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Abstract For a digraph D = (V, A) and a partition {S, T } of V , an arc set B ⊆ A is
called an S-T bibranching if each vertex in T is reachable from S and each vertex in S
reaches T in the subgraph (V, B). Bibranchings commonly generalize bipartite edge
covers and arborescences. A totally dual integral linear system determining the S-T
bibranching polytope is provided by Schrijver, and the shortest S-T bibranching prob-
lem, whose objective is to find an S-T bibranching of minimum total arc weight, can be
solved in polynomial time by the ellipsoid method or a faster combinatorial algorithm
due to Keijsper and Pendavingh. The valuated matroid intersection problem, intro-
duced by Murota, is a weighted generalization of the independent matching problem,
including the independent assignment problem and the weighted matroid intersection
problem. The valuated matroid intersection problem can be solved efficiently with
polynomially many value oracles by extending classical combinatorial algorithms for
the weighted matroid intersection problem. In this paper, we show that the shortest
S-T bibranching problem is polynomially reducible to the valuated matroid intersec-
tion problem. This reduction suggests one answer to why the shortest S-T bibranching
problem is tractable, and implies new combinatorial algorithms for the shortest S-T
bibranching problem based on the valuated matroid intersection algorithm, where a
value oracle corresponds to computing a minimum-weight arborescence.

Keywords Shortest bibranching · Arborescence · Valuated matroidintersection ·
Discrete convex function

Mathematics Subject Classification 90C27 · 90C35 · 52B40

K. Takazawa (B)
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
e-mail: takazawa@kurims.kyoto-u.ac.jp

123



562 K. Takazawa

1 Introduction

Let D = (V, A) be a directed graph (digraph) with vertex set V and arc set A, and
let w ∈ RA+ be a nonnegative arc-weight vector.For a partition {S, T } of V , an arc
subset B ⊆ A is called an S-T bibranching if each vertex in T is reachable from S
and each vertex in S reaches T in the subgraph (V, B).

The notion of bibranchings was introduced by Schrijver [17]. Bibranchings com-
monly generalize bipartite edge covers and arborescences.

Bipartite edge cover. In an undirected graph G = (V, E), an edge set F ⊆ E is
called an edge cover if every vertex is incident to at least one edge in F .

Suppose that G is a bipartite graph with color classes S and T . Then, obtain a
digraph D from G by orienting every edge toward T . It is straightforward to see that
an edge subset in G is an edge cover if and only if its corresponding arc subset in D
is an S-T bibranching.

Arborecsence. For a digraph D = (V, A) and a vertex r ∈ V , an arc set F ⊆ A is
an r-arborescence if F contains no undirected cycle and each vertex v ∈ V \ {r} has
exactly one entering edge in F while r has no enterng edge in F . Here, consider a
partition {S, T } of V , where S = {r} and T = V \ {r}. Then, it is easy to see that a
minimal S-T bibranching is an r -arborescence.

A typical optimization problem concerning edge covers and arborescences is to
find those of minimum weight, when a non-negative edge/arc weight is given. So, our
main interest is in the shortest S-T bibranching problem, the objective of which is to
find an S-T bibranching B minimizing w(B) = ∑

e∈B w(e). Generally, for a finite
set V and a vector x ∈ RV , we denote x(X) = ∑

v∈X x(v) for X ⊆ V .
A min–max relation for the minimum size of an S-T bibranching follows from

the Kőnig–Rado edge cover theorem. Furthermore, Schrijver [17] presented a totally
dual integral linear system determining the S-T bibranching polytope (see also Schrij-
ver [19]). The shortest S-T bibranching problem can be solved in polynomial time
by the ellipsoid method [17], and Keijsper and Pendavingh [9] designed a combi-
natorial primal-dual algorithm with running time O(n′(m + n log n)), where n′ =
min{|S|, |T |}, n = |S ∪ T | and m = |A|. This time complexity is almost best possible,
since the current best time complexity for the minimum-weight edge cover problem
is O(n′(m + n log n)) [3,24] and that for the minimum-weight arborescence prob-
lem is O(m + n log n) [7]. Therefore, it could be understood that the shortest S-T
bibranching problem is as tractable as its special cases of the minimum-weight edge
cover and minimum-weight arborescence problems, and that the tractability derives
from the total dual integrality of the linear system determining the S-T bibranching
polytope.

In this paper, we exhibit a new feature of the shortest S-T bibranching problem
which explains its tractability: the shortest S-T bibranching problem is a special case of
the valuated matroid intersection problem, introduced by Murota [12,13]. For a func-
tion ω : 2V → R∪{−∞}, let dom ω denote the effective domain of ω, which is defined
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Shortest bibranchings and valuated matroid intersection 563

by dom ω={X | X ⊆V , ω(X)>−∞}. A function ω : 2V →R∪{−∞} with dom ω �=
∅ is called a valuated matroid [1,2] if it satisfies the following exchange property:

(VM) for each X, Y ∈ 2V and u ∈ X \ Y , there exists v ∈ Y \ X such that

ω((X \ {u}) ∪ {v}) + ω((Y \ {v}) ∪ {u}) ≥ ω(X) + ω(Y ).

It is easy to see that dom ω forms the base family of a matroid of ground set V . The
valuated matroid intersection problem is described as follows.

The valuated matroid intersection problem

Instance: – a ground set V ,
– a weight vector w ∈ RV , and
– two valuated matroids ω+ : 2V → R ∪ {−∞} and ω− : 2V →

R ∪ {−∞}.
Objective: maximize w(X) + ω+(X) + ω−(X).

The valuated matroid intersection problem is a special case of the valuated inde-
pendent assignment problem, which is a weighted generalization of the independent
matching problem, and includes other important problems such as the independent
assignment problem [8] and the weighted matroid intersection problem. The valuated
independent assignment problem can be solved efficiently with polynomially many
value oracles: Murota [13] designed combinatorial algorithms by naturally extending
the classical weighted matroid intersection algorithms [4,8,10]. For more information
on the valuated matroid intersection problem, readers are referred to Murota [15].

Our main result shows a relation between the shortest bibranching and valuated
matroid intersection problems.

Theorem 1 The shortest S-T bibranching problem is polynomially reducible to the
valuated matroid intersection problem.

Theorem 1 reveals a new feature of bibranchings underlying the tractability of the
shortest S-T bibranching problem. Furthermore, by combining this reduction and the
valuated independent assignment algorithms in [13], we obtain new combinatorial
algorithms for the shortest S-T bibranching problem which is based on the weighted
matroid intersection algorithms.

In proving Theorem 1, we make use of theory on a more general framework of
discrete convex analysis [14], in particular theory on M-convex and M�-convex func-
tions [11,16] (see also [6]). Our argument is an example where theory of a generalized
framework gives a new insight of a certain special case.

The organization of this paper is as follows. In Sect. 2, we review bibranchings,
valuated matroids, and M-convex and M�-convex functions. Section 3 is devoted to
proving Theorem 1. In Sect. 4, we conclude this paper with a few remarks.
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2 Preliminaries

2.1 Digraphs

Let D = (V, A) be a digraph. An arc from u to v is denoted by uv. For an arc a,
the initial vertex is denoted by ∂+a and the terminal vertex is denoted by ∂−a. For
a vertex v ∈ V , the set of arcs with tail v is denoted by δ+v, and those with head v

is denoted by δ−v. For X ⊆ V , let D[X ] = (U, A[X ]) denote the subgraph induced
by X , i.e., A[X ] = {a | a ∈ A, ∂+a ∈ X , ∂−a ∈ X}. For X, Y ⊆ V , let A[X, Y ] =
{a | a ∈ A, ∂+a ∈ X , ∂−a ∈ Y }.

A path in a digraph is a sequence (v0, a1, v1, . . . , vk−1, ak, vk), where ai = vi−1vi

for every i = 1, . . . , k and v0, v1, . . . , vk are distinct. A cycle is a sequence (v0, a1, v1,

. . . , vk−1, ak, vk), where ai = vi−1vi (i = 1, . . . , k), v0, v1, . . . , vk−1 are distinct,
and v0 = vk .For v ∈ V and U ⊆ V , we say that v reaches U if there exists a path
starting from v and ending in some vertex in U , and that v is reachable from U if there
exists a path starting from some vertex in U and ending in v.

For an arc set F ⊆ A, its reversal is an arc set obtained by reversing every arc in F ,
that is, {vu | uv ∈ F}. For a digraph D = (V, A), an arc subset B ⊆ A is a branching
if |B ∩ δ−v| ≤ 1 for every v ∈ V and B contains no cycle. A cobranching is a set of
edges whose reversal is a branching.

For an arc subset B ⊆ A, define ∂+B = ⋃
a∈B ∂+a and ∂−B = ⋃

a∈B ∂−a.
If B is a branching, a vertex in V \ ∂− B is called a root of B and we denote the
set of roots by R(B), i.e., R(B) = V \ ∂−B. Similarly, for a cobranching B ′, we
define R∗(B ′) = V \ ∂+B ′. Recall that, for a vertex r ∈ V , an r-arborescence is a
branching B with R(B) = {r}.

Let D = (V, A) be a digraph and let {S, T } be a partition of V . That is, S ∩ T = ∅
and S ∪ T = V . Recall that an arc set B ⊆ A is an S-T bibranching if, in the sub-
graph (V, B), every vertex in T is reachable from S and every vertex in S reaches
T . A set of arcs C ⊆ A is called an S-T bicut if C = A[V \ U, U ] = {a | ∂+a ∈
V \ U, ∂−a ∈ U } for some nonempty proper subset U of V such that U ⊆ T or
U ⊇ T .

The following linear system describes the S-T bibranching polytope:

0 ≤ x(a) ≤ 1 for each a ∈ A, (1)

x(C) ≥ 1 for each S-T bicut C . (2)

Theorem 2 (Schrijver [17]) The linear system consisting of Eqs. (1) and (2) is totally
dual integral.

2.2 Valuated matroids, M-convex functions and M�-convex functions

In this subsection, beginning with valuated matroids, we exhibit several basic facts
on M-convex functions [11] and M�-convex functions [16], which provide broader
frameworks than that of valuated matroids, and also their relation to minimum-weight
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branchings. For more detailed information on these discrete convex functions, readers
are referred to Murota [14] and Fujishige [6].

Let us begin with matroids. Let V be a finite set and B ⊆ 2V be its subset fam-
ily with B �= ∅. Then, we say that (V,B) is a matroid if, for each X, Y ∈ B and
u ∈ X \ Y , there exists v ∈ Y \ X such that (X \ {u}) ∪ {v} ∈ B.

Actually, this exchange axiom is equivalent to the following simultaneous exchange
property:

(M) for each X, Y ∈ B and u ∈ X \ Y , there exists v ∈ Y \ X such that

(X \ {u}) ∪ {v} ∈ B and (Y ∪ {u}) \ {v} ∈ B.

By considering this simultaneous exchange property, we can define a quantitative
generalization (VM) in Sect. 1, which defines valuated matroids.

Matroids are defined as a pair of a ground set V and the base family B ⊆ 2V .
By identifying a subset of V as a vector in {0, 1}V , B could be seen as a subfamily
of {0, 1}V . M-convex sets offer a generalization of matroids which is defined as a
subfamily of ZV .

For X ⊆ V , the characteristic vector of X is a vector χX ∈ ZV defined by
χX (v) = 1 for v ∈ X and χX (v) = 0 for v ∈ V \ X . For an element u ∈ V , χ{u} is
abbreviated as χu . For a vector x ∈ ZV , define supp+(x) = {v | v ∈ V , x(v) > 0}
and supp−(x) = {v | v ∈ V , x(v) < 0}

A set of integer points B ⊆ ZV is an M-convex set if it satisfies the following
exchange axiom:

(B- EXC) for each x, y ∈ B and u ∈ supp+(x − y), there exists v ∈ supp−(x − y)

such that

x − χu + χv ∈ B and y + χu − χv ∈ B.

Note that (B- EXC) generalizes the axiom (M). Now, we can define M-convex
functions by generalizing (DM). For a function f : ZV → R ∪ {+∞}, let dom f =
{x | f (x) < +∞}. A function f : ZV → R ∪ {+∞} with dom f �= ∅ is called an
M-convex function if it satisfies the following property:

(M- EXC) for each x, y ∈ ZV and u ∈ supp+(x − y), there exists v ∈ supp−(x − y)

such that

f (x − χu + χv) + f (y + χu − χv) ≤ f (x) + f (y).

A function g is said to be M-concave if −g is M-convex. It is straightforward to see
that a valuated matroid is exactly an M-concave function g with dom g ⊆ {0, 1}V .

We can also consider slightly weaker exchange properties. A set Q ⊆ ZV is an
M�-convex set if it satisfies the following exchange axiom:

(B�- EXC) for each x, y ∈ Q and u ∈ supp+(x − y), it holds that

x − χu ∈ Q and y + χu ∈ Q,
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or there exists v ∈ supp−(x − y) such that

x − χu + χv ∈ Q and y + χu − χv ∈ Q.

It is known that an M�-convex set is the set of integer vectors in an integral gen-
eralized polymatroid [5,23] (see also [6,14]). Thus, we often refer to a pair (V,F ),
where F ⊆ 2V , as a generalized matroid if (B�- EXC) holds for Q = {χX | X ∈
F } ⊆ {0, 1}V .

A function f : ZV → R ∪{+∞} with dom f �= ∅ is called an M�-convex function
if it satisfies the following property:

(M�- EXC) for each x, y ∈ ZV and u ∈ supp+(x − y), it holds that

f (x − χu) + f (y + χu) ≤ f (x) + f (y),

or there exists v ∈ supp−(x − y) such that

f (x − χu + χv) + f (y + χu − χv) ≤ f (x) + f (y).

A function g is said to be M�-concave if −g is M�-convex.
The class of M�-convex functions is indeed a proper generalization of M-convex

functions. On the other hand, in the following sense these two are essentially equiv-
alent. Let v0 be an element distinct from V and denote Ṽ = {v0} ∪ V . Let α be an
integer. For a function f : ZV → R ∪ {+∞}, define f̃ : ZṼ → R ∪ {+∞} by

f̃ (x0, x) =
{

f (x) if x(Ṽ ) = α,

+∞ otherwise
(x0 ∈ Z, x ∈ ZV ). (3)

Murota and Shioura [16] proved the following relation between M-convexity and
M�-convexity.

Theorem 3 [16] A function f : ZV → R ∪ {+∞} is an M�-convex function if and
only if f̃ defined by (3) is an M-convex function.

An important operation on M-convex (M�-convex) functions is transformation
through a network. Let (N , E) be a digraph with entrance set N1 ⊆ N and exit
set N2 ⊆ N , where N1 and N2 are disjoint. Let c : E → Z ∪ {−∞} and c̄ :
E → Z ∪ {+∞} denote the lower and upper capacity functions, respectively. For
each arc e ∈ E , a cost function γe : Z → R ∪ {+∞} is attached. We assume that
γe is a univariate convex function for every e ∈ E . For a flow ξ ∈ ZE , define its
boundary ∂ξ ∈ ZN by ∂ξ(v) = ξ(δ+v) − ξ(δ−v).

123



Shortest bibranchings and valuated matroid intersection 567

Given a function f1 : ZN1 → R ∪{+∞}, define a function f2 : ZN2 → R ∪{±∞}
by

f2(y) = inf
x,ξ

{

f1(x) +
∑

e∈E

γe(ξ(e)) | ξ ∈ ZE , c(e) ≤ ξ(e) ≤ c̄(e) ∀e ∈ E,

∂ξ = (x,−y, 0), (x,−y, 0) ∈ ZN1 × ZN2 × ZN\(N1∪N2)

}

. (4)

We have that M-convexity and M�-convexity are maintained in this transformation.

Theorem 4 [11,20] Assume that f2 defined in (4) satisfies f2 > −∞. It holds that

– if f1 is an M-convex function, then f2 is also an M-convex function; and
– if f1 is an M�-convex function, then f2 is also an M�-convex function.

If an M�-convex function f satisfies that dom f ⊆ {0, 1}V , then f could be seen
as a valuation on a generalized matroid by corresponding a subset X ⊆ V to a vec-
tor χX ∈ {0, 1}. That is, we can define a function g : 2V → R ∪ {+∞} by

g(X) = f (χX ) (X ⊆ V ).

We refer to such a set function g obtained from an M�-convex function f with dom f ⊆
{0, 1}V as an M�-convex function, as well.

An example of such an M�-convex function arises from branchings. For a weighted
digraph (D, w) of D = (V, A) and w ∈ RA, define F ⊆ 2V by

F = {R(B) | B ⊆ A is a branching in G}. (5)

Further, define a function f : 2V → R ∪ {+∞} by

f (X) =
{

min{w(B) | B is a branching, R(B) = X} if X ∈ F ,

+∞ if X �∈ F .
(6)

In [22], it is declared that the following theorems follow from arguments in Schrij-
ver [18].

Theorem 5 [22] For a digraph D = (V, A), the pair (V,F ) defined by (5) is a
generalized matroid.

Theorem 6 [22] For a weighted digraph (D, w) of D = (V, A) and w ∈ RA, the
function f defined by (6) is an M�-convex function.

Note that F is not an M-convex set, and f is not an M-convex function.
Their cobranching counterparts F ∗ ⊆ 2V and f ∗ : 2V → R ∪ {+∞} are defined

as follows:

F ∗ = {R∗(B) | B ⊆ A is a cobranching in G},

f ∗(X) =
{

min{w(B) | B is a cobranching, R∗(B) = X} if X ∈ F ∗,
+∞ if X �∈ F ∗.

(7)
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Matroid bases

Generalized matroid

M-convex set

M -convex set

A B : B is a quantitative generalization of A.

B

A

: B is a subclass of A.

Valuated

M -convex function

matroid

M -convex function

M-convex
function

(V ) in (5)

f in (6)

A B : B generalizes A from 0 1 V to ZV .

Fig. 1 Relation among the notions

It is straightforward to see that (V,F ∗) is a generalized matroid and f ∗ is an M�-
convex funtion.

We summarize the relation among the notions mentioned in this subsection in Fig. 1.

3 Reduction of shortest bibranching to valuated matroid intersection

In this section, we prove Theorem 1 by exhibiting a polynomial reduction of the
shortest S-T bibranching problem to the valuated matroid intersection problem.

3.1 A matroidal formulation of the shortest bibranching problem

Let (D, w) be a weighted digraph with D = (V, A) and w ∈ RA+, and let {S, T } be a
partition of V . As stated in Sect. 2.1, the shortest S-T bibranching problem is exactly
finding an intger vector x ∈ RA minimizing

∑
a∈A w(a)x(a) under the constraints (1)

and (2), which is tractable by the fact that the system defined by (1) and (2) is totally
dual integral (Theorem 2).

Here, we present another formulation of the shortest S-T bibranching problem
focusing on the matroidal structure of branchings and cobranchings (Theorems 5 and
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Shortest bibranchings and valuated matroid intersection 569

6). In D[S], define F ∗
S ⊆ 2S and f ∗

S : 2S → R ∪ {+∞} as follows:

F ∗
S = {R∗(B) | B is a cobranching},

f ∗
S (X) =

{
min{w(B) | B is a cobranching, R∗(B) = X} if X ∈ F ∗

S ,

+∞ if X �∈ F ∗
S .

Similarly, in D[T ], define FT ⊆ 2T and fT : 2T → R ∪ {+∞} by

FT = {R(B) ∩ T | B is a branching},

fT (X) =
{

min{w(B) | B is a branching, R(B) = X} if X ∈ FT ,

+∞ if X �∈ FT .

By Theorem 6, both f ∗
S and fT are M�-convex functions. Furthermore, the following

proposition immediately follows from nonnegativity of w.

Proposition 1 The functions f ∗
S and fT are monotone non-increasing, that is, f ∗

S
(X ′) ≥ f ∗

S (X) if X ′ ⊆ X and fT (X ′) ≥ fT (X) if X ′ ⊆ X.

Proof Consider fT . Let X ′ ⊆ X ⊆ V and suppose X ′ ∈ dom fT . Let B ′ ⊆ A[T ]
be a branching in D[T ] attaining fT (X ′), that is, R(B ′) = X ′ and w(B ′) = fT (X ′).
By removing arcs in B ′ ∩⋃

v∈X\X ′ δ−v from B ′, we obtain another branching B with
R(B) = X . By nonnegativity of w, it holds that w(B) ≤ w(B ′). We consequently
obtain that fT (X) ≤ w(B) ≤ w(B ′) = fT (X ′).

A similar argument holds for f ∗
S . ��

Now, the shortest S-T bibranching problem is described as the following optimi-
zation problem:

(SBP) minimize w(F) + f ∗
S (∂+F) + fT (∂−F)

subject to F ⊆ A[S, T ].

In order to obtain a shortest S-T bibranching from an optimal solution F0 for (SBP),
it suffices to find a minimum-weight cobranching BS in D[S] with R∗(BS) = ∂−F0
and a minimum-weight branching BT in D[T ] with R(BT ) = ∂+F0, and then return
F0 ∪ BS ∪ BT .

In the next subsection, we show a polynomial reduction of (SBP) to the valuated
matroid intersection problem.

3.2 Reduction to valuated matroid intersection

We consider to transform f ∗
S and fT to valuated matroids whose ground sets cor-

respond to A[S, T ]. First, we extend the domain of f ∗
S to ZS . Define gS : ZS →
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R ∪ {+∞} by

gS(x) =
{

f ∗
S (supp+(x)) if x ∈ ZS+,

+∞ if x(v) < 0 for some v ∈ S.

Proposition 2 The function gS is an M�-convex function.

Proof For brievity, let us abbreviate f ∗
S and gS as f and g, respectively. We prove

that g satisfies (M�- EXC).
Let x, y ∈ dom g and u ∈ supp+(x − y).

Case 1 (y(u) ≥ 1). Note that x(u) ≥ 2 holds. It is easy to observe that

g(x − χu) = g(x) = f (supp+(x)), g(y + χu) = g(y) = f (supp+(y)).

Thus, g(x − χu) + g(y + χu) = g(x) + g(y) follows.
Case 2 (x(u) ≥ 2, y(u) = 0).In this case, we have that g(x − χu) = g(x), and

g(y+χu) ≤ g(y) by Proposition 1. Thus, g(x−χu)+g(y+χu) ≤ g(x)+g(y)

follows.
Case 3 (x(u) = 1, y(u) = 0). Consider Property (M�- EXC) of f . Let X = supp+(x),

Y = supp+(y). If f (X \ {u}) + f (Y ∪ {u}) ≤ f (X) + f (Y )holds, then
g(x − χu) + g(y + χu) ≤ g(x) + (y) follows immediately.
Suppose f ((X \ {u}) ∪ {v}) + f ((Y ∪ {u}) \ {v}) ≤ f (X) + f (Y ) for some
v ∈ Y \ X . Then, it follows that

g(x − χu + χv) = f (supp+(x − χu + χv)) = f ((X \ {u}) ∪ {v}),

and, from Proposition 1,

g(y + χu − χv) = f (supp+(y + χu − χv)) ≤ f ((Y ∪ {u}) \ {v}).

Thus, we have that g(x − χu + χv) + g(y + χu − χv) ≤ g(x) + g(y). ��
We then transform gS so that its domain could be associated to A[S, T ]. Define

hS : ZA[S,T ] → R ∪ {+∞} by

hS(x) =
{

gS(x ′) if x ∈ {0, 1}A[S,T ],
+∞ otherwise,

where x ′ ∈ ZS is a vector defined by

x ′(u) =
∑

a∈δ+u

x(a) for each u ∈ S.

It is straightforward to see that hS is obtained from gS by transformation through the
following network:
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– The digraph is (N , E), where N = S ∪ A[S, T ] and E = {ua | u ∈ S, a ∈
A[S, T ] ∩ δ+u}. The entrance set is S and the exit set is A[S, T ].

– c(e) = 0, c̄(e) = 1, and γe ≡ 0 for every e ∈ E .

By Theorem 4, we have that hS is an M�-convex function.
We further transform the M�-convex function hS to an M-convex function. Let a0

be an element distinct from A[S, T ], and let Ã = {a0} ∪ A[S, T ]. Let α ∈ Z+ be a
sufficiently large integer1. Define h̃S : Z Ã → R ∪ {+∞} by

h̃S(x0, x) =
{

h′
S(x) if x0 = α − x(A[S, T ]),

+∞ otherwise
(x0 ∈ Z, x ∈ ZA[S,T ]).

By Theorem 3, h̃S is an M-convex function.
Let U be a set of elements disjoint from A[S, T ] with size α and denote W = U ∪

AW , where AW is a copy of A[S, T ]. An element in AW corresponding to a ∈ A[S, T ]
is denoted by aW . Define h+ : 2W → R ∪ {+∞} by

h+(X) =
{

h̃S(|X ∩ U |, χX∩AW ) if |X | = α,

+∞ otherwise.

It is easy to observe that h+ is obtained from h̃S by transformation through the fol-
lowing network and identifying X ⊆ V as χX ∈ {0, 1}V :

– The digraph is (N , E), where N = Ã ∪ W and E = {a0u | u ∈ U } ∪ {aaW | a ∈
A[S, T ]}. The entrance set is Ã and the exit set is W .

– c(e) = 0, c̄(e) = 1, and γe ≡ 0 for every e ∈ E .

Thus, by Theorem 4, ω+ = −h+ is a valuated matroid. We also obtain a valuated
matroid ω− : 2W → R ∪ {−∞} from fT by similar transformation.

We are now ready to define an instance of the valuated matroid intersection problem.
The ground set is W = U ∪ A[S, T ] and define a weight vector w̃ ∈ RW by

w̃(v) =
{

0 if v ∈ U ,

−w(a) if v ∈ A[S, T ].

Now, we have constructed an instance (W, w̃, ω+, ω−) of the valuated matroid
intersection problem. It immediately follows that, for an optimal solution X for
(W, w̃, ω+, ω−), the set of arcs in A[S, T ] corresponding to X ∩ AW [S, T ] is an
optimal solution for (SBP).

4 Concluding remarks

We have shown that the shortest S-T bibranching problem falls in the framework of
the valuated matroid intersection problem. Our argument begins with the fact that

1 It suffices that α ≥ |A[S, T ]| − min{min{|X | | X ∈ dom f ∗
S }, min{|X | | X ∈ dom fT }}.
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weighted branchings determine a valuation on a generalized matroid (Theorems 5 and
6), and then make use of theory of a more general framework of M-convex functions.
That is, we transformed the valuation to an M-convex function, and then applied the
operation of transformation through a network, in order to make the two valuations
on {0, 1}S and {0, 1}T have the same ground set.

Let us mention the shortest S-T bibranching algorithms obtained from this reduc-
tion. By applying algorithms for the valuated matroid intersection problem [13] to the
instance (W, w̃, ω+, ω−) constructed in Sect. 3.2, we obtain new combinatorial algo-
rithms for the shortest S-T bibranching problem. The algorithms in [13] essentially
resemble to classical combinatorial matroid intersection algorithms, and we need a
value oracle for ω+ or ω− in constructing every exchangeabiity arc in auxiliary graphs.
In our case, this value oracle is exactly computing f (X) in (6) or f ∗(X) in (7), which
can be performed efficiently by calling a minimum-weight arborescence algorithm.

We conclude this paper by mentioning one more application of Theorem 6. In a
recent paper of Shioura [21], the following problem is considered.

The k-budgeted M�-concave maximization problem

Input: – an M�-concave function f : 2V → R ∪ {−∞},
– cost vectors γi : V → R+ and budgets bi ∈ R+ (i = 1, . . . , k).

Objective: maximize f (X) subject to γi (X) ≤ bi for each i = 1, . . . , k.

For the k-budgeted M�-concave maximization problem, Shioura [21] presented a
PTAS. We can consider one kind of the network design problem which falls in the
framework of the k-budgeted M�-concave maximization problem.

Suppose that we are given a weighted digraph (D, w) of D = (V, A) and w ∈ RA+.
We should determine X ⊆ V , where to open facilities, and construct a subgraph of D
in which every vertex in V \ X reaches some facility in X .

In opening facilities,we have k budget-constraints, which are represented as linear
constraints γi (X) ≤ bi (i = 1, . . . , k). Connecting vertices by an arc a ∈ A costs
w(a), and thus construction of a subgraph (V, B) costs w(B). Our objective is to find
X ⊆ V and B ⊆ A which satisfy the budget constraints and achieve the minimum
connection cost.

If X is given, a minimal subgraph (V, B) achieving the connection from V \X to X is
exactly a cobranching B with R∗(B) = X , and thus the connection cost is represented
by f ∗ in (7). By Theorem 6, − f ∗ is an M�-concave function, and thus minimizing
f ∗(X) subject to γi (X) ≤ bi (i = 1, . . . , k) is a special case of the k-budgeted M�-con-
cave maximization problem. In this special case, again the value oracle is computing
f ∗(X), which can be done efficiently, and thus the PTAS in [21] can be applied.
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