δ)n

i, j hi k j and making summation on i, j for
1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny we have that

‖dt (e
p + δ)n‖2

M + (Dx ex,n, dt (e
p + δ)n)M + (Dyey,n, dt (e

p + δ)n)M

= (−ε1,n + ε2,n, dt (e
p + δ)n)M . (4.30)

From Lemma 4.3 we have that

(Dx ex,n, dt (e
p + δ)n)M = −(ex,n, dx dt (e

p + δ)n)x

= −(ex,n, dt dx (e
p + δ)n)x

=
(

ex,n, dt

(
1

ax
ex

)n)

x
− (ex,n, dt (ε̃

x,n(p))x
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= 1

2
dt

∥
∥
∥
∥

(
1√
ax

ex
)n∥∥

∥
∥

2

x
+ 1

2

(

dt

(
1

ax

)n

ex,n, ex,n
)

x

−(ex,n, ˜εx,n(dt p))x

≤ 1

2
dt

∥
∥
∥
∥

1√
ax,n

ex,n
∥
∥
∥
∥

2

x
+C(‖ex,n‖2

x +‖ε̃x,n(dt p)‖2
x ).

(4.31)

Similarly

(Dyey,n, dt (e
p+δ)n)M ≤ 1

2
dt

∥
∥
∥
∥

1√
ay,n

ey,n
∥
∥
∥
∥

2

y
+C(‖ey,n‖2

y +‖ε̃ y,n(dt p)‖2
y). (4.32)

Then from Eqs. (4.30), (4.31) and (4.32) we have that

‖dt (e
p + δ)n‖2

M + 1

2
dt

[∥
∥
∥
∥

1√
ax,n

ex,n
∥
∥
∥
∥

2

x
+

∥
∥
∥
∥

1√
ay,n

ey,n
∥
∥
∥
∥

2

y

]

≤ 1

2
‖ε1,n + ε2,n‖2

M + 1

2
‖dt (e

p + δ)n)‖2
M

+ C2(‖ex,n‖2
x + ‖ε̃x,n(dt p)‖2

x + ‖ey,n‖2
y + ‖ε̃ y,n(dt p)‖2

y). (4.33)

Multiplying 2 in two sides of the equation we get that

‖dt (e
p + δ)n‖2

M + dt

[∥
∥
∥
∥

1√
ax,n

ex,n
∥
∥
∥
∥

2

x
+

∥
∥
∥
∥

1√
ay,n

ey,n
∥
∥
∥
∥

2

y

]

≤ 2C2(‖ex,n‖2
x + ‖ey,n‖2

y) + ‖ε1,n + ε2,n‖2
M

+ 2C2(‖ε̃x,n(dt p)‖2
x + ‖ε̃ y,n(dt p)‖2

y). (4.34)

Summing for n from1 to m, m ≤ N we have that

m∑

n=1

�t‖dt (e
p + δ)n‖2

M +
∥
∥
∥
∥

1√
ax,m

ex,m
∥
∥
∥
∥

2

x
+

∥
∥
∥
∥

1√
ay,m

ey,m
∥
∥
∥
∥

2

y

≤ 2C2

m∑

n=1

�t (‖ex,n‖2
x + ‖ey,n‖2

y) +
m∑

n=1

�t (‖ε1,m + ε2,m‖2
M )

+ 2C2

n∑

n=1

�t (‖ε̃x,n(dt p)‖2
x + ‖ε̃ y,n(dt p)‖2

y)

+
∥
∥
∥
∥

1√
ax,0

ex,0
∥
∥
∥
∥

2

x
+

∥
∥
∥
∥

1√
ay,0

ey,0
∥
∥
∥
∥

2

y
. (4.35)

Using the estimates of ε1, ε2, ε̃x (p), ε̃ y(p) and the estimate of dtδ, by Gronwall’s
inequality we have the follow theorem.
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Theorem 4.5 Suppose the analytical solution is sufficiently smooth. For Scheme I
there exists a positive constant C independent of h, k and �t such that

(
m∑

n=1

�t‖dt (Z − p + δ)n‖2
M

) 1
2

+ ‖(W x − ux )m‖x + ‖(W y − uy)m‖y

≤ C(�t + h2 + k2), m ≤ N . (4.36)

Now we consider the convergence analysis for Scheme II.
From Eq. (2.2) we have that

dt pn
i, j + 1

2
([Dx ux ]n

i, j + [Dx ux ]n−1
i, j + [Dyuy]n

i, j + [Dyuy]n−1
i, j ) = f n−1/2

i, j + ε
3,n
i, j ,

(4.37)

where, like (4.18),

ε
3,n
i, j = dt pn

i, j − ∂pn−1/2
i, j

∂t
+ 1

2
[Dx ux ]n

i, j + 1

2
[Dx ux ]n−1

i, j − ∂ux,n−1/2
i, j

∂x

+1

2
[Dyuy]n

i, j + 1

2
[Dyuy]n−1

i, j − ∂uy,n−1/2
i, j

∂y

= O(�t2 + h2 + k2). (4.38)

From (4.37) and (3.6) we have that

dt (Z − p)n
i, j + 1

2
([Dx (W x − ux )]n

i, j + [Dx (W x − ux )]n−1
i, j )

+1

2
([Dy(W y − uy)]n

i, j + [Dy(W y − uy)]n−1
i, j ) = −ε

3,n
i, j . (4.39)

Using the notations as before, from (4.39) we have that

dt (e
p + δ)n

i, j + 1

2
([Dx ex ]n

i, j + [Dx ex ]n−1
i, j ) + 1

2
([Dyey]n

i, j + [Dyey]n−1
i, j )

= −ε
3,n
i, j + ε

2,n
i, j . (4.40)

First we estimate ex and ey .
Multiplying (4.40) by dt (ep + δ)n

i, j hi k j and making summation on i, j for 1 ≤ i ≤
Nx , 1 ≤ j ≤ Ny we have that

‖dt (e
p + δ)n‖2

M + 1

2
(Dx ex,n + Dx ex,n−1, dt (e

p + δ)n)M

+1

2
(Dyey,n + Dyey,n−1, dt (e

p + δ)n)M

= (−ε3,n + ε2,n, dt (e
p + δ)n)M . (4.41)
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From Lemmas 4.2 and 4.3 we have that

1

2
(Dx ex,n + Dx ex,n−1, dt (e

p + δ)n)M

= −1

2
(ex,n + ex,n−1, dt dx (e

p + δ)n)x

= 1

2

(

ex,n + ex,n−1, dt

(
1

ax
ex

)n)

x
− 1

2
(ex,n + ex,n−1, dt ( ˜εx,n(p))x

= 1

2
dt‖

(
1√
ax

ex
)n

‖2
x + 1

2

(

dt

(
1

ax,n

)

ex,n, ex,n−1
)

x

−1

2
(ex,n + ex,n−1, ˜εx,n(dt p))x

≥ 1

2
dt

∥
∥
∥
∥

1√
ax,n

ex,n
∥
∥
∥
∥

2

x
− C(‖ex,n‖2

x + ‖ex,n−1‖2
x + ‖ ˜εx,n(dt p)‖2

x ). (4.42)

Similarly

1

2
(ey,n + ey,n−1, dt (e

p + δ)n)M

≥ 1

2
dt‖ 1√

ay,n
ey,n‖2

y − C(‖ey,n‖2
y + ‖ey,n−1‖2

y + ‖ε̃ y,n(dt p)‖2
y). (4.43)

Then from (4.41), (4.42) and (4.43) we have that

‖dt (e
p + δ)n‖2

M + 1

2
dt

[∥
∥
∥
∥

1√
ax,n

ex,n
∥
∥
∥
∥

2

x
+

∥
∥
∥
∥

1√
ay,n

ey,n
∥
∥
∥
∥

2

y

]

≤ 1

2
‖ε3,n + ε2,n‖2

M + 1

2
‖dt (e

p + δ)n)‖2
M + C3(‖ex,n‖2

x + ‖ex,n−1‖2
x

+‖ε̃x,n(dt p)‖2
x )

+C3(‖ey,n‖2
y + ‖ey,n−1‖2

y + ‖ε̃ y,n(dt p)‖2
y). (4.44)

‖dt (e
p + δ)n‖2

M + dt

[∥
∥
∥
∥

1√
ax,n

ex,n
∥
∥
∥
∥

2

x
+

∥
∥
∥
∥

1√
ay,n

ey,n
∥
∥
∥
∥

2

y

]

≤ ‖ε3,n + ε2,n‖2
M + 2C3(‖ex,n‖2

x + ‖ex,n−1‖2
x + ‖ey,n‖2

y + ‖ey,n−1‖2
y)

+2C3(‖ε̃x,n(dt p)‖2
x + ‖ε̃ y,n(dt p)‖2

y). (4.45)

Summing for n from 1 to m, m ≤ N we have that

m∑

n=1

�t‖dt (e
p + δ)n‖2

M +
∥
∥
∥
∥

1√
ax,n

ex,m
∥
∥
∥
∥

2

x
+

∥
∥
∥
∥

1√
ay,m

ey,m
∥
∥
∥
∥

2

y

≤ 4C3

m∑

n=1

�t (‖ex,n‖2
x + ‖ey,n‖2

y) +
m∑

n=1

�t (‖ε3,n + ε2,n‖2
M )
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+2C3

m∑

n=1

�t ((‖ε̃x,n(dt p)‖2
x + ‖ε̃ y,n(dt p)‖2

y)

+(1 + 2C3�t)

∥
∥
∥
∥

ex,0

√
ax,0

∥
∥
∥
∥

2

x
+ (1 + 2C3�t)

∥
∥
∥
∥

ey,0

√
ay,0

∥
∥
∥
∥

2

y
. (4.46)

Using the estimates of ε3,n, ε2,n, ε̃x,n(p), ε̃ y,n(p) and the estimate of dtδ, by Gron-
wall’s inequality we have that

Theorem 4.6 Suppose the analytical solution is sufficiently smooth. For Scheme II
there exists a positive constant C independent of h, k and �t such that

(
m∑

n=1

�t‖dt (Z − p + δ)n‖2
M

) 1
2

+ ‖(W x − ux )m‖x + ‖(W y − uy)m‖y

≤ C(�t2 + h2 + k2), m ≤ N . (4.47)

Now we consider the error estimate of (Z − p) of Scheme II.
Multiplying (4.40) by (ep + δ)n

i, j hi k j and making summation on i, j for 1 ≤ i ≤
Nx , 1 ≤ j ≤ Ny we have that

(dt (e
p + δ)n, (ep + δ)n)M + 1

2
(Dx (e

x,n + ex,n−1), (ep + δ)n)M

+1

2
(Dy(e

y,n + ey,n−1), (ep + δ)n)M = (−ε3,n + ε2,n, (ep + δ)n)M . (4.48)

By Lemma 4.3 we have that

(dt (e
p + δ)n, (ep + δ)n)M − 1

2
(ex,n + ex,n−1, dx (e

p + δ)n)x

−1

2
(ey,n + ey,n−1, dy(e

p + δ)n)y = (−ε3,n + ε2,n, (ep + δ)n)M . (4.49)

Using (4.15) and (4.16) we have that

1

2
dt‖(ep + δ)n‖2

M + �t

2
‖(dt (e

p + δ)n‖2
M

= −1

2

(

ex,n + ex,n−1,
1

ax,n
ex,n

)

x
− 1

2

(

ey,n + ey,n−1,
1

ay,n
ey,n

)

y

+ (−ε3,n + ε2,n, (ep + δ)n)M + (ex,n, ε̃x,n(p))x + (ey,n, ε̃ y,n(p))y . (4.50)

By Schwarz’s inequality we have that

1

2
dt‖(ep + δ)n‖2

M + �t

2
‖(dt (e

p + δ)n‖2
M

≤ ‖(ep + δ)n‖2
M + C3(‖ex,n‖2

x + ‖ex,n−1‖2
x + ‖ey,n‖2

y + ‖ey,n−1‖2
y)

+ C3(‖ε3,n + ε2,n‖2
M + ‖ε̃x,n(p)‖2

x + ‖ε̃ y,n(p)‖2
y). (4.51)
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Summing for n from 1 to m, m ≤ N we have that

‖(ep + δ)m‖2
M +

m∑

n=1

�t2‖(dt (e
p + δ)n‖2

M

≤
m∑

n=1

�t‖(ep + δ)n‖2
M + 4C3

m∑

n=1

�t (‖ex,n‖2
x + ‖ey,n‖2

y)

+2C3

m∑

n=1

�t (‖ε3,n + ε2,n‖2
M + ‖ε̃x,n(p)‖2

x + ‖ε̃ y,n(p)‖2
y) + ‖(ep + δ)0‖2

M .

(4.52)

Using Theorem 4.6, the estimates of ε3, ε2, ε̃x (p), ε̃ y(p), and by Gronwall’s inequal-
ity we have that

‖(Z − p + δ)m‖2
M +

m∑

n=1

�t2‖(dt (Z − p + δ)n‖2
M

≤ C‖(Z − p + δ)0‖2
M + C

m∑

n=1

�t (‖ε3,n + ε2,n‖2
M + ‖ε̃x,n(p)‖2

x + ‖ε̃ y,n(p)‖2
y)

+C
m∑

n=1

�t (‖ex,n‖2
x + ‖ey,n‖2

y)

≤ C(�t4 + h4 + k4). (4.53)

Using the estimate of δ we have the following theorem.

Theorem 4.7 Suppose the analytical solution is sufficiently smooth. For Scheme II
there exists a positive constant C independent of h, k and �t such that

‖(Z − p)m‖M ≤ C(�t2 + h2 + k2), m ≤ N . (4.54)

5 Numerical examples

In this section we carry out some numerical experiments using the block-centered
finite difference schemes. For simplicity, the region are selected as an unit square,
� = [0, 1] × [0, 1], while the time interval is chosen as [0, 1].

We test Examples 1 and 2 to verify the convergence rates of the presented schemes.
The initial spatial partition is a 5 × 5 grid. And then the grid is refined 3 times, each
time we divided every rectangular element into 4 uniform rectangular elements. The
initial temporal step is 1/20. The initial grid with degree of freedom is plotted in Fig. 1.

The a priori error in discrete L2- and L∞-norms at the last time step is computed.
The time step is refined as �t = h2 to show the convergence for implicit Euler scheme
and �t = h for Crank–Nicolson scheme. The numerical results are listed in Figs. 2
and 3 and Tables 1, 2, 3 and 4.
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Fig. 2 Convergence rates of Example 1. The tangent of the triangle is 2

Example 1 A numerical example with Neumann border condition is considered as
below. The the boundary condition and the right hand side of the equations are com-
puted according to the analytic solution given as below.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p(x, y) = 2

π
arctan

x + y − t − 1

0.5
,

u(x, y) = (sin π t sin πx cos πy, sin π t cos πx sin πy)T ,

a(x, y, t) =
(

2ey(1 + 0.4 sin x sin y)(1 + sin t) 0
0 ex (1 + cos t)

)

.

The numerical results are listed in Fig. 2 and Tables 1, 2.
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Fig. 3 Convergence rates of Example 2 The tangent of the triangle is 2

Table 1 Error and convergence
rates of Scheme I for Example 1
(�t = h2)

Partition Velocity ‖v‖0,2 Pressure ‖p‖0,2

Error Rate Error Rate

5 × 5 6.99E−3 – 1.25E−2 –

10 × 10 1.93E−3 −1.85 3.09E−3 −2.01

20 × 20 5.03E−4 −1.94 7.70E−4 −2.00

40 × 40 1.27E−4 −1.97 1.92E−4 −2.00

Table 2 Error and convergence
rates of Scheme II for
Example 1 (�t = h)

Partition Velocity ‖v‖0,2 Pressure ‖p‖0,2

Error Rate Error Rate

5 × 5 1.36E−2 – 4.60E−3 –

10 × 10 5.74E−3 −1.24 1.16E−3 −1.98

20 × 20 6.22E−4 −3.20 2.95E−4 −1.97

40 × 40 1.23E−4 −2.33 7.41E−5 −1.99

Table 3 Error and convergence
rates of Scheme I for Example 2
(�t = h2)

Partition Velocity ‖v‖0,2 Pressure ‖p‖0,2

Error Rate Error Rate

5 × 5 3.73E−3 – 2.54E−2 –

10 × 10 9.88E−4 −1.91 6.23E−3 −2.02

20 × 20 2.55E−4 −1.95 1.55E−3 −2.00

40 × 40 6.47E−5 −1.97 3.87E−4 −2.00

Example 2 A numerical example with Neumann border condition is considered as
below. The boundary condition and the right hand side of the equations are computed
according to the analytic solution given as below.
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Table 4 Error and convergence
rates of Scheme II for
Example 2 (�t = h)

Partition Velocity ‖v‖0,2 Pressure ‖p‖0,2

Error Rate Error Rate

5 × 5 1.37E−2 – 3.70E−3 –

10 × 10 1.97E−3 −2.79 5.50E−4 −2.74

20 × 20 2.70E−4 −2.86 1.40E−4 −1.97

40 × 40 6.04E−5 −2.16 3.49E−5 −2.00

⎧
⎪⎪⎨

⎪⎪⎩

p(x, y, t) = tanh
x + y − t − 1

0.5
, u(x, y, t) = (−y, x)T ,

a(x, y, t) =
(

ex+y+t + 1 0
0 0.6 sin (x + 2y − t) + 2

)

.

The numerical results are listed in Fig. 3 and Tables 3 and 4.

From Figs. 2 and 3 and Tables 1, 2, 3 and 4, we can see that the block-centered finite
difference approximations for pressure and velocity have the (�t + h2) accuracy in
discrete L2-norms for implicit-Euler scheme, while they have the (�t2 +h2) accuracy
in discrete L2-norms for Crank–Nicolson scheme. These results are in consistent with
the error estimates in Theorems 4.4–4.7.
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