
Japan J. Indust. Appl. Math. (2010) 27:125–160
DOI 10.1007/s13160-010-0006-9

ORIGINAL PAPER Area 2

A numerical algorithm for block-diagonal
decomposition of matrix ∗-algebras with application
to semidefinite programming

Kazuo Murota · Yoshihiro Kanno ·
Masakazu Kojima · Sadayoshi Kojima

Received: 12 May 2009 / Revised: 30 September 2009 / Published online: 1 May 2010
© The JJIAM Publishing Committee and Springer 2010

Abstract Motivated by recent interest in group-symmetry in semidefinite program-
ming, we propose a numerical method for finding a finest simultaneous block-diago-
nalization of a finite number of matrices, or equivalently the irreducible decomposition
of the generated matrix ∗-algebra. The method is composed of numerical-linear alge-
braic computations such as eigenvalue computation, and automatically makes full
use of the underlying algebraic structure, which is often an outcome of physical or
geometrical symmetry, sparsity, and structural or numerical degeneracy in the given
matrices. The main issues of the proposed approach are presented in this paper under
some assumptions, while the companion paper gives an algorithm with full generality.
Numerical examples of truss and frame designs are also presented.

The first draft of this paper appeared as the technical report “A numerical algorithm for block-diagonal
decomposition of matrix ∗-algebras,” issued in September 2007 as METR 2007-52, Department of
Mathematical Informatics, University of Tokyo, and also as Research Report B-445, Department of
Mathematical and Computing Sciences, Tokyo Institute of Technology.

K. Murota (B) · Y. Kanno
Department of Mathematical Informatics, Graduate School of Information
Science and Technology, University of Tokyo, Tokyo 113-8656, Japan
e-mail: murota@mist.i.u-tokyo.ac.jp

Y. Kanno
e-mail: kanno@mist.i.u-tokyo.ac.jp

M. Kojima · S. Kojima
Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology, Tokyo 152-8552, Japan
e-mail: kojima@is.titech.ac.jp

S. Kojima
e-mail: sadayosi@is.titech.ac.jp

123

126 K. Murota et al.

Keywords Matrix ∗-algebra · Block-diagonalization · Group symmetry · Sparsity ·
Semidefinite programming

1 Introduction

This paper is motivated by recent studies on group symmetries in semidefinite pro-
grams (SDPs) and sum of squares (SOS) and SDP relaxations [1,5,7,11,13]. A com-
mon and essential problem in these studies can be stated as follows: Given a finite set
of n × n real symmetric matrices A1, A2, . . . , AN , find an n × n orthogonal matrix
P that provides them with a simultaneous block-diagonal decomposition, i.e., such
that P� A1 P, P� A2 P, . . . , P� AN P become block-diagonal matrices with a common
block-diagonal structure. Here A1, A2, . . . , AN correspond to data matrices associ-
ated with an SDP. We say that the set of given matrices A1, A2, . . . , AN is decomposed
into a set of block-diagonal matrices or that the SDP is decomposed into an SDP with
the block-diagonal data matrices. Such a block-diagonal decomposition is not unique
in general; for example, any symmetric matrix may trivially be regarded as a one-block
matrix. As diagonal-blocks of the decomposed matrices get smaller, the transformed
SDP could be solved more efficiently by existing software packages developed for
SDPs [3,27,28,33]. Naturally we are interested in a finest decomposition. A more
specific account of the decomposition of SDPs will be given in Sect. 2.1.

There are two different but closely related theoretical frameworks with which we
can address our problem of finding a block-diagonal decomposition for a finite set
of given n × n real matrices. The one is group representation theory [22,26] and the
other matrix ∗-algebra [31]. They are not only necessary to answer the fundamental
theoretical question of the existence of such a finest block-diagonal decomposition but
also useful in its computation. Both frameworks have been utilized in the literature
[1,5,7,11,13] cited above.

Kanno et al. [13] introduced a class of group symmetric SDPs, which arise from
topology optimization problems of trusses, and derived symmetry of central paths
which play a fundamental role in the primal-dual interior-point method [32] for solv-
ing them. Gatermann and Parrilo [7] investigated the problem of minimizing a group
symmetric polynomial. They proposed to reduce the size of SOS–SDP relaxations for
the problem by exploiting the group symmetry and decomposing the SDP. On the other
hand, de Klerk et al. [4] applied the theory of matrix ∗-algebra to reduce the size of
a class of group symmetric SDPs. Instead of decomposing a given SDP into a block-
diagonal form by using its group symmetry, their method transforms the problem to an
equivalent SDP through a ∗-algebra isomorphism. We also refer to Kojima et al. [15]
as a paper where matrix ∗-algebra was studied in connection with SDPs. Jansson
et al. [11] brought group symmetries into equality-inequality constrained polynomial
optimization problems and their SDP relaxation. More recently, de Klerk and Sotirov
[5] dealt with quadratic assignment problems, and showed how to exploit their group
symmetries to reduce the size of their SDP relaxations (see Remark 5 for more details).

All existing studies [1,5,7,11] on group symmetric SDPs mentioned above assume
that the algebraic structure such as group symmetry and matrix ∗-algebra behind a
given SDP is known in advance before computing a decomposition of the SDP. Such an

123

Algorithm for block-diagonalization with SDP application 127

algebraic structure arises naturally from the physical or geometrical structure under-
lying the SDP, and so the assumption is certainly practical and reasonable. When we
assume symmetry of an SDP (or the data matrices A1, A2, . . . , AN) with reference
to a group G, to be specific, we are in fact considering the class of SDPs that enjoy
the same group symmetry. As a consequence, the resulting transformation matrix P
is universal in the sense that it is valid for the decomposition of all SDPs belonging to
the class. This universality is often useful, but at the same time we should note that the
given SDP is just a specific instance in the class. A further decomposition may pos-
sibly be obtained by exploiting an additional algebraic structure, if any, which is not
captured by the assumed group symmetry but possessed by the given problem. Such
an additional algebraic structure is often induced from sparsity of the data matrices
of the SDP, as we see in the topology optimization problem of trusses in Sect. 5. The
possibility of a further decomposition due to sparsity will be illustrated in Sects. 2.2
and 5.1.

In the present paper, together with [21], we propose a numerical method for find-
ing a finest simultaneous block-diagonal decomposition of a finite number of n × n
real matrices A1, A2, . . . , AN . The method does not require any algebraic structure
to be known in advance, and is based on numerical linear algebraic computations
such as eigenvalue computation. It is free from group representation theory or matrix
∗-algebra during its execution, although its validity relies on matrix ∗-algebra theory.
This main feature of our method makes it possible to compute a finest block-diag-
onal decomposition by taking into account the underlying physical or geometrical
symmetry, the sparsity of the given matrices, and some other implicit or overlooked
symmetry.

Our method is based on the following ideas. We consider the matrix ∗-algebra T
generated by A1, A2, . . . , AN with the identity matrix, and make use of a well-known
fundamental fact (see Theorem 1) about the decomposition of T into simple compo-
nents and irreducible components. The key observation is that the decomposition into
simple components can be computed from the eigenvalue (or spectral) decomposi-
tion of a randomly chosen symmetric matrix in T . Once the simple components are
identified, the decomposition into irreducible components can be obtained by “local”
coordinate changes within each eigenspace, to be explained in Sect. 3. In the present
paper we present the main issues of the proposed approach by considering a special
case where (i) the given matrices A1, A2, . . . , AN are symmetric and (ii) each irre-
ducible component of T is isomorphic to a full matrix algebra of some order (i.e., of
type R to be defined in Sect. 3.1). The general case, technically more involved, will
be covered by the companion paper [21].

This paper is organized as follows. Section 2 illustrates our motivation of simulta-
neous block-diagonalization and the notion of the finest block-diagonal decomposi-
tion. Section 3 describes the theoretical background of our algorithm based on matrix
∗-algebra. In Sect. 4, we present an algorithm for computing the finest simultaneous
block-diagonalization, as well as a suggested practical variant thereof. Numerical
results are shown in Sect. 5; Sect. 5.1 gives illustrative small examples, Sect. 5.2
shows SDP problems arising from topology optimization of symmetric trusses, and
Sect. 5.3 deals with a quadratic SDP problem arising from topology optimization of
symmetric frames.

123

128 K. Murota et al.

2 Motivation

2.1 Decomposition of SDPs

In this section it is explained how simultaneous block diagonalization can be utilized
in SDP.

Let Ap ∈ Sn (p = 0, 1, . . . , m) and b = (bp)
m
p=1 ∈ R

m be given matrices and a
given vector, where Sn denotes the set of n ×n symmetric real matrices. The standard
form of a primal-dual pair of SDP problems can be formulated as

min A0 • X
s.t. Ap • X = bp, p = 1, . . . , m,

Sn � X � O;

⎫
⎬

⎭
(1)

max b�y

s.t. Z +
m∑

p=1

Ap yp = A0,

Sn � Z � O.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2)

Here X is the decision (or optimization) variable in (1), Z and yp (p = 1, . . . , m)

are the decision variables in (2), A • X = tr(AX) for symmetric matrices A and X ,
X � O means that X is positive semidefinite, and � denotes the transpose of a vector
or a matrix.

Suppose that A0, A1, . . . , Am are transformed into block-diagonal matrices by an
n × n orthogonal matrix P as

P� Ap P =
(

A(1)
p O

O A(2)
p

)

, p = 0, 1, . . . , m,

where A(1)
p ∈ Sn1 , A(2)

p ∈ Sn2 , and n1 + n2 = n. The problems (1) and (2) can be
reduced to

min A(1)
0 • X1 + A(2)

0 • X2

s.t. A(1)
p • X1 + A(2)

p • X2 = bp, p = 1, . . . , m,

Sn1 � X1 � O, Sn2 � X2 � O;

⎫
⎬

⎭
(3)

max b�y

s.t. Z1 +
m∑

p=1

A(1)
p yp = A(1)

0 ,

Z2 +
m∑

p=1

A(2)
p yp = A(2)

0 ,

Sn1 � Z1 � O, Sn2 � Z2 � O.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

123

Algorithm for block-diagonalization with SDP application 129

Note that the number of variables of (3) is smaller than that of (1). The constraint on
the n × n symmetric matrix in (2) is reduced to the constraints on the two matrices in
(4) with smaller sizes.

It is expected that the computational time required by the primal-dual interior-point
method is reduced significantly if the problems (1) and (2) can be reformulated as
(3) and (4). This motivates us to investigate a numerical technique for computing a
simultaneous block diagonalization in the form of

P� Ap P = diag (A(1)
p , A(2)

p , . . . , A(t)
p) =

t⊕

j=1

A(j)
p , A(j)

p ∈ Sn j , (5)

where Ap ∈ Sn (p = 0, 1, . . . , m) are given symmetric matrices. Here
⊕

designates
a direct sum of the summand matrices, which contains the summands as diagonal
blocks.

2.2 Group symmetry and additional structure due to sparsity

With reference to a concrete example, we illustrate the use of group symmetry and
also the possibility of a finer decomposition based on an additional algebraic structure
due to sparsity.

Consider an n × n matrix of the form

A =

⎡

⎢
⎢
⎣

B E E C
E B E C
E E B C

C� C� C� D

⎤

⎥
⎥
⎦ (6)

with an nB × nB symmetric matrix B ∈ SnB and an nD × nD symmetric matrix
D ∈ SnD. Obviously we have A = A1 + A2 + A3 + A4 with

A1 =

⎡

⎢
⎢
⎣

B O O O
O B O O
O O B O
O O O O

⎤

⎥
⎥
⎦ , A2 =

⎡

⎢
⎢
⎣

O O O C
O O O C
O O O C

C� C� C� O

⎤

⎥
⎥
⎦ , (7)

A3 =

⎡

⎢
⎢
⎣

O O O O
O O O O
O O O O
O O O D

⎤

⎥
⎥
⎦ , A4 =

⎡

⎢
⎢
⎣

O E E O
E O E O
E E O O
O O O O

⎤

⎥
⎥
⎦ . (8)

Let P be an n × n orthogonal matrix defined by

P =

⎡

⎢
⎢
⎣

InB/
√

3 O InB/
√

2 InB/
√

6
InB/

√
3 O −InB/

√
2 InB/

√
6

InB/
√

3 O O −2InB/
√

6
O InD O O

⎤

⎥
⎥
⎦ , (9)

123

130 K. Murota et al.

where InB and InD denote identity matrices of orders nB and nD, respectively. With
this P the matrices Ap are transformed to block-diagonal matrices as

P� A1 P =

⎡

⎢
⎢
⎣

B O O O
O O O O
O O B O
O O O B

⎤

⎥
⎥
⎦ =

[
B O
O O

]

⊕ B ⊕ B, (10)

P� A2 P =

⎡

⎢
⎢
⎣

O
√

3C O O√
3C� O O O
O O O O
O O O O

⎤

⎥
⎥
⎦ =

[
O

√
3C√

3C� O

]

⊕ O ⊕ O, (11)

P� A3 P =

⎡

⎢
⎢
⎣

O O O O
O D O O
O O O O
O O O O

⎤

⎥
⎥
⎦ =

[
O O
O D

]

⊕ O ⊕ O, (12)

P� A4 P =

⎡

⎢
⎢
⎣

2E O O O
O O O O
O O −E O
O O O −E

⎤

⎥
⎥
⎦ =

[
2E O
O O

]

⊕ (−E) ⊕ (−E). (13)

Note that the partition of P is not symmetric for rows and columns; we have (nB, nB,

nB, nD) for row-block sizes and (nB, nD, nB, nB) for column-block sizes. As is shown
in (10)–(13), A1, A2, A3 and A4 are decomposed simultaneously in the form of (5)
with t = 3, n1 = nB + nD, and n2 = n3 = nB. Moreover, the second and third blocks
coincide, i.e., A(2)

p = A(3)
p , for each p.

The decomposition described above coincides with the standard decomposition
[22,26] for systems with group symmetry. The matrices Ap above are symmetric with
respect to S3, the symmetric group of order 3! = 6, in that

T (g)� ApT (g) = Ap, ∀g ∈ G, ∀p (14)

holds for G = S3. Here the family of matrices T (g), indexed by elements of G,
is an orthogonal matrix representation of G in general. In the present example, the
S3-symmetry formulated in (14) is equivalent to

T �
i ApTi = Ap, i = 1, 2, p = 1, 2, 3, 4

with

T1 =

⎡

⎢
⎢
⎣

O InB O O
InB O O O
O O InB O
O O O InD

⎤

⎥
⎥
⎦ , T2 =

⎡

⎢
⎢
⎣

O InB O O
O O InB O
InB O O O
O O O InD

⎤

⎥
⎥
⎦ .

123

Algorithm for block-diagonalization with SDP application 131

According to group representation theory, a simultaneous block-diagonal decompo-
sition of Ap is obtained through the decomposition of the representation T into irre-
ducible representations. In the present example, we have

P�T1 P =

⎡

⎢
⎢
⎣

InB O O O
O InD O O
O O −InB O
O O O InB

⎤

⎥
⎥
⎦ , (15)

P�T2 P =

⎡

⎢
⎢
⎣

InB O O O
O InD O O
O O −InB/2

√
3InB/2

O O −√
3InB/2 −InB/2

⎤

⎥
⎥
⎦ , (16)

where the first two blocks correspond to the unit (or trivial) representation (with
multiplicity nB + nD) and the last two blocks to the two-dimensional irreducible rep-
resentation (with multiplicity nB).

The transformation matrix P in (9) is universal in the sense that it brings any
matrix A satisfying T �

i ATi = A for i = 1, 2 into the same block-diagonal form.
Put otherwise, the decomposition given in (10)–(13) is the finest possible decompo-
sition that is valid for the class of matrices having the S3-symmetry. It is noted in this
connection that the underlying group G, as well as its representation T (g), is often
evident in practice, reflecting the geometrical or physical symmetry of the problem in
question.

The universality of the decomposition explained above is certainly a nice feature
of the group-theoretic method, but what we need is the decomposition of a single
specific instance of a set of matrices. For example suppose that E = O in (6). Then
the decomposition in (10)–(13) is not the finest possible, but the last two identical
blocks, i.e., A(2)

p and A(3)
p , can be decomposed further into diagonal matrices by the

eigenvalue (or spectral) decomposition of B. Although this example is too simple to
be convincing, it is sufficient to suggest the possibility that a finer decomposition may
possibly be obtained from an additional algebraic structure that is not ascribed to the
assumed group symmetry. Such an additional algebraic structure often stems from
sparsity, as is the case with the topology optimization problem of trusses treated in
Sect. 5.2.

Mathematically, such an additional algebraic structure could also be described as
a group symmetry by introducing a larger group. This larger group, however, would
be difficult to identify in practice, since it is determined as a result of the interac-
tion between the underlying geometrical or physical symmetry and other factors,
such as sparsity and parameter dependence. The method of block-diagonalization
proposed here will automatically exploit such algebraic structure in the course of
numerical computation. Numerical examples in Sect. 5.1 will demonstrate that the pro-
posed method can cope with different kinds of additional algebraic structures for the
matrix (6).

123

132 K. Murota et al.

3 Mathematical basis

We introduce some mathematical facts that will serve as a basis for our algorithm.

3.1 Matrix ∗-algebras

Let R, C and H be the real number field, the complex field, and the quaternion field,
respectively. The quaternion field H is a vector space {a+ıb+jc+kd : a, b, c, d ∈ R}
over R with basis 1, ı, j and k, equipped with the multiplication defined as follows:

ı = jk = −kj, j = kı = −ık, k = ıj = −j ı, ı2 = j2 = k2 = −1

and for all α, β, γ, δ ∈ R and x, y, u, v ∈ H,

(αx + βy)(γ u + δv) = αγ xu + αδxv + βγ yu + βδyv.

For a quaternion h = a+ıb+jc+kd, its conjugate is defined as h̄ = a−ıb−jc−kd,
and the norm of h is defined as |h| =

√
hh̄ =

√
h̄h = √

a2 + b2 + c2 + d2. We can
consider C as a subset of H by identifying the generator ı of the quaternion field H

with the imaginary unit of the complex field C.
Let Mn denote the set of n × n real matrices over R. A subset T of Mn is said to

be a ∗-subalgebra (or a matrix ∗-algebra) over R if In ∈ T and

A, B ∈ T ;α, β ∈ R
⇒ αA + βB, AB, A� ∈ T . (17)

Obviously, Mn itself is a matrix ∗-algebra. There are two other basic matrix ∗-alge-
bras: the real representation of complex matrices Cn ⊂ M2n defined by

Cn =

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

C(z11) · · · C(z1n)
...

. . .
...

C(zn1) · · · C(znn)

⎤

⎥
⎦ : z11, z12, . . . , znn ∈ C

⎫
⎪⎬

⎪⎭

with

C(a + ıb) =
[

a −b
b a

]

,

and the real representation of quaternion matrices Hn ⊂ M4n defined by

Hn =

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

H(h11) · · · H(h1n)
...

. . .
...

H(hn1) · · · H(hnn)

⎤

⎥
⎦ : h11, h12, . . . , hnn ∈ H

⎫
⎪⎬

⎪⎭

123

Algorithm for block-diagonalization with SDP application 133

with

H(a + ıb + jc + kd) =

⎡

⎢
⎢
⎣

a −b −c −d
b a −d c
c d a −b
d −c b a

⎤

⎥
⎥
⎦ .

For two matrices A and B, their direct sum, denoted as A ⊕ B, is defined as

A ⊕ B =
[

A O
O B

]

,

and their tensor product, denoted as A ⊗ B, is defined as

A ⊗ B =
⎡

⎢
⎣

a11 B · · · a1n B
...

. . .
...

an1 B · · · ann B

⎤

⎥
⎦ ,

where A is assumed to be n×n. Note that A⊗B = ��(B⊗A)� for some permutation
matrix �.

We say that a matrix ∗-algebra T is simple if T has no ideal other than {O} and T
itself, where an ideal of T means a submodule I of T such that

A ∈ T , B ∈ I
⇒ AB, B A ∈ I.

Here it should be noted that T can be regarded as a R-module.
A linear subspace W of R

n is said to be invariant with respect to T , or T -invariant,
if AW ⊆ W for every A ∈ T . We say that T is irreducible if no T -invariant subspace
other than {0} and R

n exists. It is mentioned that Mn , Cn and Hn are typical examples
of irreducible matrix ∗-algebras. If T is irreducible, it is simple (cf. Lemma A.1).

We say that matrix ∗-algebras T1 and T2 are isomorphic if there exists a bijection
φ from T1 to T2 with the following properties:

φ(αA + βB) = αφ(A) + βφ(B), φ(AB) = φ(A)φ(B), φ(A�) = φ(A)�.

If T1 and T2 are isomorphic, we write T1 � T2. For a matrix ∗-algebra T and an
orthogonal matrix P , the set

P�T P = {P� AP : A ∈ T }

forms another matrix ∗-algebra isomorphic to T . For a matrix ∗-algebra T ′, the set

T = {diag (B, B, . . . , B) : B ∈ T ′}

forms another matrix ∗-algebra isomorphic to T ′.

123

134 K. Murota et al.

From a standard result of the theory of matrix ∗-algebra (e.g., [31, Chapter X])
we can see the following structure theorem for a matrix ∗-subalgebra over R. This
theorem is stated in [15, Theorem 5.4] with a proof, but, in view of its fundamental
role in this paper, we give an alternative proof in Appendix.

Theorem 1 Let T be a ∗-subalgebra of Mn over R.

(A) There exist an orthogonal matrix Q̂ ∈ Mn and simple ∗-subalgebras T j of Mn̂ j

for some n̂ j (j = 1, 2, . . . ,) such that

Q̂�T Q̂ = {diag (S1, S2, . . . , S) : S j ∈ T j (j = 1, 2, . . . ,)}.

(B) If T is simple, there exist an orthogonal matrix P ∈ Mn and an irreducible
∗-subalgebra T ′ of Mn̄ for some n̄ such that

P�T P = {diag (B, B, . . . , B) : B ∈ T ′}.

(C) If T is irreducible, there exists an orthogonal matrix P ∈ Mn such that
P�T P = Mn, Cn/2 or Hn/4.

The three cases in Theorem 1(C) above will be referred to as case R, case C or case
H, according to whether T � Mn , T � Cn/2 or T � Hn/4. We also speak of type R,
type C or type H for an irreducible matrix ∗-algebra.

It follows from the above theorem that, with a single orthogonal matrix P , all the
matrices in T can be transformed simultaneously to a block-diagonal form as

P� AP =
	⊕

j=1

m̄ j⊕

i=1

B j =
	⊕

j=1

(Im̄ j ⊗ B j) (18)

with B j ∈ T ′
j , where T ′

j denotes the irreducible ∗-subalgebra corresponding to the
simple subalgebra T j ; we have T ′

j = Mn̄ j , Cn̄ j /2 or Hn̄ j /4 for some n̄ j , where the
structural indices 	, n̄ j , m̄ j and the algebraic structure of T ′

j for j = 1, . . . , 	 are
uniquely determined by T . It may be noted that n̂ j in Theorem 1 (A) is equal to m̄ j n̄ j

in the present notation. Conversely, for any choice of B j ∈ T ′
j for j = 1, . . . , 	, the

matrix of (18) belongs to P�T P .
We denote by

R
n =

	⊕

j=1

U j (19)

the decomposition of R
n that corresponds to the simple components. In other words,

U j = Im(Q̂ j) for the n × n̂ j submatrix Q̂ j of Q̂ that corresponds to T j in
Theorem 1 (A). Although the matrix Q̂ is not unique, the subspace U j is determined
uniquely and dim U j = n̂ j = m̄ j n̄ j for j = 1, . . . , 	.

123

Algorithm for block-diagonalization with SDP application 135

In the present paper we consider the case where

(i) A1, A2, . . . , AN are symmetric matrices, and (20)

(ii) Each irreducible component of T is of type R. (21)

By so doing we can present the main ideas of the proposed approach more clearly with-
out involving complicating technical issues. An algorithm that works in the general
case will be given in the companion paper [21].

Remark 1 Case R seems to be the primary case in engineering applications. For
instance the Td-symmetric truss treated in Sect. 5.2 falls into this category. When
the ∗-algebra T is given as the family of matrices invariant to a group G as T =
{A | T (g)� AT (g) = A, ∀g ∈ G} for some orthogonal representation T of G, case
R is guaranteed if every real-irreducible representation of G is absolutely irreducible
(i.e., irreducible as a representation over C). Dihedral groups and symmetric groups,
appearing often in applications, have this property. The achiral tetrahedral group Td
is also such a group. Cyclic groups, also common in applications, fail to have this
property.

Remark 2 Throughout this paper we assume that the underlying field is the field R

of real numbers. In particular, we consider SDP problems (1) and (2) defined by real
symmetric matrices Ap (p = 0, 1, . . . , m), and accordingly the ∗-algebra T generated
by these matrices over R. An alternative approach is to formulate everything over the
field C of complex numbers, as, e.g., in [29]. This possibility is discussed in Sect. 6.

3.2 Simple components from eigenspaces

Let A1, . . . , AN ∈ Sn be n × n symmetric real matrices, and T be the ∗-subalgebra
over R generated by {In, A1, . . . , AN }. Note that (18) holds for every A ∈ T if and
only if (18) holds for A = Ap for p = 1, . . . , N .

A key observation for our algorithm is that the decomposition (19) into simple
components can be computed from the eigenvalue (or spectral) decomposition of a
single matrix A in T ∩ Sn if A is sufficiently generic with respect to eigenvalues.

Let A be a symmetric matrix in T , α1, . . . , αk be the distinct eigenvalues of A
with multiplicities denoted as m1, . . . , mk , and Q = [Q1, . . . , Qk] be an orthogonal
matrix consisting of the eigenvectors, where Qi is an n × mi matrix for i = 1, . . . , k.
Then we have

Q� AQ = diag (α1 Im1 , . . . , αk Imk). (22)

Put K = {1, . . . , k} and for i ∈ K define Vi = Im(Qi), which is the eigenspace
corresponding to αi .

Let us say that A ∈ T ∩ Sn is generic in eigenvalue structure (or simply generic)
if all the matrices B1, . . . , B	 appearing in the decomposition (18) of A are free from
multiple eigenvalues and no two of them share a common eigenvalue. For a generic
matrix A the number k of distinct eigenvalues is equal to

∑	
j=1 n̄ j and the list (multiset)

123

136 K. Murota et al.

of their multiplicities {m1, . . . , mk} is the union of n̄ j copies of m̄ j over j = 1, . . . , 	.
It is emphasized that the genericity is defined with respect to T (and not to Mn).

The eigenvalue decomposition of a generic A is consistent with the decomposition
(19) into simple components of T , as follows.

Proposition 1 Let A ∈ T ∩ Sn be generic in eigenvalue structure. For any i ∈
{1, . . . , k} there exists j ∈ {1, . . . , 	} such that Vi ⊆ U j . Hence there exists a parti-
tion of K = {1, . . . , k} into 	 disjoint subsets:

K = K1 ∪ · · · ∪ K	 (23)

such that

U j =
⊕

i∈K j

Vi , j = 1, . . . , 	. (24)

Note that mi = m̄ j for i ∈ K j and |K j | = n̄ j for j = 1, . . . , 	.
The partition (23) of K can be determined as follows. Let ∼ be the equivalence

relation on K defined as the symmetric and transitive closure of the binary relation:

i ∼ i ′ ⇐⇒ ∃p (1 ≤ p ≤ N) : Q�
i Ap Qi ′ �= O, (25)

where i ∼ i for all i ∈ K by convention.

Proposition 2 The partition (23) coincides with the partition of K into equivalence
classes induced by ∼.

Proof This is not difficult to see from the general theory of matrix ∗-algebra, but a
proof is given here for completeness. Denote by {L1, . . . , L	′ } the equivalence classes
with respect to ∼.

If i ∼ i ′, then Q�
i Ap Qi ′ �= O for some p. This means that for any I ⊆ K with

i ∈ I and i ′ ∈ K \ I , the subspace
⊕

i ′′∈I Vi ′′ is not invariant under Ap. Hence Vi ′
must be contained in the same simple component as Vi . Therefore each L j must be
contained in some K j ′ .

To show the converse, define a matrix Q̃ j = (Qi | i ∈ L j), which is of size
n ×∑

i∈L j
mi , and an n × n matrix E j = Q̃ j Q̃�

j for j = 1, . . . , 	′. Each matrix E j

belongs to T , as shown below, and it is idempotent (i.e., E j
2 = E j) and E1 + · · · +

E	′ = In . On the other hand, for distinct j and j ′ we have Q̃�
j Ap Q̃ j ′ = O for all

p, and hence Q̃�
j M Q̃ j ′ = O for all M ∈ T . This implies that E j M = M E j for all

M ∈ T . Therefore Im(E j) is a union of simple components, and hence L j is a union
of some K j ′’s.

It remains to show that E j ∈ T . Since αi ’s are distinct, for any real numbers
u1, . . . , uk there exists a polynomial f such that f (αi) = ui for i = 1, . . . , k. Let f j

be such f for (u1, . . . , uk) defined as ui = 1 for i ∈ L j and ui = 0 for i ∈ K \ L j .
Then E j = Q̃ j Q̃�

j = Q · f j (diag (α1 Im1 , . . . , αk Imk))·Q� = Q · f j (Q� AQ)·Q� =
f j (A). This shows E j ∈ T . ��

123

Algorithm for block-diagonalization with SDP application 137

A generic matrix A can be obtained as a random linear combination of generators,
as follows. For a real vector r = (r1, . . . , rN) put

A(r) = r1 A1 + · · · + rN AN .

We denote by span{· · · } the set of linear combinations of the matrices in the braces.

Proposition 3 If span{In, A1, . . . , AN } = T ∩ Sn, there exists an open dense subset
R of R

N such that A(r) is generic in eigenvalue structure for every r ∈ R.

Proof Let Bpj denote the matrix B j in the decomposition (18) of A = Ap for p = 1,

. . . , N . For j = 1, . . . , 	 define f j (λ) = f j (λ; r) = det(λI −(r1 B1 j +· · ·+rN BN j)),
which is a polynomial in λ, r1, . . . , rN . By the assumption on the linear span of
generators, f j (λ) is free from multiple roots for at least one r ∈ R

N , and it has a
multiple root only if r lies on the algebraic set, say, � j defined by the resultant of
f j (λ) and f ′

j (λ). For distinct j and j ′, f j (λ) and f j ′(λ) do not share a common root

for at least one r ∈ R
N , and they have a common root only if r lies on the alge-

braic set, say, � j j ′ defined by the resultant of f j (λ) and f j ′(λ). Then we can take
R = R

N \ [(∪ j� j
) ∪ (∪ j, j ′� j j ′

)]
. ��

We may assume that the coefficient vector r is normalized, for example, to‖r‖2 = 1,

where ‖r‖2 =
√∑N

p=1 rp
2. Then the above proposition implies that A(r) is generic

for almost all values of r , or with probability one if r is chosen at random. It should
be clear that we can adopt any normalization scheme (other than ‖r‖2 = 1) for this
statement.

3.3 Transformation for irreducible components

Once the transformation matrix Q for the eigenvalue decomposition of a generic
matrix A is known, the transformation P for T can be obtained through “local” trans-
formations within eigenspaces corresponding to distinct eigenvalues, followed by a
“global” permutation of rows and columns.

Proposition 4 Let A ∈ T ∩ Sn be generic in eigenvalue structure, and Q� AQ =
diag (α1 Im1 , . . . , αk Imk) be the eigenvalue decomposition as in (22). Then the trans-
formation matrix P in (18) can be chosen in the form of

P = Q · diag (P1, . . . , Pk) · � (26)

with orthogonal matrices Pi ∈ Mmi for i = 1, . . . , k, and a permutation matrix
� ∈ Mn.

Proof For simplicity of presentation we focus on a simple component, which is equiv-
alent to assuming that for each A′ ∈ T we have P� A′P = Im̄⊗B ′ for some B ′ ∈ Mk ,
where m̄=m1 =· · ·=mk . Since P may be replaced by P(Im̄⊗S) for any orthogonal S,
it may be assumed further that P� AP = Im̄ ⊗ D, where D = diag (α1, . . . , αk), for

123

138 K. Murota et al.

the particular generic matrix A. Hence �P� AP�� = D ⊗ Im̄ for a permutation
matrix �. Comparing this with Q� AQ = D ⊗ Im̄ and noting that αi ’s are distinct,
we see that

P�� = Q · diag (P1, . . . , Pk)

for some m̄ × m̄ orthogonal matrices P1, . . . , Pk . This gives (26). ��

4 Algorithm for simultaneous block-diagonalization

On the basis of the theoretical considerations in Sect. 3, we propose in this section
an algorithm for simultaneous block-diagonalization of given symmetric matrices
A1, . . . , AN ∈ Sn by an orthogonal matrix P:

P� Ap P =
	⊕

j=1

m̄ j⊕

i=1

Bpj =
	⊕

j=1

(Im̄ j ⊗ Bpj), p = 1, . . . , N , (27)

where Bpj ∈ Mn̄ j for j = 1, . . . , 	 and p = 1, . . . , N . Our algorithm consists of two
parts corresponding to (A) and (B) of Theorem 1 for the ∗-subalgebra T generated
by {In, A1, . . . , AN }. The former (Sect. 4.1) corresponds to the decomposition of T
into simple components and the latter (Sect. 4.2) to the decomposition into irreducible
components. A practical variant of the algorithm is described in Sect. 4.3. Recall that
we assume (21).

4.1 Decomposition into simple components

We present here an algorithm for the decomposition into simple components. Algo-
rithm 1 below does not presume span{In, A1, . . . , AN } = T ∩ Sn , although its cor-
rectness relies on this condition.

Algorithm 1

Step 1: Generate random numbers r1, . . . , rN (with‖r‖2 = 1), and set A =
N∑

p=1

rp Ap.

Step 2: Compute the eigenvalues and eigenvectors of A. Let α1, . . . , αk be the dis-
tinct eigenvalues of A with their multiplicities denoted by m1, . . . , mk . Let
Qi ∈ R

n×mi be the matrix consisting of orthonormal eigenvectors corre-
sponding to αi , and define the matrix Q ∈ R

n×n by Q = (Qi | i =
1, . . . , k). This means that

Q� AQ = diag (α1 Im1 , . . . , αk Imk).

123

Algorithm for block-diagonalization with SDP application 139

Step 3: Put K = {1, . . . , k}, and let ∼ be the equivalence relation on K induced
from the binary relation:

i ∼ i ′ ⇐⇒ ∃p (1 ≤ p ≤ N) : Q�
i Ap Qi ′ �= O. (28)

Let

K = K1 ∪ · · · ∪ K	 (29)

be the partition of K consisting of the equivalence classes with respect
to ∼. Define matrices Q[K j] by

Q[K j] = (Qi | i ∈ K j), j = 1, . . . , 	,

and set

Q̂ = (Q[K1], . . . , Q[K]) .

Compute Q̂� Ap Q̂ (p = 1, . . . , N), which results in a simultaneous block-
diagonalization with respect to the partition (23).

Example 1 Suppose that the number of distinct eigenvalues of A is five, i.e., K =
{1, 2, 3, 4, 5}, and that the partition of K is obtained as K1 = {1, 2, 3}, K2 = {4}, and
K3 = {5}, where 	 = 3. Then A1, . . . , AN are decomposed simultaneously as

Q̂� Ap Q̂ =

m1 m2 m3 m4 m5

∗ ∗ ∗ O O
∗ ∗ ∗ O O
∗ ∗ ∗ O O
O O O ∗ O
O O O O ∗

(30)

for p = 1, . . . , N .

For the correctness of the above algorithm we have the following.

Proposition 5 If the matrix A generated in Step 1 is generic in eigenvalue structure,
the orthogonal matrix Q̂ constructed by Algorithm 1 gives the transformation matrix
Q̂ in Theorem 1 (A) for the decomposition of T into simple components.

Proof This follows from Propositions 1 and 2. ��
Proposition 3 implies that the matrix A in Step 1 is generic with probability one

if span{In, A1, . . . , AN } = T ∩ Sn . This condition, however, is not always satisfied
by the given matrices A1, . . . , AN . In such a case we can generate a basis of T ∩ Sn

as follows. First choose a linearly independent subset, say, B1 of {In, A1, . . . , AN }.
For k = 1, 2, . . . let Bk+1 (⊇ Bk) be a maximal linearly independent subset of {(AB+

123

140 K. Murota et al.

B A)/2 | A ∈ B1, B ∈ Bk}. If Bk+1 = Bk for some k, we can conclude that Bk is a basis
of T ∩ Sn . Note that the dimension of T ∩ Sn is equal to

∑	
j=1 n̄ j (n̄ j + 1)/2, which

is bounded by n(n + 1)/2. It is mentioned here that Sn is a linear space equipped with
an inner product A• B = tr(AB) and the Gram–Schmidt orthogonalization procedure
works.

Proposition 6 If a basis of T ∩ Sn is computed in advance, Algorithm 1 gives, with
probability one, the decomposition of T into simple components.

4.2 Decomposition into irreducible components

According to Theorem 1 (B), the block-diagonal matrices Q̂� Ap Q̂ obtained by
Algorithm 1 can further be decomposed. By construction we have Q̂ = Q�̂ for
some permutation matrix �̂. In the following we assume Q̂ = Q to simplify the
presentation.

By Proposition 4 this finer decomposition can be obtained through a transforma-
tion of the form (26), which consists of “local coordinate changes” by a family of
orthogonal matrices {P1, . . . , Pk}, followed by a permutation by �.

The orthogonal matrices {P1, . . . , Pk} should be chosen in such a way that if i, i ′ ∈
K j , then

P�
i Q�

i Ap Qi ′ Pi ′ = b(pj)
i i ′ Im̄ j (31)

for some b(pj)
i i ′ ∈ R for p = 1, . . . , N . Note that the solvability of this system of equa-

tions in Pi (i = 1, . . . , k) and b(pj)
i i ′ (i, i ′ = 1, . . . , k; j = 1, . . . , 	; p = 1, . . . , N)

is guaranteed by (27) and Proposition 4. Then with P̃ = Q · diag (P1, . . . , Pk) and
Bpj = (b(pj)

i i ′ | i, i ′ ∈ K j) we have

P̃� Ap P̃ =
	⊕

j=1

(Bpj ⊗ Im̄ j) (32)

for p = 1, . . . , N . Finally, we apply a permutation of rows and columns to obtain
(27).

Example 2 Recall Example 1. We consider the block-diagonalization of the first block
Â p = Q[K1]� Ap Q[K1] of (30), where m1 = m2 = m3 = 2 and K1 = {1, 2, 3}.
We first compute orthogonal matrices P1, P2 and P3 satisfying

diag (P1, P2, P3)
� · Â p · diag (P1, P2, P3) =

⎡

⎢
⎢
⎣

b(p1)
11 I2 b(p1)

12 I2 b(p1)
13 I2

b(p1)
21 I2 b(p1)

22 I2 b(p1)
23 I2

b(p1)
31 I2 b(p1)

32 I2 b(p1)
33 I2

⎤

⎥
⎥
⎦ .

123

Algorithm for block-diagonalization with SDP application 141

Then a permutation of rows and columns yields a block-diagonal form diag (Bp1, Bp1)

with Bp1 =
⎡

⎢
⎢
⎣

b(p1)
11 b(p1)

12 b(p1)
13

b(p1)
21 b(p1)

22 b(p1)
23

b(p1)
31 b(p1)

32 b(p1)
33

⎤

⎥
⎥
⎦.

The family of orthogonal matrices {P1, . . . , Pk} satisfying (31) can be computed as
follows. Recall from (28) that for i, i ′ ∈ K we have i ∼ i ′ if and only if Q�

i Ap Qi ′ �= O
for some p. It follows from (31) that Q�

i Ap Qi ′ �= O means that it is nonsingular.
Fix j with 1 ≤ j ≤ 	. We consider a graph G j = (K j , E j) with vertex set K j and

edge set E j = {(i, i ′) | i ∼ i ′}. This graph is connected by the definition of K j . Let
Tj be a spanning tree, which means that Tj is a subset of E j such that |Tj | = |K j |−1
and any two vertices of K j are connected by a path in Tj . With each (i, i ′) ∈ Tj we
can associate some p = p(i, i ′) such that Q�

i Ap Qi ′ �= O .
To compute {Pi | i ∈ K j }, take any i1 ∈ K j and put Pi1 = Im̄ j . If (i, i ′) ∈ Tj

and Pi has been determined, then let P̂i ′ = (Q�
i Ap Qi ′)−1 Pi with p = p(i, i ′), and

normalize it to Pi ′ = P̂i ′/‖q‖, where q is the first-row vector of P̂i ′ . Then Pi ′ is an
orthogonal matrix that satisfies (31). By repeating this we can obtain {Pi | i ∈ K j }.
Remark 3 A variant of the above algorithm for computing {P1, . . . , Pk} is suggested
here. Take a second random vector r ′ = (r ′

1, . . . , r ′
N), independently of r , to form

A(r ′) = r ′
1 A1 + · · · + r ′

N AN . For i, i ′ ∈ K j we have, with probability one, that
(i, i ′) ∈ E j if and only if Q�

i A(r ′)Qi ′ �= O . If Pi has been determined, we can

determine Pi ′ by normalizing P̂i ′ = (Q�
i A(r ′)Qi ′)−1 Pi to Pi ′ = P̂i ′/‖q‖, where q is

the first-row vector of P̂i ′ .

Remark 4 The proposed method relies on numerical computations to determine the
multiplicities of eigenvalues, which in turn determine the block-diagonal structures.
As such the method is inevitably faced with numerical noises due to rounding errors.
A scaling technique to remedy this difficulty is suggested in Remark 7 for truss opti-
mization problems.

Remark 5 The idea of using a random linear combination in constructing simultaneous
block-diagonalization can also be found in a recent paper of de Klerk and Sotirov [5].
Their method, called “block diagonalization heuristic” in Section 5.2 of [5], is different
from ours in two major points.

First, the method of [5] assumes explicit knowledge about the underlying group G,
and works with the representation matrices, denoted T (g) in (14). Through the eigen-
value (spectral) decomposition of a random linear combination of T (g) over g ∈ G,
the method finds an orthogonal matrix P such that P�T (g)P for g ∈ G are simulta-
neously block-diagonalized, just as in (15) and (16). Then G-symmetric matrices Ap,
satisfying (14), will also be block-diagonalized.

Second, the method of [5] is not designed to produce the finest possible decompo-
sition of the matrices Ap, as is recognized by the authors themselves. The constructed
block-diagonalization of T (g) is not necessarily the irreducible decomposition, and
this is why the resulting decomposition of Ap is not guaranteed to be finest possible.
We could, however, apply the algorithm of Sect. 4.2 of the present paper to obtain

123

142 K. Murota et al.

the irreducible decomposition of the representation T (g). Then, under the assumption
(21), the resulting decomposition of Ap will be the finest decomposition that can be
obtained by exploiting the G-symmetry.

Remark 6 Eberly and Giesbrecht [6] proposed an algorithm for the simple-component
decomposition of a separable matrix algebra (not a ∗-algebra) over an arbitrary infi-
nite field. Their algorithm is closely related to our algorithm in Sect. 3.2. In particular,
their “self-centralizing element” corresponds to our “generic element”. Their algo-
rithm, however, is significantly different from ours in two ways: (i) treating a general
algebra (not a ∗-algebra) it employs a transformation of the form S−1 AS with a non-
singular matrix S instead of an orthogonal transformation, and (ii) it uses companion
forms and factorization of minimum polynomials instead of eigenvalue decomposi-
tion. The decomposition into irreducible components, which inevitably depends on
the underlying field, is not treated in [6].

4.3 A practical variant of the algorithm

In Propositions 3 we have considered two technical conditions:

1. span{In, A1, . . . , AN } = T ∩ Sn ,
2. r ∈ R, where R is an open dense set,

to ensure genericity of A =∑N
p=1 rp Ap in eigenvalue structure. The genericity of A

guarantees, in turn, that our algorithm yields the finest simultaneous block-diagonal-
ization (see Proposition 5). The condition r ∈ R above can be met with probability
one through a random choice of r .

To meet the first condition we could generate a basis of T ∩ Sn in advance, as is
mentioned in Proposition 6. However, an explicit computation of a basis seems too
heavy to be efficient. It should be understood that the above two conditions are intro-
duced as sufficient conditions to avoid degeneracy in eigenvalues. By no means are
they necessary for the success of the algorithm. With this observation we propose the
following procedure as a practical variant of our algorithm.

We apply Algorithm 1 to the given family {A1, . . . , AN } to find an orthogonal
matrix Q and a partition K = K1 ∪ · · · ∪ K	. In general there is no guarantee that
this corresponds to the decomposition into simple components, but in any case Algo-
rithm 1 terminates without getting stuck. The algorithm does not hang up either, when
a particular choice of r does not meet the condition r ∈ R. Thus we can always go on
to the second stage of the algorithm for the irreducible decomposition.

Next, we are to determine a family of orthogonal matrices {P1, . . . , Pk} that sat-
isfies (31). This system of equations is guaranteed to be solvable if A is generic (see
Proposition 4). In general we may possibly encounter a difficulty of the following
kinds:

1. For some (i, i ′) ∈ Tj the matrix Q�
i Ap Qi ′ with p = p(i, i ′) is singular and hence

Pi ′ cannot be computed. This includes the case of a rectangular matrix, which is
demonstrated in Example 3 below.

2. For some p and (i, i ′) ∈ E j the matrix P�
i Q�

i Ap Qi ′ Pi ′ is not a scalar multiple
of the identity matrix.

123

Algorithm for block-diagonalization with SDP application 143

Such inconsistency is an indication that the decomposition into simple components
has not been computed correctly. Accordingly, if either of the above inconsistency
is detected, we restart our algorithm by adding some linearly independent matrices
of T ∩ Sn to the current set {A1, . . . , AN }. It is mentioned that the possibility exists,
though with probability zero, that r is chosen badly to yield a nongeneric A even when
span{In, A1, . . . , AN } = T ∩ Sn is true.

It is expected that we can eventually arrive at the correct decomposition after a
finite number of iterations. With probability one, the number of restarts is bounded
by the dimension of T ∩ Sn , which is O(n2). When it terminates, the modified algo-
rithm always gives a legitimate simultaneous block-diagonal decomposition of the
form (27).

There is some subtlety concerning the optimality of the obtained decomposition.
If a basis of T ∩ Sn is generated, the decomposition coincides, with probability one,
with the canonical finest decomposition of the ∗-algebra T . However, when the algo-
rithm terminates before it generates a basis of T ∩Sn , there is no theoretical guarantee
that the obtained decomposition is the finest possible. Nevertheless, it is very likely in
practice that the obtained decomposition coincides with the finest decomposition.

Example 3 Here is an example that requires an additional generator to be added.
Suppose that we are given

A1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 1
0 0 1 −1
0 1 −1 0

⎤

⎥
⎥
⎦ , A2 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0

⎤

⎥
⎥
⎦

and let T be the matrix ∗-algebra generated by {I4, A1, A2}. It turns out that the
structural indices in (27) are: 	 = 2, m̄1 = m̄2 = 1, n̄1 = 1 and n̄2 = 3. This
means that the list of eigenvalue multiplicities of T is {1, 1, 1, 1}. Note also that
dim(T ∩ S4) = n̄1(n̄1 + 1)/2 + n̄2(n̄2 + 1)/2 = 7.

For A(r) = r1 A1 + r2 A2 we have

A(r)

⎡

⎢
⎢
⎣

1 0
0 (r1 − r2)/c
0 r1/c
0 0

⎤

⎥
⎥
⎦ = (r1 + r2)

⎡

⎢
⎢
⎣

1 0
0 (r1 − r2)/c
0 r1/c
0 0

⎤

⎥
⎥
⎦ , (33)

where c = √
(r1 − r2)2 + r1

2. This shows that A(r) has a multiple eigenvalue r1 + r2
of multiplicity two, as well as two other simple eigenvalues. Thus for any r the list of
eigenvalue multiplicities of A(r) is equal to {2, 1, 1}, which differs from {1, 1, 1, 1}
for T .

The discrepancy in the eigenvalue multiplicities cannot be detected during the first
stage of our algorithm. In Step 2 we have k = 3, m1 = 2, m2 = m3 = 1. The
orthogonal matrix Q is partitioned into three submatrices Q1, Q2 and Q3, where Q1
(nonunique) may possibly be the 4 × 2 matrix shown in (33), and Q2 and Q3 consist

123

144 K. Murota et al.

of a single column. Since Q� Ap Q is of the form

Q� Ap Q =

⎡

⎢
⎢
⎣

1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎤

⎥
⎥
⎦

for p = 1, 2, we have 	 = 1 and K1 = {1, 2, 3} in Step 3. At this moment an incon-
sistency is detected, since m1 �= m2 inspite of the fact that i = 1 and i ′ = 2 belong to
the same block K1.

We restart the algorithm, say, with an additional generator

A3 = 1

2
(A1 A2 + A2 A1) = 1

2

⎡

⎢
⎢
⎣

2 0 0 0
0 2 1 1
0 1 0 0
0 1 0 −2

⎤

⎥
⎥
⎦

to consider Ã(r) = r1 A1 + r2 A2 + r3 A3 instead of A(r) = r1 A1 + r2 A2. Then Ã(r)

has four simple eigenvalues for generic values of r = (r1, r2, r3), and accordingly we
have {1, 1, 1, 1} as the list of eigenvalue multiplicities of Ã(r), which agrees with that
of T .

In Step 2 of Algorithm 1 we now have k = 4, m1 = m2 = m3 = m4 = 1. The
orthogonal matrix Q is partitioned into four 4 × 1 submatrices, and Q� Ap Q is of the
form

Q� Ap Q =

⎡

⎢
⎢
⎣

1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎤

⎥
⎥
⎦

for p = 1, 2, 3, from which we obtain K1 = {1}, K2 = {2, 3, 4} with 	 = 2 in Step
3. Thus we have arrived at the correct decomposition consisting of a 1 × 1 block and
a 3 × 3 block. Note that the correct decomposition is obtained in spite of the fact that
{I4, A1, A2, A3} does not span T ∩ S4.

5 Numerical examples

5.1 Effects of additional algebraic structures

It is demonstrated here that our method automatically reveals inherent algebraic struc-
tures due to parameter dependence as well as to group symmetry. The S3-symmetric
matrices A1, . . . , A4 in (7) and (8) are considered in three representative cases.
Case 1

B =
[

1 2
2 1

]

, C =
[

1
2

]

, D = [
1
]
, E =

[
3 1
1 2

]

,

123

Algorithm for block-diagonalization with SDP application 145

Case 2

B =
[

1 2
2 1

]

, C =
[

1
2

]

, D = [
1
]
, E =

[
3 1
1 3

]

,

Case 3

B =
[

1 2
2 1

]

, C =
[

1
1

]

, D = [
1
]
, E =

[
3 1
1 3

]

.

We have nB = 2 and nD = 1 in the notation of Sect. 2.2.
Case 1 is a generic case under S3-symmetry. The simultaneous block-diagonaliza-

tion is of the form

P� Ap P = Bp1 ⊕ (I2 ⊗ Bp2), p = 1, . . . , 4, (34)

with Bp1 ∈ M3, Bp2 ∈ M2; i.e., 	 = 2, m̄1 = 1, m̄2 = 2, n̄1 = 3, n̄2 = 2 in (27).
By (10)–(13), a possible choice of these matrices is

B11 =
[

B O
O O

]

, B21 =
[

O
√

3C√
3C� O

]

, B31 =
[

O O
O D

]

, B41 =
[

2E O
O O

]

,

and B12 = B, B22 = B32 = O , B42 = −E . Our implementation of the proposed
method yields the same decomposition but with different matrices. For instance, we
have obtained

B12 =
[−0.99954 −0.04297
−0.04297 2.99954

]

, B42 =
[−1.51097 0.52137

0.52137 −3.48903

]

.

Here it is noted that the obtained B12 and B42 are related to B and E as

[
B12 O
O B12

]

= P̃�
[

B O
O B

]

P̃,

[
B42 O
O B42

]

= P̃�
[−E O

O −E

]

P̃

for an orthogonal matrix P̃ expressed as P̃ =
[

P̃11 P̃12

P̃21 P̃22

]

with

P̃11 = −P̃22 =
[

0.12554 −0.12288
−0.12288 −0.12554

]

, P̃12 = P̃21 =
[

0.70355 −0.68859
−0.68859 −0.70355

]

.

123

146 K. Murota et al.

In Case 2 we have a commutativity relation B E = E B. This means that B and E
can be simultaneously diagonalized, and a further decomposition of the second factor
in (34) should result. Instead of (34) we have

P� Ap P = Bp1 ⊕ (I2 ⊗ Bp2) ⊕ (I2 ⊗ Bp3), p = 1, . . . , 4,

with Bp1 ∈ M3, Bp2 ∈ M1 and Bp3 ∈ M1; i.e., 	 = 3, m̄1 = 1, m̄2 = m̄3 = 2,
n̄1 = 3, n̄2 = n̄3 = 1 in (27). The proposed method yields B12 = [3.00000],
B42 = [−4.00000], B13 = [−1.00000] and B43 = [−2.00000], successfully detect-
ing the additional algebraic structure caused by B E = E B.

Case 3 contains a further degeneracy that the column vector of C is an eigenvector
of B and E . This splits the 3 × 3 block into two, and we have

P� Ap P = Bp1 ⊕ Bp4 ⊕ (I2 ⊗ Bp2) ⊕ (I2 ⊗ Bp3), p = 1, . . . , 4,

with Bp1 ∈ M2, Bpj ∈ M1 for j = 2, 3, 4; i.e., 	 = 4, m̄1 = m̄4 = 1, m̄2 = m̄3 = 2,
n̄1 = 2, n̄2 = n̄3 = n̄4 = 1 in (27). For instance, we have indeed obtained

B11 ⊕ B14 =
⎡

⎣
0.48288 1.10248 0
1.10248 2.51712 0

0 −1.00000

⎤

⎦ .

Also in this case the proposed method works, identifying the additional algebraic
structure through numerical computation.

The three cases are compared in Table 1.

5.2 Optimization of symmetric trusses

Use and significance of our method are illustrated here in the context of SDP for
truss design treated in [24]. Group-symmetry and sparsity arise naturally in truss opti-
mization problems [1,13]. It will be confirmed that the proposed method yields the
same decomposition as the group representation theory anticipates (Case 1 below),
and moreover, it gives a finer decomposition if the truss structure is endowed with an
additional algebraic structure due to sparsity (Case 2 below).

Table 1 Block-diagonalization
of S3-symmetric matrices in (7)
and (8)

Case 1 Case 2 Case 3

n̄ j m̄ j n̄ j m̄ j n̄ j m̄ j

j = 1 3 1 3 1 2 1

j = 4 — — — — 1 1

j = 2 2 2 1 2 1 2

j = 3 — — 1 2 1 2

123

Algorithm for block-diagonalization with SDP application 147

The optimization problem we consider here is as follow. An initial truss configura-
tion is given with fixed locations of nodes and members. Optimal cross-sectional areas,
minimizing total volume of the structure, are to be found subject to the constraint that
the eigenvalues of vibration are not smaller than a specified value.

To be more specific, let nd and nm denote the number of degrees of freedom of
displacements and the number of members of a truss, respectively. Let K ∈ Snd denote
the stiffness matrix, and MS ∈ Snd and M0 ∈ Snd the mass matrices for the structural
and nonstructural masses, respectively; see, e.g., [34] for the definitions of these matri-
ces. The i th eigenvalue �i of vibration and the corresponding eigenvector φi ∈ R

nd

are defined by

Kφi = �i (MS + M0)φi , i = 1, 2, . . . , nd. (35)

Note that, for a truss, K and MS can be written as

K =
nm
∑

j=1

K jη j , MS =
nm
∑

j=1

M jη j (36)

with sparse constant symmetric matrices K j and M j , where η j denotes the cross-sec-
tional area of the j th member. With the notation l = (l j) ∈ R

nm
for the vector of

member lengths and �̄ for the specified lower bound of the fundamental eigenvalue,
our optimization problem is formulated as

min
nm
∑

j=1

l jη j

s.t. �i ≥ �̄, i = 1, . . . , nd,

η j ≥ 0, j = 1, . . . , nm.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(37)

It is pointed out in [24] that this problem (37) can be reduced to the following dual
SDP (cf. (2)):

max −
nm
∑

j=1

l jη j

s.t.
nm
∑

j=1

(K j − �̄M j)η j − �̄M0 � O,

η j ≥ 0, j = 1, . . . , nm.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(38)

We now consider this SDP for the cubic truss shown in Fig. 1. The cubic truss
contains 8 free nodes, and hence nd = 24. As for the members we consider two cases:

Case 1: nm = 34 members including the dotted ones;
Case 2: nm = 30 members excluding the dotted ones.

123

148 K. Murota et al.

Fig. 1 A cubic (or
Td-symmetric) space truss

(1)

(2)
(3)

(4)

A regular tetrahedron is constructed inside the cube. The lengths of members forming
the edges of the cube are 2 m. The lengths of the members outside the cube are 1 m.
A nonstructural mass of 2.1 × 105 kg is located at each node indicated by a filled
circle in Fig. 1. The lower bound of the eigenvalues is specified as �̄ = 10.0. All the
remaining nodes are pin-supported (i.e., the locations of those nodes are fixed in the
three-dimensional space, while the rotations of members connected to those nodes are
not prescribed).

Thus, the geometry, the stiffness distribution, and the mass distribution of this truss
are all symmetric with respect to the geometric transformations by elements of (full
or achiral) tetrahedral group Td, which is isomorphic to the symmetric group S4. The
Td-symmetry can be exploited as follows.

First, we divide the index set of members {1, . . . , nm} into a family of orbits, say
Jp with p = 1, . . . , m, where m denotes the number of orbits. We have m = 4 in
Case 1 and m = 3 in Case 2, where representative members belonging to four different
orbits are shown as (1)–(4) in Fig. 1. It is mentioned in passing that the classification
of members into orbits is an easy task for engineers. Indeed, this is nothing but the
so-called variable-linking technique, which has often been employed in the literature
of structural optimization in obtaining symmetric structural designs [19].

Next, with reference to the orbits we aggregate the data matrices as well as the
coefficients of the objective function in (38) to Ap (p = 0, 1, . . . , m) and bp (p =
1, . . . , m), respectively, as

A0 = −�̄M0; Ap =
∑

j∈Jp

(−K j + �̄M j), bp =
∑

j∈Jp

l j , p = 1, . . . , m.

Then (38) can be reduced to

123

Algorithm for block-diagonalization with SDP application 149

Table 2 Block-diagonalization
of cubic truss optimization
problem

Case 1: m = 4 Case 2: m = 3

Block size Multiplicity Block size Multiplicity
n̄ j m̄ j n̄ j m̄ j

j = 1 2 1 2 1

j = 2 2 2 2 2

j = 3 2 3 2 3

j = 4 4 3 2 3

j = 5 – – 2 3

max −
m∑

p=1

bp yp

s.t. A0 −
m∑

p=1

Ap yp � O,

yp ≥ 0, p = 1, . . . , m

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(39)

as long as we are interested in a symmetric optimal solution, where yp = η j for
j ∈ Jp. Note that the matrices Ap (p = 0, 1, . . . , m) are symmetric in the sense
of (14) for G = Td. The two cases share the same matrices A1, A2, A3, and A0 is
proportional to the identity matrix.

The proposed method is applied to Ap (p = 0, 1, . . . , m) for their simultaneous
block-diagonalization. The practical variant described in Sect. 4.3 is employed. In
either case it has turned out that additional generators are not necessary, but random
linear combinations of the given matrices Ap (p = 0, 1, . . . , m) are sufficient to find
the block-diagonalization. The assumption (21) has turned out to be satisfied.

In Case 1 we obtain the decomposition into 1 + 2 + 3 + 3 = 9 blocks, one block
of size 2, two identical blocks of size 2, three identical blocks of size 3, and three
identical blocks of size 4, as summarized on the left of Table 2. This result conforms
with the group-theoretic analysis. The tetrahedral group Td, being isomorphic to S4,
has two one-dimensional irreducible representations, one two-dimensional irreduc-
ible representation, and two three-dimensional irreducible representations [22,26].
The block indexed by j = 1 corresponds to the unit representation, one of the one-
dimensional irreducible representations, while the block for the other one-dimen-
sional irreducible representation is missing. The block with j = 2 corresponds to
the two-dimensional irreducible representation, hence m̄2 = 2. Similarly, the blocks
with j = 3, 4 correspond to the three-dimensional irreducible representation, hence
m̄3 = m̄4 = 3.

In Case 2 sparsity plays a role to split the last block into two, as shown on the
right of Table 2. We now have 12 blocks in contrast to 9 blocks in Case 1. Recall
that the sparsity is due to the lack of the dotted members. It is emphasized that the
proposed method successfully captures the additional algebraic structure introduced
by sparsity.

123

150 K. Murota et al.

Remark 7 Typically, actual trusses are constructed by using steel members, where
the elastic modulus and the mass density of members are E = 200.0 GPa and ρ =
7.86 × 103 kg/m3, respectively. Note that the matrices K j and M j defining the SDP
problem (39) are proportional to E and ρ, respectively. In order to avoid numerical
instability in our block-diagonalization algorithm, E and ρ are scaled as E = 1.0 ×
10−2 GPa and ρ = 1.0 × 108 kg/m3, so that the largest eigenvalue in (35) becomes
sufficiently small. For example, if we choose the member cross-sectional areas as
η j = 10−2 m2 for j = 1, . . . , nm, the maximum eigenvalue is 1.59 × 104 rad2/s2

for steel members, which is natural from the mechanical point of view. In contrast, by
using the fictitious parameters mentioned above, the maximum eigenvalue is reduced
to 6.24 × 10−2 rad2/s2, and then our block-diagonalization algorithm can be applied
without any numerical instability. Note that the transformation matrix obtained by our
algorithm for block-diagonalization of A0, A1, . . . , Am is independent of the values of
E and ρ. Hence, it is recommended for numerical stability to compute transformation
matrices for the scaled matrices Ã0, Ã1, . . . , Ãm by choosing appropriate fictitious
values of E and ρ. It is easy to find a candidate of such fictitious values, because we
know that the maximum eigenvalue can be reduced by decreasing E and/or increasing
ρ. Then the obtained transformation matrices can be used to decompose the original
matrices A0, A1, . . . , Am defined with the actual material parameters.

5.3 Quadratic SDPs for symmetric frames

Effectiveness of our method is demonstrated here for the SOS–SDP relaxation of a
quadratic SDP arising from a frame optimization problem. Quadratic (or polynomial)
SDPs are known to be difficult problems, although they are, in principle, tractable
by means of SDP relaxations. The difficulty may be ascribed to two major factors:
(i) SDP relaxations tend to be large in size, and (ii) SDP relaxations often suffer from
numerical instability. The block-diagonalization method makes the size of the SDP
relaxation smaller, and hence mitigates the difficulty arising from the first factor.

The frame optimization problem with a specified fundamental eigenvalue �̄ can
be treated basically in the same way as the truss optimization problem in Sect. 5.2,
except that some nonlinear terms appear in the SDP problem.

First, we formulate the frame optimization problem in the form of (37), where
“η j ≥ 0” is replaced by “0 ≤ η j ≤ η̄ j ” with a given upper bound for η j . Recall that
η j represents the cross-sectional area of the j th element and nm denotes the number
of members. We choose η j (j = 1, . . . , nm) as the design variables.

As for the stiffness matrix K , we use the Euler–Bernoulli beam element [34] to
define

K =
nm
∑

j=1

K a
j η j +

nm
∑

j=1

K b
j ξ j , (40)

where K a
j and K b

j are sparse constant symmetric matrices, and ξ j is the moment of
inertia of the j th member. The mass matrix MS due to the structural mass remains the

123

Algorithm for block-diagonalization with SDP application 151

Fig. 2 A D6-symmetric plane
frame

WWW

same as in (36), being a linear function of η. Each member of the frame is assumed
to have a circular solid cross-section with radius r j . Then we have η j = πr2

j and

ξ j = 1
4πr4

j .
Just as (37) can be reduced to (38), our frame optimization problem can be reduced

to the following problem:

max −
nm
∑

j=1

l jη j

s.t.
1

4π

nm
∑

j=1

K b
j η

2
j +

nm
∑

j=1

(K a
j − �̄M j)η j − �̄M0 � O,

0 ≤ η j ≤ η̄ j , j = 1, . . . , nm,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(41)

which is a quadratic SDP. See [12] for details.
Suppose that the frame structure is endowed with geometric symmetry; Fig. 2 shows

an example with D6-symmetry. According to the symmetry the index set of the mem-
bers {1, . . . , nm} is partitioned into orbits {Jp | p = 1, . . . , m}. For symmetry of the
problem, η̄ j should be constant on each orbit Jp and we put dp = η̄ j for j ∈ Jp.
By the variable-linking technique, (41) is reduced to the following quadratic SDP:

max
m∑

p=1

bp yp

s.t. F0 −
m∑

p=1

Fp yp −
m∑

p=1

G p y2
p � O,

0 ≤ yp ≤ dp, p = 1, . . . , m,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(42)

123

152 K. Murota et al.

where F0 = −�̄M0 and

Fp =
∑

j∈Jp

(−K a
j + �̄M j), G p = − 1

4π

∑

j∈Jp

K b
j , bp = −

∑

j∈Jp

l j , p = 1 . . . , m.

Suppose further that an orthogonal matrix P is found that simultaneously block-
diagonalizes the coefficient matrices as

P�Fp P =
	⊕

j=1

(Im̄ j ⊗ F̃pj), p = 0, 1, . . . , m,

P�G p P =
	⊕

j=1

(Im̄ j ⊗ G̃ pj), p = 1, . . . , m.

Then the inequality F0 −∑m
p=1 Fp yp −∑m

p=1 G p y2
p � O in (42) is decomposed

into a set of smaller-sized quadratic matrix inequalities

F̃0 j −
m∑

p=1

F̃pj yp −
m∑

p=1

G̃ pj y2
p � O, j = 1, . . . , 	.

Then the problem (42) is rewritten equivalently to

max
m∑

p=1

bp yp

s.t. F̃0 j −
m∑

p=1

F̃pj yp −
m∑

p=1

G̃ pj y2
p � O, j = 1, . . . , 	,

0 ≤ yp ≤ dp, p = 1, . . . , m.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(43)

The original problem (42) can be regarded as a special case of (43) with 	 = 1.
We now briefly explain the SOS–SDP relaxation method [14], which we shall apply

to the quadratic SDP of (43). It is an extension of the SOS–SDP relaxation method of
Lasserre [20] for a polynomial optimization problem to a polynomial SDP. See also
[9,10,16].

We use the notation yα = yα1
1 yα2

2 · · · yαm
m for α ∈ Z

m+ and y = (y1, y2, . . . , ym)� ∈
R

m , where Z
m+ denotes the set of m-dimensional nonnegative integer vectors. An n×n

polynomial matrix means a polynomial in y with coefficients of n × n matrices, i.e.,
an expression like H(y) = ∑

α∈H Hα yα with a nonempty finite subset H of Z
m+

and a family of matrices Hα ∈ Mn indexed by α ∈ H. We refer to deg(H(y)) =
max

{∑m
p=1 αp | α ∈ H

}
as the degree of H(y). The set of n × n polynomial matri-

ces in y is denoted by Mn[y], whereas Sn[y] denotes the set of n × n symmetric
polynomial matrices, i.e., the set of H(y)’s with Hα ∈ Sn (α ∈ H). For n = 1, we

123

Algorithm for block-diagonalization with SDP application 153

have S1[y] = M1[y], which coincides with the set R[y] of polynomials in y with real
coefficients.

A polynomial SDP is an optimization problem defined in terms of a polynomial
a(y) ∈ R[y] and a number of symmetric polynomial matrices B j (y) ∈ Sn j [y] (j =
1, . . . , L) as

PSDP: min a(y) s.t. B j (y) � O, j = 1, . . . , L . (44)

We assume that PSDP has an optimal solution with a finite optimal value ζ ∗. The
quadratic SDP (43) under consideration is a special case of PSDP with L = 	 + 2m
and

B j (y) = F̃0 j −
m∑

p=1

F̃pj yp −
m∑

p=1

G̃ pj y2
p, j = 1, . . . , 	,

B	+p(y) = yp, B	+m+p(y) = dp − yp, p = 1, . . . , m.

PSDP is a nonconvex problem, and we shall resort to an SOS–SDP relaxation method.
We introduce SOS polynomials and SOS polynomial matrices. For each nonnega-

tive integer ω define

R[y]2ω =
{

k∑

i=1

gi (y)2 | gi (y) ∈ R[y],

deg(gi (y)) ≤ ω (i = 1, . . . , k) for some k

}

,

Mn[y]2ω =
{

k∑

i=1

Gi (y)�Gi (y) | Gi (y) ∈ Mn[y],

deg(Gi (y)) ≤ ω (i = 1, . . . , k) for some k

}

.

With reference to PSDP in (44) let ω0 = �deg(a(y))/2 , ω j = �deg(B j (y))/2 ,
and ωmax = max{ω j | j = 0, 1, . . . , L}, where �· means rounding-up to the nearest
integer. For ω ≥ ωmax, we consider an SOS optimization problem

SOS(ω): max ζ

s.t. a(y) −
L∑

j=1

W j (y) • B j (y) − ζ ∈ R[y]2ω,

W j (y) ∈ Mn j [y]2(ω−ω j)
, j = 1, . . . , L .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(45)

We call ω the relaxation order. Let ζω denote the optimal value of SOS(ω).
The sequence of SOS(ω) (with ω = ωmax, ωmax +1, . . .) serves as tractable convex

relaxation problems of PSDP. The following facts are known:

123

154 K. Murota et al.

Table 3 Computational results of quadratic SDP (43) for frame optimization

Quadratic SDP (43) (a) No symmetry (b) Symmetry (c) Symmetry
with m = 5 used used + sparsity used

Number of SDP blocks 	 1 6 8
SDP block sizes 57 3, 4, 5, 7 1×6, 2, 2×6, 3,

9×2, 10×2 3, 5, 6×2, 7×2
SDP(ω) with ω = 3
Size of A(ω) 461×1,441,267 461×131,938 461×68,875
Number of SDP blocks 12 17 19
Maximum SDP block size 1,197×1,197 210×210 147×147
Average SDP block size 121.9×121.9 62.6×62.6 46.1×46.1
Relative error εobj 6.2 × 10−9 4.7 × 10−10 2.4 × 10−9

cpu time (s) for SDP(ω) 2417.6 147.4 59.5

(i) ζω ≤ ζω+1 ≤ ζ ∗ for ω ≥ ωmax, and ζω converges to ζ ∗ as ω → ∞ under a
moderate assumption on PSDP.

(ii) SOS(ω) can be solved numerically as an SDP, which we will write in SeDuMi
format as

SDP(ω): min c(ω)�x s.t. A(ω)x = b(ω), x � 0.

Here c(ω), b(ω) and denote vectors, and A(ω) a matrix. We note that their
construction depend on not only on the data polynomial matrices B j (y) (j =
1, . . . , L), but also the relaxation order ω.

(iii) The sequence of solutions of SDP(ω) provides approximate optimal solutions of
PSDP with increasing accuracy under the moderate assumption.

(iv) The size of A(ω) increases as we take larger ω.
(v) The size of A(ω) increases as the size n j of B j (y) gets larger (j = 1, . . . , L).

See [14,16] for more details about the SOS–SDP relaxation method for polynomial
SDP.

Now we are ready to present our numerical results for the frame optimization prob-
lem. We consider the plane frame in Fig. 2 with 48 beam elements (nm = 48), which
is symmetric with respect to the dihedral group D6. A uniform nonstructural concen-
trated mass is located at each free node. The index set of members {1, . . . , nm} is
divided into five orbits J1, . . . , J5. In the quadratic SDP formulation (42) we have
m = 5 and the size of the matrices Fp and G p is 3 × 19 = 57. We compare three
cases:

(a) Neither symmetry nor sparsity is exploited.
(b) D6-symmetry is exploited, but sparsity is not.
(c) Both D6-symmetry and sparsity are exploited by the proposed method.

In our computation we used a modified version of SparsePOP [30] to generate an
SOS–SDP relaxation problem from the quadratic SDP (43), and then solved the relax-
ation problem by SeDuMi 1.1 [25,27] on a 2.66 GHz Dual-Core Intel Xeon cpu with
4GB memory.

123

Algorithm for block-diagonalization with SDP application 155

Table 3 shows the numerical data in three cases (a), (b) and (c). In case (a) we have
a single (= 1) quadratic inequality of size 57 in the quadratic SDP (43). In case (b)
we have 	 = 6 distinct blocks of sizes 3, 4, 5, 7, 9 and 10 in (43), where 9 × 2 and
10 × 2 in the table mean that the blocks of sizes 9 and 10 appear with multiplicity 2.
This is consistent with the group-theoretic fact that D6 has four one-dimensional and
two two-dimensional irreducible representations. In case (c) we have 	 = 8 quadratic
inequalities of sizes 1, 2, 2, 3, 3, 5, 6 and 7 in (43).

In all cases, SDP(ω) with the relaxation order ω = 3 attains an approximate optimal
solution of the quadratic SDP (43) with high accuracy. The accuracy is monitored by
εobj, which is a computable upper bound on the relative error |ζ ∗ − ζω|/|ζω| in the
objective value. The computed solutions to the relaxation problem SDP(ω) turned out
to be feasible solutions to (43).

We observe that our block-diagonalization works effectively. It considerably
reduces the size of the relaxation problem SDP(ω), which is characterized in terms of
factors such as the size of A(ω), the maximum SDP block size and the average SDP
block size in Table 3. Smaller values in these factors in cases (b) and (c) than in case (a)
contribute to discreasing the cpu time for solving SDP(ω) by SeDuMi. The cpu time
in cases (b) and (c) is, respectively, 147.4/2417.6 ≈ 1/16 and 59.5/2417.6 ≈ 1/40
of that in case (a). Thus our block-diagonalization method significantly enhances the
computational efficiency.

6 Discussion

Throughout this paper we have assumed that the underlying field is the field R of real
numbers. Here we discuss an alternative approach to formulate everything over the
field C of complex numbers. We denote by Mn(C) the set of n × n complex matrices
and consider a ∗-algebra T over C. It should be clear that T is a ∗-algebra over C

if it is a subset of Mn(C) such that In ∈ T and it satisfies (17) with “α, β ∈ R”
replaced by “α, β ∈ C” and “A�” by “A∗” (the conjugate transpose of A). Simple
and irreducible ∗-algebras over C are defined in an obvious way.

The structure theorem for a ∗-algebra over C takes a simpler form than Theorem 1
as follows [31] (see also [2,8]).

Theorem 2 Let T be a ∗-subalgebra of Mn(C).

(A) There exist a unitary matrix Q̂ ∈ Mn(C) and simple ∗-subalgebras T j of
Mn̂ j (C) for some n̂ j (j = 1, 2, . . . ,) such that

Q̂∗T Q̂ = {diag (S1, S2, . . . , S) : S j ∈ T j (j = 1, 2, . . . ,)}.

(B) If T is simple, there exist a unitary matrix P ∈ Mn(C) and an irreducible
∗-subalgebra T ′ of Mn̄(C) for some n̄ such that

P∗T P = {diag (B, B, . . . , B) : B ∈ T ′}.

(C) If T is irreducible, then T = Mn(C).

123

156 K. Murota et al.

The proposed algorithm can be adapted to the complex case to yield the decompo-
sition stated in this theorem. Note that the assumption like (21) is not needed in the
complex case because of the simpler statement in (C) above.

When given real symmetric matrices Ap we could regard them as Hermitian matri-
ces and apply the decomposition over C. The resulting decomposition is at least as fine
as the one over R, since unitary transformations contain orthogonal transformations as
special cases. The diagonal blocks in the decomposition over C, however, are complex
matrices in general.

For SDPs the formulation over C is a feasible alternative indeed. When given an SDP
problem over R we could regard it as an SDP problem over C and apply the decom-
position over C. A dual pair of SDP problems over C can be defined by (1) and (2)
with Hermitian matrices Ap (p = 0, 1, . . . , m) and a real vector b = (bp)

m
p=1 ∈ R

m .
The decision variables X and Z are Hermitian matrices, and yp (p = 1, . . . , m)

are real numbers. The interior-point method was extended to this case [23,27]. Such
embedding into C, however, entails significant loss in computational efficiency.

Acknowledgments The authors thank Etienne de Klerk for communicating a reference [6], Dima
Pasechnik for discussion, and Takanori Maehara for pointing out a flaw in the original proof of
Proposition 4 and for suggesting the proof of the structure theorem outlined in Appendix. This work is
supported by a Grant-in-Aid for Scientific Research, and by the Global COE “The Research and Training
Center for New Development in Mathematics.”

Appendix A: Proof of the Structure Theorem

A proof of the structure theorem over R, Theorem 1, is outlined here. We follow the
terminology of Lam [18], and quote three fundamental theorems. For a division ring
D we denote by Mn(D) the set of n × n matrices with entries from D.

Theorem A.1 (Wedderburn–Artin [18, Theorem 3.5 & pp. 38–39])

(1) Let R be any semisimple ring. Then

R � Mn1(D1) × · · · × Mnr (Dr) (A.1)

for suitable division rings D1, . . . , Dr and positive integers n1, . . . , nr . The num-
ber r is uniquely determined, as are the pairs (D1, n1), . . . , (Dr , nr) (up to a
permutation).

(2) If k is a field and R is a finite-dimensional semisimple k-algebra, each Di above
is a finite-dimensional k-division algebra.

Theorem A.2 (Frobenius [18, Theorem 13.12]) Let D be a division algebra over
R. Then, as an R-algebra, D is isomorphic to R, C, or H (division algebra of real
quaternions).

Theorem A.3 (special case of [18, Theorem 3.3 (2)]) Let D be a division algebra
over R. Then, Mn(D) has a unique irreducible representation in Mkn(R) up to
equivalence, where k = 1, 2, 4 according to whether D is isomorphic to R, C, or H.

123

Algorithm for block-diagonalization with SDP application 157

Theorem 3.3 (2) in [18] says in fact much more that any irreducible representation
of a matrix algebra over some division ring is equivalent to a left regular representation.
This general claim is used in [18] to prove the uniqueness of the decomposition in the
Wedderburn-Artin theorem. Thus logically speaking, the claim of Theorem A.3 could
be understood as a part of the statement of the Wedderburn-Artin theorem. However
this theorem is usually stated as a theorem for the intrinsic structure of the algebra R,
and the uniqueness of an irreducible representation of simple algebra is hidden behind.
Thus we have stated Theorem A.3 to make sure what we have known extrinsically for
the argument we present here.

Let T be a ∗-subalgebra of Mn over R. We prepare some lemmas.

Lemma A.1 If T is irreducible, then it is simple.

Proof Let I be an ideal of T . Since W = span{Ax | A ∈ I, x ∈ R
n} is a

T -invariant subspace and T is irreducible, we have W = {0} or W = R
n . In the

former case we have I = {O}. In the latter case, for an orthonormal basis e1, . . . , en

there exist some Ai j ∈ I and xi j ∈ R
n such that ei = ∑

j Ai j xi j for i = 1, . . . , n.

Then In =∑n
i=1 ei e�i =∑n

i=1
∑

j Ai j (xi j e�i) ∈ I. This shows I = T . ��
Lemma A.2 There exists an orthogonal matrix Q such that

Q� AQ =
	⊕

j=1

m̄ j⊕

i=1

ρi j (A), A ∈ T , (A.2)

for some 	 and m̄1, . . . , m̄	, where each ρi j is an irreducible representation of T , and
ρi j and ρi ′ j ′ are equivalent (as representations) if and only if j = j ′.

Proof Let W be a T -invariant subspace, and W⊥ be the orthogonal complement of
W . For any x ∈ W , y ∈ W⊥ and A ∈ T we have A�x ∈ W and hence x�(Ay) =
(A�x)�y = 0, which shows Ay ∈ W⊥. Hence W⊥ is also a T -invariant subspace.
If W (or W⊥) is not irreducible, we can decompose W (or W⊥) into orthogonal
T -invariant subspaces. Repeating this we can arrive at a decomposition of R

n into
mutually orthogonal irreducible subspaces. An orthonormal basis compatible with
this decomposition gives the desired matrix Q, and the diagonal blocks of the block-
diagonal matrix Q� AQ give the irreducible representations ρi j (A). ��

Equation (A.2) shows that, by partitioning the column set of Q appropriately as
Q = (Qi j | i = 1, . . . , m̄ j ; j = 1, . . . ,), we have

ρi j (A) = Q�
i j AQi j , A ∈ T . (A.3)

Lemma A.3 T is a finite-dimensional semisimple R-algebra.

Proof For each (i, j) in the decomposition (A.2) in Lemma A.2, {ρi j (A) | A ∈ T }
is an irreducible ∗-algebra, which is simple by Lemma A.1. This means that T is
semisimple. ��

123

158 K. Murota et al.

Lemma A.4 If two irreducible representations ρ and ρ̃ of T are equivalent, there
exists an orthogonal matrix S such that ρ(A) = S�ρ̃(A)S for all A ∈ T .

Proof By the equivalence of ρ and ρ̃ there exists a nonsingular S such that Sρ(A) =
ρ̃(A)S for all A ∈ T . This means also that ρ(A)S� = S�ρ̃(A) for all A ∈ T (Proof:
Since T is a ∗-algebra, we may replace A with A� in the first equation to obtain
Sρ(A�) = ρ̃(A�)S, which is equivalent to Sρ(A)� = ρ̃(A)�S. The transposition of
this expression yields the desired equation). It then follows that

ρ̃(A)(SS�) = (SS�)ρ̃(A), A ∈ T .

Let α be an eigenvalue of SS�, where α > 0 since SS� is positive-definite. Then

ρ̃(A)(SS� − α I) = (SS� − α I)ρ̃(A), A ∈ T .

By Schur’s lemma (or directly, since the kernel of SS� − α I is a nonzero subspace
and ρ̃ is irreducible), we must have SS� − α I = O . This shows that S/

√
α serves as

the desired orthogonal matrix. ��
We now start the proof of Theorem 1. By Lemma A.3 we can apply the Wedder-

burn–Artin theorem (Theorem A.1) to T to obtain an algebra-isomorphism

T � Mn1(D1) × · · · × Mn	
(D). (A.4)

Note that the last statement in (1) of Theorem A.1 allows us to assume that r in (A.1)
for R = T is equal to 	 in (A.2).

By Frobenius’ theorem (Theorem A.2) we have D j = R, C, or H for each j =
1, . . . , 	. Depending on the cases we define a representation ρ̃ j of Mn j (D j) over R

as follows. Recall notations C(v,w) and H(v,w, x, y) in Theorem 1.

(i) If D j = R, then ρ̃ j (A) = A ∈ Mn j (R).
(ii) If D j = C and A = (apq) ∈ Mn j (C) with apq = vpq + ıwpq ∈ C (p, q =

1, . . . , n j), then

ρ̃ j (A) =
⎡

⎢
⎣

C(v11, w11) · · · C(v1n j , w1n j)
...

. . .
...

C(vn j 1, wn j 1) · · · C(vn j n j , wn j n j)

⎤

⎥
⎦ ∈ M2n j (R).

(iii) If D j = H and A = (apq) ∈ Mn j (H) with apq = vpq +ıwpq +j x pq +kypq ∈
H (p, q = 1, . . . , n j), then

ρ̃ j (A) =
⎡

⎢
⎣

H(v11, w11, x11, y11) · · · H(v1n j , w1n j , x1n j , y1n j)

.

.

.
. . .

.

.

.

H(vn j 1, wn j 1, xn j 1, yn j 1) · · · H(vn j n j , wn j n j , xn j n j , yn j n j)

⎤

⎥
⎦ ∈ M4n j (R).

123

Algorithm for block-diagonalization with SDP application 159

We may assume, by Theorem A.3 and renumbering the indices, that ρi j in (A.2) is
equivalent to ρ̃ j for i = 1, . . . , m̄ j and j = 1, . . . , 	. Then for each (i, j) there exists
an orthogonal matrix Si j such that

ρi j (A) = S�
i j ρ̃ j (A)Si j , A ∈ T (A.5)

by Lemma A.4.
With Si j in (A.5) and Qi j in (A.3) we put Pi j = Qi j Si j and define P = (Pi j |

i = 1, . . . , m̄ j ; j = 1, . . . ,), which is an n × n orthogonal matrix. Then (A.2) is
rewritten as

P� AP =
	⊕

j=1

m̄ j⊕

i=1

ρ̃ j (A) =
	⊕

j=1

(Im̄ j ⊗ ρ̃ j (A)), A ∈ T . (A.6)

This is the formula (18) with B j = ρ̃ j (A). We have thus proven Theorem 1.

References

1. Bai, Y., de Klerk, E., Pasechnik, D.V., Sotirov, R.: Exploiting group symmetry in truss topology opti-
mization. Optim. Eng. 10, 331–349 (2009)

2. Barker, G.P., Eifler, L.Q., Kezlan, T.P.: A non-commutative spectral theorem. Linear Algebra
Appl. 20, 95–100 (1978)

3. Borchers, B.: CSDP 2.3 user’s guide, a C library for semidefinite programming. Optim. Methods
Softw. 11 & 12, 597–611 (1999)

4. de Klerk, E., Pasechnik, D.V., Schrijver, A.: Reduction of symmetric semidefinite programs using the
regular ∗-representation. Math. Program. Ser. B 109, 613–624 (2007)

5. de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite relaxations of the quadratic
assignment problem. Math. Program. Ser. A 122, 225–246 (2010)

6. Eberly, W., Giesbrecht, M.: Efficient decomposition of separable algebras. J. Symbol. Comput. 37, 35–
81 (2004)

7. Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure
Appl. Algebra 192, 95–128 (2004)

8. Gijswijt, D.: Matrix Algebras and Semidefimite Programming Techniques for Codes. Ph.D. thesis,
University of Amsterdam (2005)

9. Henrion, D., Lasserre, J.B.: Convergent relaxations of polynomial matrix inequalities and static output
feedback. IEEE Trans. Automat. Control 51, 192–202 (2006)

10. Hol, C.W.J., Scherer, C.W.: Sum of squares relaxations for polynomial semidefinite programming.
In: Proceedings of Symposium on Mathematical Theory of Networks and Systems (MTNS), Leuven,
Belgium (2004)

11. Jansson, L., Lasserre, J.B., Riener, C., Theobald, T.: Exploiting symmetries in SDP-relaxations for
polynomial optimization. LAAS-report, Toulouse, September 2006

12. Kanno, Y., Ohsaki, M.: Eigenvalue Optimization of Structures via Polynomial Semidefinite Program-
ming. METR 2007-31, Department of Mathematical Informatics, University of Tokyo (2007)

13. Kanno, Y., Ohsaki, M., Murota, K., Katoh, N.: Group symmetry in interior-point methods for semi-
definite program. Optim. Eng. 2, 293–320 (2001)

14. Kojima, M.: Sums of squares relaxations of polynomial semidefinite programs. Research Report B-397,
Tokyo Institute of Technology (November 2003)

15. Kojima, M., Kojima, S., Hara, S.: Linear algebra for semidefinite programming. Research Report
B-290, Tokyo Institute of Technology (October 1994). Also in: RIMS Kokyuroku 1004, pp. 1–23,
Kyoto University (1997)

16. Kojima, M., Muramatsu, M.: An extension of sums of squares relaxations to polynomial optimization
problems over symmetric cones. Math. Program. 110, 315–336 (2007)

123

160 K. Murota et al.

17. Kojima, M., Muramatsu, M.: A note on sparse SOS and SDP relaxations for polynomial optimization
problems over symmetric cones. Comput. Optim. Appl. 42, 31–41 (2009)

18. Lam, T.Y.: A First Course in Noncommutative Rings, 2nd edn. Springer, New York (2001)
19. Lamberti, L., Pappalettere, C.: An efficient sequential linear programming algorithm for engineering

optimization. J. Eng. Des. 16, 353–371 (2005)
20. Lasserre, J.B.: Global optimization with polynomials and the problems of moments. SIAM J.

Optim. 11, 796–817 (2001)
21. Maehara, T., Murota, K.: A numerical algorithm for block-diagonal decomposition of matrix∗-algebras

with general irreducible components. Jpn. J. Ind. Appl. Math. (2010, to appear)
22. Miller, W. Jr.: Symmetry Groups and Their Applications. Academic Press, New York (1972)
23. Nesterov, Yu., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Program-

ming. SIAM, Philadelphia (1994)
24. Ohsaki, M., Fujisawa, K., Katoh, N., Kanno, Y.: Semi-definite programming for topology optimiza-

tion of trusses under multiple eigenvalue constraints. Comput. Methods Appl. Mech. Eng. 180, 203–
217 (1999)

25. Pólik, I.: Addendum to the SeDuMi user guide: version 1.1. Advanced Optimization Laboratory,
McMaster University, Ontario (2005). http://sedumi.mcmaster.ca

26. Serre, J.-P.: Linear Representations of Finite Groups. Springer, Berlin (1977)
27. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim.

Methods Softw. 11 & 12, 625–653 (1999)
28. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a MATLAB software package for semidefinite pro-

gramming, version 1.3. Optim. Methods Softw. 11 & 12, 545–581 (1999)
29. Vallentin, F.: Symmetry in semidefinite programs. Linear Algebra Appl. 430, 360–369 (2009)
30. Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: SparsePOP: a sparse semidefinite pro-

gramming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35(15), (2008)
31. Wedderburn, J.H.M.: Lectures on Matrices. American Mathematical Society, New York (1934); Dover,

Mineola (2005)
32. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory, Algo-

rithms, and Applications. Kluwer, Boston (2000)
33. Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA6.0 (SemiDefinite

Programming Algorithm 6.0). Optim. Methods Softw. 18, 491–505 (2003)
34. Yang, B.: Stress, Strain, and Structural Dynamics. Academic Press, Burlington (2005)

123

http://sedumi.mcmaster.ca

	A numerical algorithm for block-diagonal decomposition of matrix *-algebras with application to semidefinite programming
	Abstract
	1 Introduction
	2 Motivation
	2.1 Decomposition of SDPs
	2.2 Group symmetry and additional structure due to sparsity

	3 Mathematical basis
	3.1 Matrix *-algebras
	3.2 Simple components from eigenspaces
	3.3 Transformation for irreducible components

	4 Algorithm for simultaneous block-diagonalization
	4.1 Decomposition into simple components
	4.2 Decomposition into irreducible components
	4.3 A practical variant of the algorithm

	5 Numerical examples
	5.1 Effects of additional algebraic structures
	5.2 Optimization of symmetric trusses
	5.3 Quadratic SDPs for symmetric frames

	6 Discussion
	Acknowledgments
	Appendix A: Proof of the Structure Theorem
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

