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Abstract
Wetlands, as vital components of urban ecological infrastructure, provide essential ecosystem services. However, they face 
increasing risks of degradation and loss due to their vulnerability, environmental changes, and human activities. Therefore, 
effective restoration efforts are urgently needed. This study adopts a novel approach by considering the urban–rural gradient 
and integrates land use data, ecological parameters, and anthropogenic factors in Hefei City. Through morphological spatial 
pattern analysis, principal component analysis, and affinity propagation, this study identifies and analyzes urban–rural gradi-
ents. Using the optimal parameter geographic detector, the drivers of wetland changes from 1990 to 2020 are quantitatively 
assessed across different urban–rural gradients in Hefei. The findings indicate the following. (1) A persistent reduction in 
wetland expanse throughout the study duration, diminishing from 1274.56  km2 in 1990 to 1119.37  km2 in 2020, constituting 
a decrement of 12.17%. (2) Based on geographic detector outcomes, disparate driving forces underpin wetland dynamics 
across urban–rural gradients, with urban locales predominantly influenced by organic carbon and the proportion of impervi-
ous surface factors. Meanwhile, in agricultural and semi-ecological villages, silt is the primary factor, while ecological vil-
lages are primarily modulated by both silt and gross domestic product factors. Additionally, synergistic interactions manifest 
heightened explanatory power. This study elucidates the mechanistic underpinnings of wetland dynamics along urban–rural 
gradients, providing pivotal insights for developing targeted wetland restoration and conservation policies pertinent to the 
urban–rural developmental trajectory in Hefei City. Concurrently, it offers relevant recommendations for the multifaceted 
stewardship and sustainable development of wetlands in Hefei City in the foreseeable future.

Keywords Urban–rural gradient · Urban wetland · Dynamic change characteristic · Drivers of change · Optimal parameter 
geographic detector

Introduction

Wetlands, which are recognized as distinctive ecosystems, 
link terrestrial ecosystems with aquatic ecosystems (Cong 
et al. 2019; Salimi et al. 2021). They are also recognized as 
the “natural gene bank” (Bian et al. 2020; Zhou et al. 2009), 
and hold immense importance for hydrological regulation, 
climate moderation, biodiversity conservation, and water 
purification (Kumari et al. 2020; Liu et al. 2018a; Meng 
et al. 2017). At the same time, wetlands are recognized as 
one of the most delicate ecosystems on Earth. It is estimated 
that over half of wetlands globally have experienced degra-
dation or disappearance as a result of the synergy between 
anthropogenic disturbances and variability in their ecologi-
cal surroundings (Davidson 2014; Desta et al. 2012; Kirwan 
and Megonigal 2013). Wetland areas have been repeatedly 
occupied and destroyed by China's rapid urbanization and 
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industrialization after its reform and opening up (Zhao et al. 
2019; Mao et al. 2018). Concurrently, industrial pollution, 
domestic wastewater, and aquaculture have hastened the 
degradation of wetlands (Bian et al. 2020). The growing 
conflict between urban construction and wetland ecological 
conservation has been increasingly pronounced in this pro-
cess. Urban wetlands serve multifaceted functions, such as 
alleviating the heat island effect and preventing floods and 
droughts (McLaughlin and Cohen 2013; Xue et al. 2019). 
They are essential in creating environmentally friendly cities 
and promoting sustainable development (Peng et al. 2020). 
Therefore, a comprehensive exploration of urban wetlands' 
spatial and temporal evolution characteristics, coupled with 
an in-depth investigation into their driving mechanisms, is 
crucial to promoting urban wetland management and sus-
tainable development.

The dynamic changes in urban wetlands stem from the 
synergistic impact of various indicators, categorized into two 
primary dimensions: ecological surroundings and anthro-
pogenic interventions (van Asselen et al. 2013; Xiong et al. 
2023). Ecological surrounding factors include climate, soil 
properties, and terrain. Climate can impact wetland ecosys-
tems through temperature elevation and alterations in hydro-
logical patterns (Erwin 2009). Precipitation is the primary 
source of recharge for wetlands, and it has a direct impact on 
their formation and growth by influencing the distribution 
of water resources in terms of both time and space (Erwin 
2009). At the same time, evapotranspiration and tempera-
ture influence the distribution of wetlands by influencing 
water circulation (Havril et al. 2018). Soil properties affect 
the ecosystem structure and function of wetlands. Studies 
have found that the soil's water-holding capacity increases 
with higher levels of organic carbon content (Masood 
and Ali 2023; Wang et al. 2020). In contrast, sand has a 
weaker water-holding capacity than clay, making it easier 
for water to penetrate and difficult to form a wetland (Her-
awati et al. 2021; Riaz and Marschner 2020). The soil’s pH 
level influences vegetation and is a pivotal factor influenc-
ing the formation and spatial distribution of wetlands (Liu et 
al. 2018b). It governs the distribution of relatively depressed 
landforms within the region, thereby influencing the char-
acter of regional water flow (Jin et al. 2017; Job and Sieben 
2022). Anthropogenic interventions, such as changes in land 
use, directly affect wetlands and also indirectly affect them 
by influencing ecological surrounding factors (Maneas et al. 
2019; Newton et al. 2020).

Different levels of urbanization across distinct urban–rural 
gradients correspond to different levels of human pressure 
on wetland ecosystems. However, most existing studies on 
the dynamic change mechanisms of urban wetlands analyze 
the correlation between wetland dynamics and its drivers 
from the perspective of the entire region (Long et al. 2022; 
Wang et al. 2022; Zhang et al. 2021b). This approach may 

overlook crucial details. Thus, analyzing the response of 
urban wetland dynamic change to various drivers from the 
perspective of subdivided geographical space is of great sig-
nificance. Urban–rural gradient analysis is widely employed 
in ecological studies (Hou et al. 2020; Inostroza et al. 2019), 
and has been proven to be an instrumental tool for studying 
the impact of human intervention on ecosystems (Arnaiz-
Schmitz et al. 2018; Kaminski et al. 2021). Dividing urban 
areas according to urban–rural gradients and exploring the 
driving mechanisms of urban wetland evolution under these 
gradients can help formulate more targeted wetland restora-
tion, protection, and management plans. It also contributes 
to improving the synergy between urban–rural development 
and ecological conservation.

In the current research on wetland dynamic changes and 
driving mechanisms, various statistical approaches are fre-
quently utilized for quantitative evaluation, including but not 
limited to correlation analysis (Lin et al. 2018; Yi and Wang 
2021), cluster analysis (Hu et al. 2021), regression analysis 
(Wang et al. 2022), principal component analysis (PCA) 
(Zhang et al. 2021a, b), boosted regression tree (BRT) (Li 
et al. 2020c), and GeoDetector (Li et al. 2022; Zhang et al. 
2021c). In particular, GeoDetector is a collection of statisti-
cally based methods constructed to detect spatially stratified 
heterogeneity and identify its drivers (Wang et al. 2010). It 
is widely employed to detect ecosystems and their driving 
mechanisms (Wu et al. 2022). In contrast to other methods, 
GeoDetector can overcome the limitations of conventional 
statistical analysis methods and does not need linear assump-
tions. GeoDetector has proven to be an effective tool for dis-
cerning the roles of individual factors and their interactions 
(Wang and Xu 2017). This approach aligns well with the 
paper's requirements for the quantitative evaluation of the 
contributions of individual indicators, encompassing both 
ecological surroundings and anthropogenic interventions, 
as well as their interactions. However, since GeoDetector 
is designed to aptly analyze categorical data, continuous 
data in driving factors need to be discretized (Wang and 
Xu 2017). Prior studies typically consult the pertinent lit-
erature and existing knowledge to determine the appropri-
ate discretization method and the number of breaks, which 
influence the precise determination of the outcomes (Wang 
et al. 2023). In contrast, an optimal parameters-based geo-
graphical detector (OPGD) model optimizes the spatial data 
discretization process and the spatial scales of spatial analy-
sis. It can identify the optimal combination of parameters for 
the GeoDetector model within a specified range and enhance 
the precision and efficiency of spatial analysis (Song et al. 
2020). Hence, to examine the driving mechanism of wetland 
dynamic changes, OPGD was utilized in this study.

With its rich wetland resources and excellent protec-
tion work, Hefei received the certification of “International 
Wetland City” (Li et al. 2023) at the 14th Conference of 
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the Parties to the Convention on Ramsar. The certification 
represents the highest global recognition for the ecological 
conservation of urban wetlands. Over the past few decades, 
Hefei has seen substantial and rapid development, increas-
ing the risk of the degradation of wetland areas (Li et al. 
2020a). However, existing studies on Hefei's wetlands are 
primarily centered around the Chaohu Lake area (Li and Gao 
2016; Ni et al. 2018; Qiu-yu et al. 2022), lacking a compre-
hensive assessment of wetland dynamic changes and their 
driving mechanisms across the Hefei region. As a major 
city in central China, Hefei is poised to play a crucial role in 
promoting international wetland protection in the future. A 
scientific and comprehensive understanding of the dynamic 
change of Hefei's wetlands and their driving mechanisms 
is crucial for promoting the protection and development of 
Hefei's wetlands. Therefore, Hefei was chosen as the study 
area to investigate the dynamic change characteristics of its 
wetlands. Additionally, this study investigated the impacts 
of ecological surroundings and anthropogenic interventions, 

along with their interactions, on wetland dynamics across 
different urban–rural gradient regions. This study's primary 
focus was on (1) analyzing the dynamic characteristics of 
Hefei's wetlands; (2) constructing landscape indicators that 
divide urban and rural gradients to quantify the character-
istics of Hefei's urban and rural gradients at the landscape 
scale; and (3) investigating the effects of ecological sur-
rounding and anthropogenic intervention factors, as well as 
their interactions, on wetland dynamics in regions with dif-
ferent urban–rural gradients in Hefei.

Materials and Methods

Study Area

Hefei (116°41′0″–117°53′0″E, 31°30′0″–32°28′0″N) 
is situated at the core of Anhui Province (Fig. 1) and 
spans an area of 11,445  km2. Hefei consists of four urban 

Fig. 1  Location of Hefei
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districts, one county-level city, and four counties. Hefei 
is home to Chaohu Lake, which ranks among China's 
top five largest freshwater lakes. There are numerous 
reservoirs, rivers, ponds, and artificial ditches scattered 
throughout Hefei, making it rich in wetland resources. 
Hefei currently has 118,200 hectares of wetlands, with a 
wetland rate of 10.33%. The city experiences a subtropi-
cal humid monsoon climate, marked by an average annual 
temperature of 15.7 °C and an average annual precipita-
tion of around 1,000 mm. In Hefei, climatic conditions 
manifest substantial heat and precipitation during the 
summer, contrasting with a temperate winter character-
ized by significant rainfall. In 2020, the resident popula-
tion of Hefei grew to 9,369,900 people, its urbanization 
rate reached 82.3%, and its GDP amounted to 1,004.572 
billion yuan. Rapid urbanization poses a severe threat to 
wetlands. Hence, achieving harmony between economic 
development and wetland conservation requires a thor-
ough examination of wetland dynamics and the under-
lying driving forces in Hefei. This is crucial for laying 
the groundwork for urban planning and safeguarding 
wetlands.

Data Sources

The data encompass land use data, socioeconomic data, ter-
rain data, soil data, and meteorological data (Table 1). The 
land use data utilizes the annual China Land Cover Dataset 
(CLCD). Compared with existing thematic products, CLCD 
demonstrated commendable consistency (Yang and Huang 
2021). The categories of land use were cropland, forest, shrub, 
grassland, water, snow or ice, wetland, impervious surface, and 
barren. Considering that paddy fields have lost numerous many 
of their ecological functions as artificial wetlands, this study 
does not categorize them as wetlands. This study amalgamates 
wetlands and water into a unified category termed wetlands.

Socioeconomic data consisted of the annual average pop-
ulation density, Gross Domestic Product (GDP), cropland, 
and impervious surface proportions. Based on land use data, 
the proportions of cropland and impervious surface were 
calculated in ArcGIS Pro (version 3.0.1). Terrain data com-
prises Digital Elevation Model (DEM), slope, and aspect. 
Slope and aspect were computed using the Spatial Analysis 
Tools in ArcGIS Pro (version 3.0.1) based on the DEM data. 
The soil data utilized consisted of clay, sand, silt, organic 

Table 1  Data sources used in this study

All data were unified to the same geographic coordinates and projection coordinates (geographic coordinates: WGS 1984, projection coordi-
nates: WGS 1984 UTM Zone 50N)

Category Data name Data format Time series Data sources

Land use data CLCD Raster, 30 m 1990, 2000, 2010, 2020 https:// doi. org/ 10. 5281/ zenodo. 44178 09 
(accessed on 11 May 2023)

Socioeconomic data Annual average population density Raster, 1 km 1990, 2000, 2010, 2020 Resources and Environmental Science Data 
Center of the Chinese Academy of Sci-
ences (https:// www. resdc. cn/ Defau lt. aspx 
(accessed on 27 June 2023)) and LandScan 
Global Population Data (https:// lands can. 
ornl. gov/ (accessed on 27 June 2023))

GDP Text data 1990, 2000, 2010, 2020 Hefei Statistical Yearbook (https:// tjj. hefei. 
gov. cn/ (accessed on 27 June 2023))

Cropland proportions Raster, 30 m 1990, 2000, 2010, 2020 Calculations based on land use data
Impervious surface proportions

Terrain data DEM Raster, 12.5 m 2009 Earthdata (https:// search. earth data. nasa. gov/ 
(accessed on 27 June 2023))

Slope Raster, 12.5 m 2009 Calculations based on elevation data
aspect

Soil data Clay Raster, 1 km 1995 Harmonized World Soil Database (https:// 
www. fao. org/ soils- portal/ (accessed on 27 
June 2023))

Sand
Silt
OC
pH

Meteorological data Monthly average temperature Raster, 1 km 1990–2020 National Earth System Science Data Center, 
National Science & Technology Infra-
structure of China (https:// www. geoda ta. cn 
(accessed on 27 June 2023))

Monthly average precipitation
Potential evaporation

https://doi.org/10.5281/zenodo.4417809
https://www.resdc.cn/Default.aspx
https://landscan.ornl.gov/
https://landscan.ornl.gov/
https://tjj.hefei.gov.cn/
https://tjj.hefei.gov.cn/
https://search.earthdata.nasa.gov/
https://www.fao.org/soils-portal/
https://www.fao.org/soils-portal/
https://www.geodata.cn
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carbon (OC), and soil pH. Meteorological data included 
monthly average temperature, precipitation, and potential 
evaporation datasets. The average temperatures for each dec-
ade during the study period were calculated using the raster 
calculator in ArcGIS Pro (version 3.0.1).

In this study, to ensure consistency across data with 
different resolutions during analysis, we preprocessed the 
datasets. Using ArcGIS Pro (version 3.0.1), we used the 
Resample tool with the NEAREST method to resample all 
driving factor data to a uniform 30-m resolution, matching 
the accuracy of the land use data. All datasets were unified 
into the same geographic coordinates and projection system 
(geographic coordinates: WGS 1984, projection coordinates: 
WGS 1984 UTM Zone 50N).

This study is organized into three major sections, as 
shown in Fig. 2. Step 1: Analysis of dynamic changes in 
wetlands. Step 2: Identification of the urban–rural gradient. 
Step 3: Analysis of the driving mechanism.

Dynamic Change Characteristics of Wetlands

Land Use Transition Matrix

The land use transition matrix involves applying the Markov 
model to analyze changes in land use, a method commonly 
utilized to describe modifications in the land use patterns of 
a specific area. This model can quantitatively characterize 
the dynamics of land use types across different periods (Shi 
et al. 2019). The following is its calculation formula:

where n stands for the overall count of land use categories, 
where i, j = 1,2, ..., n . Sij represents the area converted from 
type i to type j during the study period.

Single Land Use Dynamic Degree

We chose the model to investigate quantitative alterations in 
wetlands (Hu et al. 2021). This model examines numerical 
shifts in a particular kind of land use at a given location over 
a specified period. The following is the calculating formula:

where K stand for the dynamic degree; T is the study period 
in units of years; and Ua and Ub represent the acreages of a 
particular land use type at the start and end of the research 
period, respectively.

Urban–Rural Gradient

This study used a clustering indicator based on land cover 
composition and configuration to define the urban–rural 
gradient (Kaminski et al. 2021). This method integrates 

(1)Sij =

⎡⎢⎢⎢⎣

S11 S12
S21 S22

⋯ S1n
⋯ S2n

⋯ ⋯

Sn1 Sn2

⋯ ⋯

⋯ Snn

⎤⎥⎥⎥⎦

(2)K =
Ub − Ua

Ua

×
1

T
× 100%

Fig. 2  Overall research framework
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landscape pattern indicators, performs clustering to identify 
gradients, and uses the resulting gradient types to describe 
administrative units in the study area. More landscape com-
plexity can be captured using this method.

Morphological Spatial Pattern Analysis (MSPA)

MSPA can recognize the spatial topological relationships 
between target pixel sets and structural elements (Lin et al. 
2021). Additionally, there are seven different categories for 
the identified target pixel sets: core, islet, loop, bridge, perfo-
ration, edge, and branch. The literature provides information 
on the specific meanings and ecological significance of each 
category (Vogt et al. 2007). MSPA is implemented using the 
open-source software Guidos Toolbox (version 3.1), which 
is publicly available at (https:// forest. jrc. ec. europa. eu).

This study utilized land use data for this analysis. First, 
the analysis focused on ecological benefit regions (wetlands 
and green lands) as foreground, considering other remaining 
regions as background. Next, the analysis was conducted 
with developed regions (impervious surfaces) as foreground, 
with other remaining regions considered as background. 
Drawing on previous experiences and achievements and tak-
ing into account the study area's size parameters, as well as 
the seven categories regions' numerical patterns (Kaminski 
et al. 2021), the core type and island type of ecological and 
built-up areas with a size parameter of 30 m in the MSPA 
analysis were chosen to represent the key spatial patterns of 
the city in this study. The towns and streets are selected as 
the smallest analysis units. Three land use types and four 
landscape pattern indicators are chosen, and their respective 
proportions in the analysis unit are calculated to construct a 
landscape indicator system for urban–rural gradient division, 
as illustrated in Table 2.

Principal Component Analysis (PCA)

PCA is a commonly used statistical method for dimensional-
ity reduction. It has the capability to distill numerous indica-
tors into a handful of principal components that reflect the 
majority of information present in the original data (Bro and 

Smilde 2014). In this study, considering multiple dimen-
sions, a landscape indicator system for urban–rural gradi-
ent division is constructed based on land cover composition 
and configuration. For example, some indicators exhibit a 
link between ecological land and the ecological land's core 
region, which makes statistical analysis difficult (Samuelson 
and Leadbeater 2018). To address this, PCA is applied to 
the indicator system to reduce dimensionality and extract 
the main components that characterize urban–rural gradient 
features. The transformation formula for extracting principal 
components is as follows:

where sample x is an n-dimensional random vector 
x =

(
x1, x2...xn

)
 ' composed of n indicators. There exists a 

set of vectors � such that vector x can be transformed into a 
new k-dimensional composite vector 

(
y1, y2...yk

)
 ' through a 

linear transformation. The newly obtained variable combina-
tions 

(
y1, y2...yk

)
 ' become the 1st principal component, 2nd 

principal component, and so forth until the k-th principal 
component. The proportion of total variance in y1 is maxi-
mized, and the variance of y2...yk decreases sequentially.

Affinity Propagation (AP)

AP is a clustering algorithm in which the basic idea is to 
consider all data points as potential cluster centers (referred 
to as exemplars). It constructs a network by connecting each 
pair of data points with lines, forming a similarity matrix. 
Then, by propagating messages (responsibility and availabil-
ity) along the network's edges, it computes the cluster cent-
ers for each sample (Frey and Dueck 2007). This algorithm 
exhibits significantly lower clustering errors than other clus-
tering algorithms and requires less time (Cui et al. 2019). 
The AP analysis in this study was implemented using the 
AP from the sklearn package in Python (version 3.9.7). The 
algorithmic procedure is illustrated in Fig. 3.

(3)

⎧⎪⎨⎪⎩

y1
y2

yk

=

=

=

�11

�21

�k1

x1
x1

x1

+

+

+

�12

�22

...

�k2

x2
x2

x2

+

+

+

...

...

...

�1n

�2n

�kn

xn
xn

xn

Table 2  Landscape indicators 
and calculation formulas 
for dividing urban and rural 
gradients

Landscape indicators Description

Proportion of impervious surface Impervious surfaces area

Urban land area
× 100%

Proportion of impervious surface's core region Impervious surfaces core region area

Urban land area ×100%

Proportion of impervious surface's island region Impervious surface
�
s island region area

Urban land area × 100%

Proportion of ecological land Ecological land area

Urban land area
× 100%

Proportion of ecological land's core region Ecological land’s core region area

Urban land area
× 100%

Proportion of ecological land's island region Ecological land’s island region area

Urban land area
× 100%

Proportion of cropland Cropland area

Urban land area
× 100%

https://forest.jrc.ec.europa.eu
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Analysis of Driving Mechanisms of Wetland Changes

For this study, 15 factors that contribute to wetland change 
were chosen based on regional characteristics, data availabil-
ity, and previous research findings (Li et al. 2022; Wang et al. 
2022; Zhang et al. 2023; Zhang et al. 2021a, b; Zhang et al. 
2021c). Table 3 provides detailed information on each driv-
ing factor. ArcGIS Pro (version 3.0.1) was used to divide the 
research region into a 250 m × 250 m grid. The wetland deg-
radation area and driving factor data for each grid cell were 
extracted as the foundational data for the OPGD model. In 
RStudio (version 4.3.0), the GD package was utilized. By com-
paring the factor detection q-values for every driving factor, 
the OPGD model determines the optimal parameter discre-
tization scheme for each driving factor. This study employed 

five different discretization methods, including equal breaks, 
natural breaks, quantile breaks, geometric breaks, and standard 
deviation breaks, with the number of breaks ranging from 3 to 
9. The process is illustrated in Fig. 4.

This study utilized the factor and interactive detectors to 
investigate the driving mechanisms of wetland evolution under 
different urban–rural gradients. The q-value was used to gauge 
the explaining power of different drivers on the dependent var-
iable. The formula below is used to calculate q-values:

where q ∈ [0,1] ; L represent the number of driver layers; 
h = 1, 2, ......L ; Nh and N represent the number of units 
in layer h and the entire region, respectively; σ2

h
 and σ2 

(4)q = 1 −
1

N�2

∑L

h=1
Nhσ

2
h

Fig. 3  Affinity Propagation 
algorithm procedure

Table 3  Main parameters of the driving factors used in this study

First-level indicators Second-level indicators Third-level indicators Code Time series Resolution

Ecological surroundings Terrain factors Elevation x1 2009 12.5 m
Slope x2

Aspect x3

Soil factors Sand x4 1995 1 km
Silt x5

Clay x6

OC x7

pH x8

Meteorological factors Average annual precipitation x9 1990–2020 1 km
Average annual potential evapotranspiration x10

Average annual temperature x11

Anthropogenic interventions Socioeconomic factors GDP x12 1990/2000/ 2010/2020 1 km
Population density x13

Proportion of cropland x14 1990/2000/ 2010/2020 30 m
Proportion of impervious surface x15
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represent the variances of the target values in layer h and the 
entire region. A higher q-value signifies a more pronounced 
driving effect of the factor, while a lower q-value suggests a 
weaker effect (Wang et al. 2016).

The interactive detector is employed to detect interactions 
between drivers. The interactions between two drivers in 
the interactive detector can be categorized into five types, 
as shown in Fig. 5.

Results

Wetland Dynamic Changes

In terms of the spatial arrangement of wetlands within Hefei 
City, Chaohu Lake is the primary feature. Other wetlands 
are mostly distributed in the southern Huangpi Lake and the 
northern reservoir area, with some other small wetlands scat-
tered throughout (Fig. 6). In terms of wetland area, there has 
been a general decline from 1990 to 2020. It first decreased 
significantly, then increased slightly from 1990 to 2005, fol-
lowed by a continuous decrease from 2005 to 2020 (Fig. 7). 
Hefei's wetland area decreased from 1274.56  km2 in 1990 
to 1119.37  km2 in 2020, with a reduction of 155.19  km2 
in total area and an overall loss of 12.18%. From 1990 to 

1995, the wetland area decreased the fastest, from 1274.56 
 km2 to 1131.82  km2, corresponding to a dynamic degree 
of − 2.24%. From 1995 to 2000, the wetland recovered 
slightly, increasing from 1131.82  km2 to 1145.01  km2, with 
a wetland dynamic degree of 0.23%. From 2000 to 2005, 
the wetland recovery growth rate increased from 1145.01 
 km2 to 1191.99  km2, and the wetland dynamic degree was 
0.82%. From 2005 to 2020, taking five years as the node, the 
wetland area displayed a continuing downward trend across 
the three stages, with slightly different degrees of change, 
corresponding to dynamic degrees of − 0.38%, − 0.28%, 
and − 0.59%, respectively (Fig. 8).

In this study, the dynamics of Hefei wetlands were inves-
tigated over three time periods (1990–2000, 2000–2010, 
and 2010–2020). The spatial distribution changes are shown 
in Fig. 9. The changes in wetlands are mostly due to the 
decrease caused by the transition of wetlands to farmland 
and the growth caused by impervious surfaces and the tran-
sition of farmland to wetlands. The main bodies of wetland 
loss are mostly large-area wetlands around Chao Lake and 
scattered small-area wetlands; the main bodies of wetland 
increase are mainly Dafangying Reservoir and Huangpi 
Lake. The wetland restoration and reduction area are shown 
in Fig. 10, and the source of restoration and the transfer 
destination of loss are shown in Fig. 11.

Fig. 4  Optimal data discretization process

Fig. 5  Type of interactions 
between two driving factors
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From 1990 to 2000, the wetland area displayed a down-
ward trend, experiencing a loss of 174.00  km2 and a restora-
tion of 44.46  km2. The loss area was 129.54  km2 more than 
the restoration area. It was mainly converted into farmland 
and impervious surface, accounting for 164.81  km2 and 
8.92  km2. From 2000 to 2010, the wetland area exhibited an 
increasing trend, losing 78.12  km2 and recovering 102.37 

 km2. The restoration area was 24.25  km2 more than the 
loss area. This was mainly due to the integration of wet-
land resources for constructing Dafangying Reservoir and 
the conversion of farmland and impervious surfaces into 
wetlands. The respective areas are 94.97  km2 and 7.34  km2. 
From 2010 to 2020, the wetland area displayed a downward 
trend, experiencing a loss of 109.99  km2 and a restoration of 

Fig. 6  Spatial distribution changes of wetlands from 1990 to 2020

Fig. 7  Changes in wetland area 
from 1990 to 2020
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Fig. 8  Wetland dynamic degree 
from 1990 to 2020

Fig. 9  Spatial distribution map of wetland changes from 1990 to 2020
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60.10  km2. The loss area was 49.89  km2 more than the resto-
ration area, mainly converted into farmland and impervious 
surface, which were 102.03  km2 and 7.90  km2, respectively.

Identifying the Urban–Rural Gradient

Results of the MSPA analysis in Hefei from 1990 to 2020 
are shown in Fig. 12. A landscape index system for divid-
ing urban and rural gradients was constructed based on 
the method described in 2.4.1 above. The PCA results are 
shown in Table 4. The first three principal components were 
chosen as inputs to the AP for this study. In 1990, 2000, 
2010, and 2020, the first three principal components collec-
tively explained 94%, 97%, 98%, and 98% of the variation 
in landscape indicators delineating the urban–rural gradi-
ent. According to AP clustering data, this study uses the 
numerical values of urban–rural gradient indicators to iden-
tify urban–rural gradient types, divided into four categories: 
urban areas, agricultural villages, semi-ecological villages, 
and ecological villages. The spatial distribution of each gra-
dient type is illustrated in Fig. 13. The urban gradient-type 

regions have the highest proportion of impervious surface, 
the agricultural village gradient-type regions have the high-
est proportion of farmland, the semi-ecological village gra-
dient-type regions have the highest proportion of ecological 
land and cropland, and the ecological village gradient-type 
regions have the highest proportion of ecological land.

Independent Effects of Each Driving Factor 
on Wetland Changes

Since the wetland area in Hefei generally exhibited a declin-
ing trend from 1990 to 2020, this study used the reduced 
wetland area as the dependent variable and the 15 driving 
factors as independent variables. It utilized OPGD to dis-
cretize the continuous data within the driving factors. The 
optimal discretization of the independent variables and the 
number of breaks are shown in Table A.1. From a single-
factor perspective, the explanatory power of each driver is 
expressed as the q-value. All q-values in the three sub-peri-
ods (1990–2000, 2000–2010, 2010–2020) passed the statisti-
cal significance test (p < 0.01) (Table A.1). The q-values of 

Fig. 10  Wetland restoration and 
degradation area from 1990 to 
2020

Fig. 11  Sankey diagram of land 
use transformation from 1990 
to 2020
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the driving factors for each period within each urban–rural 
gradient type region are illustrated in Figs. 14, 15, 16 and 17.

For wetland changes in urban gradient-type regions 
(Fig. 14), the impervious surface proportion, slope, and 
aspect exerted significant explanatory power from 1990 to 
2000, corresponding to q-values of 0.177, 0.165, and 0.151. 
While the explanatory capability of pH, OC, clay, and sand 
exhibited was relatively low, each being below 3%. From 
2000 to 2010, OC and sand showed significant explanatory 

power, corresponding to q-values of 0.390 and 0.347. Fur-
thermore, precipitation, pH, clay, and silt had relatively low 
explanatory power, all of which were less than 3%. From 
2010 to 2020, impervious surface proportion, potential 
evapotranspiration, and precipitation had notable explana-
tory power, corresponding to q-values of 0.065, 0.053, and 
0.051, respectively. Conversely, pH, OC, clay, silt, sand, and 
aspect had relatively low explanatory power, all being less 
than 2%.

Fig. 12  Results of the MSPA analysis from 1990 to 2020 (a–e are based on using ecological land as the analysis prospect, while e–h are based 
on using impervious surface as the analysis prospect)

Table 4  Principal component 
analysis results from 1990 to 
2020

PC1 PC2 PC3 PC4 PC5 PC6

1990 Variance% 46.993 34.713 12.362 5.479 0.32 0.132
Cumulative variance% 46.993 81.706 94.069 99.548 99.868 100

2000 Variance% 52.393 32.688 11.679 2.878 0.258 0.103
Cumulative variance% 52.393 85.082 96.761 99.639 99.897 100

2010 Variance% 56.142 30.77 10.79 1.886 0.319 0.093
Cumulative variance% 56.142 86.912 97.702 99.588 99.907 100

2020 Variance% 58.082 29.363 10.339 1.89 0.233 0.092
Cumulative variance% 58.082 87.445 97.784 99.674 99.908 100



Wetlands          (2024) 44:101  Page 13 of 22   101 

Fig. 13  Spatial distribution of urban–rural gradient types from 1990 to 2020

Fig. 14  Explanatory power (q) of driving factors in urban gradient-type regions on wetland changes

Fig. 15  Explanatory power (q) of driving factors in agricultural village gradient-type regions on wetland changes
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For wetland changes in agricultural village gradient-type 
regions (Fig. 15), silt and the cropland proportion exhibited 
remarkable explanatory power from 1990 to 2000, corre-
sponding to q-values of 0.437 and 0.106. On the contrary, 
the explanatory powers of the impervious surface propor-
tion, potential evapotranspiration, and aspect were all less 
than 1%. From 2000 to 2010, silt, pH, clay, OC, and sand 
demonstrated notable explanatory power, and their cor-
responding q-values were 0.506, 0.328, 0.328, 0.327, and 
0.321. In contrast, population density, GDP, and aspect had 
relatively low explanatory power, all of which were less 
than 2%. From 2010 to 2020, silt had the highest explana-
tory capability. The q-value was 0.493. However, both the 
impervious surface proportion and aspect had less than 1% 
explanatory power.

For wetland changes in the semi-ecological village gra-
dient-type regions (Fig. 16), silt and the impervious surface 
proportions exhibited significant explanatory power from 
1990 to 2000, corresponding to q-values of 0.423 and 0.125. 

In contrast, the explanatory power of population density, 
GDP, clay, PH, slope, and aspect was relatively low, all 
below 2%. From 2000 to 2010, the silt and clay demonstrated 
significant explanatory power, corresponding to q-values of 
0.484 and 0.213. However, the impervious surface propor-
tion, population density, GDP, potential evapotranspira-
tion, and aspect had relatively low explanatory power, all 
of which were less than 2%. From 2010 to 2020, the silt, 
elevation, and the proportion of cropland demonstrated nota-
ble explanatory power, corresponding to q-values of 0.186, 
0.152, and 0.100, respectively. In contrast, the explanatory 
capability of the impervious surface proportion and OC was 
relatively low, both being less than 1%.

For wetland changes in the ecological village gradient-
type regions (Fig. 17), silt exhibited significant explanatory 
power from 1990 to 2000. The q-value was 0.437. While 
the impervious surface proportion, temperature, potential 
evapotranspiration, and slope had explanatory power below 
2%. From 2000 to 2010, silt, elevation, precipitation, and 

Fig. 16  Explanatory power (q) of driving factors in semi-ecological village gradient-type regions on wetland changes

Fig. 17  Explanatory power (q) of driving factors in ecological village gradient-type regions on wetland changes
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cropland proportion demonstrated significant explanatory 
power, corresponding to q-values of 0.280, 0.132, 0.107, 
and 0.134. However, the explanatory capability of impervi-
ous surface proportion, population density, and aspect were 
all less than 3%. From 2010 to 2020, GDP and elevation 
had notable explanatory power, corresponding to q-values 
of 0.335 and 0.200. Meanwhile, population density exhibited 
the lowest explanatory power, corresponding to q-value of 
0.035.

In summary, among the human-induced factors, the 
proportion of cropland exhibits strong explanatory power 
for wetland changes across all four gradient-type regions. 
Additionally, impervious surface proportion demonstrates 
notable explanatory power for wetland changes, specifically 
in urban gradient-type regions. Among the natural factors, 
soil-related factors play a significant role in explaining 
wetland changes in rural gradient-type, semi-ecological 
gradient-type, and ecological village gradient-type regions. 
Additionally, climate factors show an increasing trend in 
explanatory power for wetland changes across all four gra-
dient-type regions.

Impact of the Interaction of Driving Factors 
on Wetland Changes

The reduction of wetland area is not the result of a single 
factor and requires further explanation by interactive testing. 
The results of interactive detection indicated that the inter-
actions between the drivers of wetland evolution in Hefei 
are mainly bivariate-enhance, with a few nonlinear-enhance, 
uni-weaken, and nonlinear-weaken, and no independent fac-
tor effects.

The interactive detection results for urban gradient-type 
regions are shown in Fig. 18. From 1990 to 2000, 9.52% 
of interactions exhibited uni-weaken, primarily involving 
interactions between meteorological factors and soil fac-
tors. In addition, 10.47% of interactions were characterized 

by bivariate-enhance, and the remaining interactions dem-
onstrated nonlinear-enhance. The interaction between the 
aspect and the proportion of cropland had the strongest 
effect, corresponding to a q-value of 0.69. Interactions such 
as elevation ∩ aspect, aspect ∩ GDP, and aspect ∩ impervious 
surface proportion were also relatively strong, with explana-
tory power exceeding 60%. From 2000 to 2010, interactions 
between clay and precipitation exhibited nonlinear-weaken, 
and 27.62% of interactions showed uni-weaken. This pri-
marily involved the interactions of clay and precipitation 
with other factors. The remaining interactions demonstrated 
nonlinear-enhance. The elevation ∩ GDP showing the strong-
est effect, corresponding to a q-value of 0.32. Interactions 
such as elevation ∩ precipitation and aspect ∩ proportion 
of cropland were also relatively strong, with explanatory 
power exceeding 30%. From 2010 to 2020, interactions 
between OC and potential evapotranspiration exhibited 
uni-weaken. Additionally, 8.57% of interactions showed 
bivariate-enhance, while the remaining interactions dem-
onstrated nonlinear-enhance. The interaction between slope 
and impervious surface proportions had the strongest effect, 
corresponding to a q-value of 0.37. Interactions such as 
slope ∩ potential evapotranspiration, slope ∩ temperature, 
slope ∩ GDP, slope ∩ proportion of cultivated land, poten-
tial evapotranspiration ∩ proportion of cropland, potential 
evapotranspiration ∩ impervious surface proportion, and 
temperature ∩ impervious surface proportion were also rela-
tively strong, with explanatory power exceeding 25%. In this 
gradient-type region, interactions involving soil factors and 
various factor combinations were generally weak across all 
three time periods, and some interactions exhibited a weak-
ening trend.

The interactive detection results for agricultural village 
gradient-type regions are shown in Fig. 19. From 1990 
to 2000, 13.33% of interactions exhibited uni-weaken, 
and 12.38% showed bivariate-enhance, while the remain-
ing interactions demonstrated nonlinear-enhance. The 

Fig. 18  Interaction results of driving factors in urban gradient-type regions
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interaction between precipitation and the proportion of 
cropland had the strongest effect. The q-value is 0.25. Inter-
actions such as elevation, slope, clay, OC, pH, precipita-
tion, temperature, GDP, and proportion of impervious sur-
face ∩ proportion of cropland were also relatively strong, 
with explanatory power exceeding 20%. From 2000 to 2010, 
11.43% of interactions exhibited uni-weaken, and 12.38% 
showed bivariate-enhance, while the remaining interactions 
demonstrated nonlinear-enhance. The interaction between 
elevation and the proportion of cropland had the strongest 
effect. The interactions involving the soil factor with other 
factor combinations were relatively strong, with explana-
tory power exceeding 30%. From 2010 to 2020, 13.33% of 
interactions exhibited uni-weaken, and 3.80% showed bivar-
iate-enhance, while the remaining interactions demonstrated 
nonlinear-enhance. The interaction between elevation and 
the proportion of cropland had the strongest effect, corre-
sponding to a q-value of 0.20. Interactions such as pH ∩ GDP 
and slope, aspect, sand, clay, OC, pH, precipitation, tem-
perature, and proportion of impervious surface ∩ proportion 
of cropland were also relatively strong, with explanatory 

power exceeding 15%. In this gradient-type region, interac-
tions between the proportion of cropland and various factor 
combinations were generally strong over the three time peri-
ods. However, the interaction between OC and each factor 
combination was mainly uni-weaken.

The interactive detection results for semi-ecological vil-
lage gradient-type regions are shown in Fig. 20. From 1990 
to 2000, the interaction between OC and pH exhibited non-
linear-weaken, 12.38% of interactions exhibited uni-weaken, 
and 8.57% showed bivariate-enhance, while the remaining 
interactions demonstrated nonlinear-enhance. The interac-
tion between the proportion of cropland and impervious 
surface proportion ∩ precipitation had the strongest effect, 
with the q-values of both being 0.26. Interactions involv-
ing elevation, slope, potential evapotranspiration, tempera-
ture, and GDP ∩ proportion of cropland were also relatively 
strong, with explanatory power exceeding 20%. From 2000 
to 2010, 13.33% of interactions exhibited uni-weaken, and 
1.90% showed bivariate-enhance, while the remaining inter-
actions demonstrated nonlinear-enhance. The interaction 
between precipitation and the proportion of cropland had the 

Fig. 19  Interaction results of driving factors in agricultural village gradient-type regions

Fig. 20  Interaction results of driving factors in semi-ecological village gradient-type regions
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strongest effect, corresponding to a q-value of 0.57. Interac-
tions such as aspect ∩ clay and elevation, slope, sand, clay, 
OC ∩ proportion of cropland were also relatively strong, 
with explanatory power exceeding 50%. From 2010 to 2020, 
11.43% of interactions exhibited uni-weaken, and 1.90% 
showed bivariate-enhance, while the remaining interactions 
demonstrated nonlinear-enhance. The interaction between 
elevation and the proportion of cropland had the strongest 
effect, corresponding to a q-value of 0.47. Interactions such 
as elevation ∩ sand, elevation ∩ pH, and elevation ∩ popula-
tion density were also relatively strong, with explanatory 
power exceeding 40%. In this gradient-type region, during 
1990–2010, interactions involving the proportion of crop-
land with various factor combinations were generally strong. 
From 2010 to 2020, interactions involving both the propor-
tion of cropland and elevation with various factor combina-
tions remained strong. Across all three time periods, interac-
tions involving OC tended to exhibit uni-weaken.

The interactive detection results for ecological village 
gradient-type regions are shown in Fig. 21. From 1990 to 
2000, 13.33% of interactions exhibited uni-weaken, and 
5.71% showed bivariate-enhance, while the remaining 
interactions demonstrated nonlinear-enhance. The inter-
action between elevation ∩ proportion of cropland had the 
strongest effect. The associated q-value was 0.19. The inter-
action between precipitation ∩ proportion of cropland was 
also relatively strong. The q-value was 0.18. From 2000 to 
2010, 13.33% of interactions exhibited uni-weaken, and the 
remaining interactions demonstrated nonlinear-enhance. 
The interaction between population density ∩ proportion of 
cropland had the strongest effect. The associated q-value 
was 0.59. Interactions involving the proportion of crop-
land with other factors (excluding silt) were also relatively 
strong, with explanatory power exceeding 40%. From 2010 
to 2020, 13.33% of interactions exhibited bivariate-enhance, 
while the remaining interactions demonstrated nonlinear-
enhance. The interaction between GDP ∩ impervious surface 

proportion had the strongest effect, corresponding to a 
q-value of 0.61. The interaction involving GDP with other 
factors were also relatively strong, with explanatory power 
exceeding 50%. From 1990 to 2010, the interaction between 
organic carbon and each factor combination mainly exhib-
ited uni-weaken in this gradient-type region.

Discussion

Dynamic Changing Characteristics of Wetland 
Landscapes

The interannual variation in wetland area characteristics may 
be a consequence of Hefei establishing a balance between 
economic development and resource conservation. During 
the research period, Hefei's wetland area experienced sig-
nificant changes (Fig. 7). In the initial stage (1990–1995), as 
urbanization and industrialization rapidly advanced, Hefei 
experienced rapid economic development and population 
growth, which caused extensive wetland loss due to land 
reclamation and urban infrastructure construction. (Mao 
et al. 2018). In the following decade (1995–2005), to foster 
harmonized economic, social, and environmental develop-
ment, China implemented the “China Wetland Conserva-
tion Action Plan” in 2000 and released the “National Wet-
land Conservation Planning Outline (2002–2003)” in 2003. 
These initiatives elevated wetland protection and restoration 
to the national level. Against this background, Hefei has pro-
actively aligned with the national strategy, which has, to a 
certain extent, reversed the trend of a continuous reduction 
in wetland area. Meanwhile, the Dafangying Reservoir, built 
from 2001 to 2004, integrated northern wetland resources, 
farmland, and impervious surface, which also explains the 
significant increase in wetland area in Hefei from 2000 
to 2005. Although Hefei has made great efforts to protect 
wetlands in the following 15 years (2005–2020), urban 

Fig. 21  Interaction results of driving factors in ecological village gradient-type regions
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expansion, continued economic and population growth, and 
other reasons have resulted in a further rise in water demand 
(Deng et al. 2023), and as a result, the wetland area once 
again shows a decreasing trend year by year.

Influence of Ecological Surroundings 
and Anthropogenic Intervention Factors on Urban 
Wetland Changes Across the Urban–Rural Gradient

The research findings indicate that there are differences in 
the drivers of wetland change in different urban–rural gradi-
ent-type regions. Moreover, the interactions between factors 
often exhibit greater explanatory power, suggesting that wet-
land changes are jointly affected by ecological surroundings 
and anthropogenic interventions (Zhang et al. 2021a, b).

In urban gradient-type regions, anthropogenic interven-
tions have consistently been the dominant factor driving wet-
land degradation (Fig. 14). The greater the population den-
sity, GDP, proportion of impervious surface, and proportion 
of agricultural land, the more severe the wetland destruction 
will be (Wang et al. 2022). Regarding ecological surround-
ings, compared with the situation before 2010, when ter-
rain factors and soil factors were dominant, the influence of 
climate factors on wetland reduction increased after 2010. 
Climate changes such as reduced rainfall, increased tem-
peratures, or extreme weather, intensify the reduction of 
wetlands to some extent (Li et al. 2021, 2020b). In urban 
gradient-type regions, anthropogenic interference is most 
severe. Land composition reveals a lesser extent of cultivated 
and ecological land, with impervious surfaces dominating. 
The large impervious surface generated by urban construc-
tion activities reduces natural land, gradually weakening 
the explanatory power of soil and topographical factors in 
influencing wetland changes in this gradient-type region. 
Therefore, minimizing the negative impact of anthropogenic 
interventions is key to achieving the sustainable develop-
ment of wetlands in urban gradient regions.

In contrast, ecological surroundings, particularly soil-
related factors, emerge as the predominant drivers of wet-
land degradation in agricultural village gradient-type regions 
(Fig. 16). At the same time, the proportion of cropland 
among anthropogenic intervention has a strong explanatory 
power regarding the evolution of wetlands in agricultural 
village gradient-type regions, while the explanatory power 
of GDP on the evolution of wetlands has increased after 
2010. Agriculture village gradient-type regions have more 
human interference. Land use has more impervious surface, 
less ecological land, and the most cultivated land. Concen-
trated agricultural activities directly affect soil properties 
and quality (Wang et al. 2022); thus, the influence of soil 
factors on wetland reduction is particularly notable in this 
gradient-type region. Hefei’s economy has developed rapidly 
since 2010. The encroachment and destruction of wetlands 

are a result of urban sprawl to meet the demands of urban 
economic development. Urban expansion has caused the 
encroachment and disruption of wetlands to accommodate 
the needs of urban economic development (Mao et al. 2018).

The dominant factors driving wetland degradation are 
natural in semi-ecological and ecological village gradient-
type regions (Figs.  17, 18). Unlike agricultural village 
gradient-type regions, elevation among natural factors has 
stronger explanatory power in semi-ecological and ecologi-
cal village gradient-type regions. The semi-ecological and 
ecological village gradient-type regions have less human 
interference and less cultivated land. Among the four 
urban–rural gradient-type regions, the semi-ecological vil-
lage gradient-type regions have more ecological land, and 
the ecological village gradient-type regions have the most 
ecological land. Most ecological land is natural land, and 
elevation usually determines the height of the terrain and 
the direction of water flow. Differences in elevation directly 
affect the distribution and shape of wetlands (Job and Sieben 
2022). Therefore, elevation has a greater explanatory power 
for wetland changes in these gradient-type regions.

Impact, Limitations, and Prospects

This study explored the differences in how wetland changes 
respond to ecological surroundings and anthropogenic 
interventions across different urban–rural gradients based 
on the OPGD model. This study innovatively introduces 
urban–rural gradient analysis when analyzing the driv-
ing mechanism of wetland evolution. This has significant 
implications for managing wetlands in urban areas subject to 
varying levels of anthropogenic interventions and for estab-
lishing a balance between economic and social development 
and wetland conservation.

However, our study still has some limitations to be con-
sidered in future research. (1) The dynamic change charac-
teristics of wetlands in Hefei were analyzed in this study 
based on the CLCD dataset. Limited by the land use classi-
fication level of the dataset, this study utilized the first-level 
classification of land use without further subdivision into 
the second level for wetlands. This might overlook some 
information, such as the evolving characteristics and driving 
mechanisms of different wetland types, potentially affect-
ing the comprehensiveness of the research. (2) This study 
combines previous research results and data availability, 
and selects 15 driving factors. However, the drivers may 
not have been chosen comprehensively enough. For exam-
ple, anthropogenic interventions are measured from four 
dimensions: population density, economic growth, changes 
in the proportion of farmland, and changes in the propor-
tion of impervious surface, without considering the impact 
of government policies and social culture on the evolution 
of wetlands. (3) Due to data availability, this study uses soil 
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data from the Second National Land Survey in the World 
Soil Database. However, soil properties may change during 
the study period, thus affecting the study’s accuracy, but it 
still provides valuable reference.

In addition, some issues should be discussed in the future. 
The research results show that the reduction of small-area 
wetlands in Hefei City is severe (Fig. 9). In the construc-
tion process of urban and rural areas, large-area wetlands 
have received extensive attention due to their outstanding 
morphological functions and massive impact on people and 
nature. In contrast, small-area wetlands that are numerous 
and widely distributed are often overlooked (Liu and Gu 
2022). The ecological structure of small-area wetlands is 
relatively unstable compared to that of large-area wetlands, 
and rapid urban development poses a significant threat to 
small-area wetlands (Yuan and Zhou 2022). Small-area wet-
lands are crucial providers of ecological services; for exam-
ple, they serve as stepping stones for biological migration 
and they regulate hydrology and rainfall flooding. They can 
alleviate the inadequacy of regional ecological resources and 
the lack of ecological space resulting from the tightness of 
land resources (Cui et al. 2021; Zhang et al. 2023). There-
fore, future studies could further focus on the evolutionary 
characteristics of small-area wetlands and their driving 
mechanisms under the urban–rural gradient.

Conclusions

This study analyzed the dynamic changes in wetlands in 
Hefei and innovatively constructed an urban–rural gradient 
analysis framework to investigate the driving mechanisms 
behind wetland dynamics across different urban–rural gra-
dients. First, a single land use dynamic degree and land use 
transition matrix were used to analyze the dynamic change 
characteristics of wetlands from 1990 to 2020. Second, 
combining MSPA, PCA, and AP, we conducted urban–rural 
gradient identification and delineation. Finally, OPGD was 
selected to conduct quantitative statistical analysis on the 
driving forces of factors affecting wetland changes under 
different urban–rural gradients.

The results indicate that from 1990 to 2020, there have 
been significant dynamic changes in wetlands in Hefei. The 
overall trend shows a decrease in wetland area, with a total 
reduction of 155.19  km2. This decline primarily manifests in 
the degradation and disappearance of small wetlands, with 
wetlands mainly converting to cultivated land and impervi-
ous surfaces. The most influential human and natural factors 
on wetland dynamic changes vary in different urban–rural 
gradients. In urban gradient-type regions, the primary 
human and natural factors during 1990–2000 were imper-
vious surface proportion and slope, respectively. In compari-
son, during 2000–2010, they were the proportion of cropland 

and potential evapotranspiration. For the period 2010–2020, 
they were impervious surface proportion and potential evap-
otranspiration. In agricultural village and semi-ecological 
village gradient-type regions, the predominant human and 
natural factors for all three periods were cultivated land ratio 
and silt. In the ecological village gradient-type regions, the 
primary human and natural factors for the first two periods 
were also cultivated land ratio and silt, while for the period 
2010–2020, they were GDP and elevation. Additionally, the 
majority of interactions among driving factors exhibited 
stronger explanatory power.

This study and its findings provide a basis for under-
standing and conserving urban wetland resources, balancing 
urban–rural development and wetland preservation. Addi-
tionally, it contributes to advancing the achievement of the 
United Nations’ Sustainable Development Goals by 2030.
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