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Abstract
The aim of this study was to investigate the effects of agricultural land use and periods of hydrological variability on the 
environmental variables, as well as macrophyte and macroinvertebrate assemblages in lowland riverine wetlands. As a case 
study, we compared two periurban wetlands with intensive agricultural land use against two others with extensive livestock, 
considered references for the region during a normal and a dry flow period. Nutrient concentrations were significantly higher 
in agricultural riverine wetlands (total phosphorus and total nitrogen 30% higher). These wetlands exhibited higher rela-
tive coverage of floating anchored macrophytes and the absence of submerged vegetation. They showed significantly lower 
taxonomic richness and 40% lower density of macroinvertebrates, and a higher relative abundance of scrapers and predators. 
Wetlands of both land uses had a lower total density of macroinvertebrates and a higher abundance of tolerant desiccation 
taxa in the dry period. Particular differences between land uses, such as lower dissolved oxygen concentrations and lower 
macroinvertebrate diversity in agricultural wetlands, were found during the dry period. These findings indicate that the dif-
ferences between land uses seemed to increase during the aforementioned period. Further studies in riverine wetlands of 
both land uses must be carried on to generalize the results found. Despite this limitation, this study provides evidence of the 
effects of the surrounding landscape and hydrologic periods in the environmental characteristics, as well as the macrophyte 
and macroinvertebrate assemblages of the riverine wetlands studied.
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Resumen
El objetivo del estudio fue investigar los efectos del uso del suelo agrícola y de diferentes periodos hidrológicos en las 
variables ambientales, así como en el ensamble de macrófitas y macroinvertebrados en bañados de desborde fluvial. Como 
caso de estudio, comparamos dos humedales periurbanos con uso del suelo agrícola intensivo con otros dos con ganadería 
extensiva, considerados de referencia para la región, durante un periodo de caudal normal y otro de sequía. Las concentra-
ciones de nutrientes resultaron significativamente mayores en los bañados de desborde fluvial agrícolas (fósforo y nitrógeno 
total 30% mayores). Estos humedales exhibieron una mayor cobertura relativa de macrófitas flotantes arraigadas y ausencia 
de vegetación sumergida. Además mostraron una riqueza taxonómica de macroinvertebrados significativamente menor y 
40% menor densidad; por otro lado, presentaron una mayor abundancia relativa de raspadores y predadores. Durante el 
periodo de sequía, los humedales de ambos usos del suelo, mostraron una menor densidad de macroinvertebrados y una 
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mayor abundancia de taxa tolerantes a la desecación. Se encontraron diferencias particulares entre usos del suelo como 
concentraciones menores de oxígeno disuelto y menor diversidad de macroinvertebrados en bañados agrícolas durante el 
período de sequía. Estos resultados indican que las diferencias entre usos del suelo parecieron aumentar durante el peri-
odo mencionado. Para la generalización de los resultados presentados son necesarios estudios adicionales en bañados de 
desborde fluvial. A pesar de esta limitación, este estudio proporciona evidencia de los efectos del paisaje circundante y de 
los períodos hidrológicos en las características ambientales y en los ensambles de macrófitas y macroinvertebrados de los 
bañados de desborde fluvial estudiados.

Introduction

Wetlands are globally recognized as essential due to the 
many ecological functions and services that they provide 
to human society (Dixon and Wood 2003). They provide 
water quality protection (Verhoeven et al. 2006; Daneshvar 
et al. 2017), climate change mitigation, flood control, and 
drought prevention (Mitsch and Gosselink 2000; Zedler and 
Kercher 2005). They are also an important reservoir of flora 
and fauna (Sileshi et al. 2020; Gupta et al. 2020). Around 
the world, wetlands are subjected to several types of threats, 
both anthropogenic and natural. Agriculture is currently 
considered the main driver of wetland loss or degradation 
globally (Davidson 2014; Everard and Wood 2017).

The replacement of natural ecosystems by agricultural 
land use produces a homogenization that threatens biodiver-
sity (Allan 2004; Dornelas et al. 2009). The fertilizers applied 
indiscriminately in intensive agriculture activities are one 
of the most important sources of contamination by nutrient 
loading in freshwater ecosystems (Grashof-Bokdam and van 
Langevelde 2005; Strokal et al. 2016). The excess of these 
nutrients, such as phosphorus and nitrogen, transported to 
watercourses reduce water quality due to the increased growth 
of undesirable algae and low oxygen concentrations (Blann 
et al. 2009; Woodward et al. 2012). This has several negative 
effects on freshwater ecosystem biodiversity, like replacement 
and loss of species in their assemblages (Gustafson and Wang 
2002; Craft et al. 2007; Chalar et al. 2013; Lange et al. 2014; 
Laterra et al. 2018). Furthermore, drainage and water manage-
ment for agriculture has significantly altered the hydrology of 
wetlands affecting also their biodiversity (Lacoul and Freed-
man 2006; Blann et al. 2009; Green et al. 2017). Water with-
drawals for agriculture have been found to markedly reduce 
streamflow, causing a loss of connection between the surface 
and the groundwater systems (Postel 2000) and resulting in a 
loss of habitat for aquatic biota (McKay and King 2006).

Riverine wetlands (RWs) are recognized as a major com-
ponent of biodiversity in fluvial ecosystems (Amoros et al. 
2000; Tockner et al. 2002). They are areas where streams 
overflow and connect with the surrounding terrestrial envi-
ronment (Ringuelet 1962; Brinson and Malvárez 2002) and 
where macrophyte assemblages are highly developed (Amo-
ros et al. 2000). As it is known, macrophytes are key com-
ponents of wetlands ecosystems (Rejmánková 2011). They 

remove a variety of pollutants from the water (Bonanno and 
Vymazal 2017), and increase the habitat complexity and het-
erogeneity of these ecosystems (Thomaz and Cunha 2010; 
Poi et al. 2021). Also, they provide several resources for 
other organisms, like microhabitats (Dudley 1988; Warfe 
et al. 2008), shelter (Heck and Crowder 1991; Thomaz and 
Cunha 2010) and food (Dvořák 1996; Díaz-Valenzuela et al. 
2016).

Within the wetland biota, macroinvertebrates play an 
important role in the overall functioning of these ecosys-
tems as they occupy a central position in the food web and in 
organic matter cycling and energy flow (Batzer et al. 1999). 
The reduction in water quality caused by agricultural land 
use also leads to decreases in macroinvertebrate richness and 
density, as well as the decrease in the abundance of sensitive 
groups (Genito et al. 2002; Lange et al. 2014; Malacarne 
et al. 2016). In these senses, the macroinvertebrate assem-
blage is widely used as indicator of in-stream biotic integrity 
of the land use (Bunn et al. 2010), and the comprehensive 
analysis of their composition can provide an overview of 
wetland environmental status (Balcombe et al. 2005; Mereta 
et al. 2013).

The knowledge of biodiversity of RWs and the effects of 
land use and hydrological periods is necessary for ecosystem 
management and conservation plans. Our goal was to inves-
tigate the effects of intensive agricultural land use on the 
environmental variables and the macrophyte and macroin-
vertebrate assemblages of Pampean lowland RWs of Argen-
tina, in time periods characterized by different hydrological 
conditions. We hypothesized that (i) intensive agricultural 
land use induces changes in physical and chemical variables 
and in the structural and functional responses of macrophyte 
and macroinvertebrate assemblages; (ii) an extraordinary dry 
period leads to variations in the assemblages and increases 
differences between land uses.

Materials and Methods

Study Area

The study was conducted in the Pampean ecoregion of 
Buenos Aires, Argentina (Fig. 1). This region is a vast 
grassy plain that covers central Argentina. It has a humid 
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and temperate climate, mean annual precipitation between 
1000 and 1200 mm, and a mean annual temperature of 16 °C 
(Hurtado et al. 2006). Riverine wetlands of this region are 
threatened by agriculture that affects the water quality and 
alters the natural habitat (Gómez et al. 2016). In particular, 
RWs located in the Pampean plain of Argentina represent 
the low depressions of Pampean stream basins, characterized 
by abundant and diverse aquatic vegetation. The mentioned 
streams are characterized by an absence of riparian forest, 
low current velocities, and high nutrient levels (Rodrigues 
Capítulo et al. 2001; Feijoó and Lombardo 2007).

We selected two periurban RWs with intensive agri-
cultural land use and two others with extensive livestock 
located on tributary streams of the freshwater section 
of the Río de la Plata estuary (Fig. 1, Online Resource: 
Table S1). The selection of these RWs was based on geo-
hydrological and land use analysis (Rodrigues Capítulo 
et al. 2020; Gómez et al. 2022). The four of them are 
located in characteristic Pampean streams and despite 
their land use, these wetlands have been preserved. Del 
Gato and the Carnaval RWs are located in the surrounding 
agricultural area of La Plata city, the capital of the Prov-
ince of Buenos Aires. This area is one of the main horti-
cultural regions in the country (Baldini et al. 2019) with a 
high productivity based on intensive use of fertilizers and 
pesticides along with greenhouse technology (Arias et al. 
2020). Downstream, the Carnaval and Del Gato streams 
run through densely populated areas and their channels 
have been heavily impacted by anthropic action. Urban 
areas are increasing their coverage in the region and also 
threaten the integrity of the water ecosystems (López and 
Rotger 2020; Paredes del Puerto et al. 2022). The over-
extraction for crop irrigation and drinking water supply 
of the city of La Plata and its surroundings has caused 
the local deepening of the water tables, contributing to 

the loss of groundwater supply to the base flow of the 
streams where these RWs occur (Gómez et al. 2022). The 
other RWs, Cajaravillas and Chubichaminí, are located 
in Magdalena, a rural area with extensive livestock graz-
ing on natural grassland (0.7 cows per ha., Gómez et al. 
2022). Freshwater systems surrounded by these grass-
lands are considered the reference for the region (Solis 
et al. 2018; Arias et al. 2020; Paracampo et al. 2020). 
These RWs receive groundwater and surface water, with 
a greater volume being supplied by the former. Both RWs 
flow downstream through rural areas that do not hinder 
their natural drainage to the Río de la Plata estuary.

To know the effects of hydrological variation, four 
sampling campaigns were performed at the RWs during 
contrasting hydrological scenarios: two samplings were 
carried out during a period of normal flow, which we call 
“normal period” (September and October, mean monthly 
cumulative precipitation of 80 mm and 61 mm respec-
tively), and two samplings in a dry period (February and 
early March, monthly cumulative precipitation of 2 and 
92 mm respectively). Despite the cumulative precipitation 
of 92 mm recorded in March, only 10 mm were measured 
before the sampling campaign. The average precipitation 
recorded in the dry period was lower than the histori-
cal mean monthly accumulated precipitation for the last 
ten years (National Meteorological Service: February 
177 mm and March 123 mm). This intense drought coin-
cides with the “La Niña” phase of the ENSO phenomenon 
(Gómez et al. 2022).

In each RW we selected a section of 50 m in the center 
of the channel where the physicochemical and biologi-
cal samplings were carried out. In that section, in each 
sampling occasion, physical and chemical variables and 
macrophyte assemblage descriptors were measured and 
macroinvertebrates were sampled (see below). During the 

Fig. 1  Map of the study area 
and the sampling sites located in 
Buenos Aires province, Argen-
tina. Land use areas modified 
from Solis et al. (2019)
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dry period, the RWs studied were characterized by lower 
width, lower water velocity, and lower flow in the four wet-
lands studied (Online Resource: Table S1). The Carnaval, 
one of the agricultural RWs, was completely dry during 
the February campaign.

Site Characterization

The pH, temperature, dissolved oxygen concentration (DO), 
conductivity, and total dissolved solids (TDS) were measured 
in situ in triplicate with a HORIBA Multiparameter U-10. 
Besides, on each sampling occasion, a water sample was col-
lected for the analysis in the laboratory of nutrient concentra-
tions (Total Nitrogen, Nitrates [N-NO3], Nitrites [N-NO2], 
Ammonia [N-NH4], Total Phosphorus and Phosphate 
[P-PO4]) and oxygen demands (biochemical and chemical, 
BOD and COD, respectively) under standardized protocols 
(APHA 1998).

Macrophytes

In order to study the total macrophyte coverage, the 
species composition and their life forms, we chose five 
evenly-spaced transects perpendicular to the 50 m sec-
tion studied (wet width length) at each sampling site and 
sampling campaign. On each transect, the macrophytes 
species, along with their coverage and life forms, were 
recorded. For each variable, a single value was calculated 
from the average of the five transects. The total macro-
phyte coverage was calculated as the percentage of tran-
sect length covered by plants. The relative coverage of 
each species, as well as each life form, was estimated by 
measuring the length of the transect covered by each spe-
cies after Feijoó and Menéndez (2009). For this study we 
classified the species as emergent, submerged, floating-
leaved anchored, and free-floating (Cabrera and Fabris 
1948; Lahitte et al. 2004).

Macroinvertebrates

Macroinvertebrate samples were randomly taken among the 
vegetation stands at each RW (along the 50 m section) in 
triplicate at every sampling opportunity, giving an amount 
of three samples for each site at each sampling date. Samples 
consisted of all the material collected from the inside of a 
Plexiglas square (surface of 25 cm x 25 cm) with a sieve of 
500-um mesh (Cortelezzi et al. 2013). Each replicate was 
fixed in situ with 5% (v/v) aqueous formaldehyde. In the 
laboratory, the invertebrates were separated under a ster-
eomicroscope, counted, and identified to the lowest possible 

taxonomic level through standard keys (Lopretto and Tell 
1995; Merritt et al. 2008; Domínguez and Fernández 2009).

Data Analysis and Statistical Approach

The RWs along the physical and chemical variables were 
characterized by principal-component analysis (PCA). 
Before the analysis, the variables were standardized and the 
average for each sampling date was used for those that were 
taken in triplicate. The variables that presented little contri-
bution, those that showed low correlation with the first and 
the second component, were removed to simplify analysis 
(Kassambara 2017). Differences in physical and chemical 
variables between land uses and hydrological periods and 
their interaction were assessed by two-way ANOVA with 
‘RW’ nested within ‘land use’. The variables that did not fit 
with a normal distribution (temperature, conductivity, DO, 
Total Nitrogen and Total Phosphorus) were log-transformed. 
Pairwise comparisons on the main fixed factors were per-
formed using Tukey’s post hoc tests. Model residuals were 
tested for normality using a Shapiro–Wilk test.

The total coverage of macrophytes and the relative cov-
erage of each life form expressed as percentages were cal-
culated to characterize the macrophyte assemblage. Also, 
the richness was estimated as the number of taxa present, 
and diversity was estimated by the Shannon–Wiener Index 
(Shannon and Weaver 1949). In addition, to characterize 
the macroinvertebrate assemblage, density was expressed 
as the average number of individuals per square meter, and 
richness and diversity were estimated. We assigned each 
taxon to a functional feeding group (FFG) using available 
references (Cummins et al. 2005; Allan and Castillo 2007; 
Merritt et al. 2008). The relative abundance values of each 
FFG were calculated for each sample using macroinverte-
brate densities (ind.  m-2).

Macrophyte coverage, diversity of both assemblages, 
as well as density and FFG of macroinvertebrates, were 
compared between land uses and hydrological periods by 
two-way ANOVA with ‘RW’ nested within ‘land use’. The 
interaction between ‘land use’ and ‘hydrological period’ was 
also assessed. Density of macroinvertebrates data were log-
transformed, whereas coverage of macrophytes and FFGs of 
macroinvertebrates were arcsine transformed to fit with the 
normal distribution. Pairwise comparisons on the main fixed 
factors were performed using Tukey’s post hoc tests. Model 
residuals were tested for normality using a Shapiro–Wilk 
test. For count data (richness), we used generalized linear 
models (GLMs) with Poisson error distribution (link: log) 
for the same factors.

A Permutational Multivariate Analysis of Variance 
(PERMANOVA) was used to test differences in macroin-
vertebrate taxonomic composition between ‘land use’ 
(agriculture and livestock) and ‘hydrological period’ 
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(normal and dry), with ‘RWs’ nested within ‘land use’. 
The PERMANOVA was applied on a Bray–Curtis dis-
similarity matrix calculated from the abundance data of 
macroinvertebrates. We also used a similarity percentage 
analysis (SIMPER) to identify taxa separating different 
land use categories and hydrological periods and to quan-
tify the contribution of individual taxa to each category.

All statistical analysis were performed using the lan-
guage environment R version 3.6.3 (R Development Core 
Team 2020) and the RStudio Team (2015). The packages 
used for the analysis were FactoMineR (Lê et al. 2008), 
vegan (Oksanen et al. 2019), biodiversityR (Kindt and Coe 
2005), and stats (R Development Core Team 2020).

Results

Sites Characterization

The first two PCA axes explained 63.8% of the overall vari-
ance (Fig. 2). The first axis (43.2%) illustrated the environ-
mental differences between land uses. Agricultural RWs 
were characterized by higher nutrient concentration (total 
phosphorus, total nitrogen, soluble reactive phosphorus, 
and to a lesser extent, ammonium). By contrast, livestock 
RWs were characterized by higher values of pH, conductiv-
ity, and TDS and lower values of nutrient concentrations 
(Online Resource: Table S2, correlations between axis and 
variables). The second axis (20.6% of the total variance) 
was positively correlated with temperature, nitrate, and 
nitrite whereas it was negatively correlated with flow and 
dissolved oxygen. This axis showed the difference between 
hydrological periods in livestock RWs, where the dry period 
was characterized by higher temperature, lower flow and DO 
in comparison with the normal period.

Significant differences were found in water physical 
and chemical characteristics between land uses (Table 1). 
Agricultural RWs exhibited higher values of total phospho-
rus  (F1,6 = 34.50, p = 0.001), total nitrogen  (F1,6 = 116.94, 
p < 0.001), and P-PO4  (F1,6 = 44.84, p < 0.001). By contrast, 
livestock RWs had higher values of conductivity  (F1,34 = 
250.33, p < 0.001), TDS  (F1,34 = 147.72, p < 0.001) and pH 
 (F1,34 = 169.51, p < 0.001) in both hydrological periods. Dis-
solved oxygen concentration was lower in the dry period 
in comparison with the normal period in RWs of both land 
uses and also, was lower in agricultural RWs than in live-
stock RWs in the dry period  (F1,34 = 4.480, p = 0.042). In 

Fig. 2  Principal Component Analysis of the analyzed physico-
chemical variables in the four riverine wetlands studied in the sam-
pled period. Circles: agricultural land use; squares: livestock land 
use. Closed symbols: normal period; open symbols: dry period. See 
Table 1 for abbreviations

Table 1  Mean and standard 
error of physico-chemical 
variables in the riverine 
wetlands of agricultural and 
livestock land use in the two 
hydrological periods

Significantly higher values between land uses (p < 0.05) are underlined, a significant difference between 
hydrological periods, b significant differences in the interaction

Agriculture Livestock

normal dry normal dry

Temperature (T°, °C) 18.78 ± 0.23 20.44 ± 0.13a 17.61 ± 0.35 21.27 ± 0.29a

pH 7.18 ± 0.07 6.83 ± 0.02 8.16 ± 0.04 8.2 ± 0.01
Conductivity (Cond, ms/cm) 0.35 ± 0.02 0.29 ± 0.01 0.74 ± 0.01 1.02 ± 0.03
Dissolved oxygen (DO, mg/l) 6.01 ± 0.26 2.75 ± 0.03b 6.97 ± 0.26 4.6 ± 0.31b

Total dissolved solids (TDS, g/l) 0.23 ± 0.01 0.19 ± 0.01 0.47 ± 0.01 0.65 ± 0.02
Nitrates (N-NO3, mg N/l) 0.05 ± 0.01 0.03 ± 0 0.03 ± 0.01 0.05 ± 0.01
Nitrites (N-NO2, mg N/l) 0.03 ± 0.01 0.03 ± 0 0.02 ± 0 0.04 ± 0
Ammonia (N-NH4, mg N/l) 0.12 ± 0.02 0.18 ± 0.06 0.11 ± 0.03 0.06 ± 0.01
Phosphate (P-PO4, mg P/l) 1.04 ± 0.1 1.15 ± 0.09 0.1 ± 0.01 0.26 ± 0.03
Total Phosphorus (Total P, mg P/l) 1.54 ± 0.21 1.48 ± 0.19 0.5 ± 0.09 0.41 ± 0.01
Total Nitrogen (Total N, mg N/l) 3.37 ± 0.19 12.18 ± 0.41 2.92 ± 0.18 2.22 ± 0.17
Biochemical oxygen demand ( BOD,  mgO2/l) 8.75 ± 1.48 28 ± 1.5a 14.25 ± 0.69 10.58 ± 1.07
Chemical oxygen demand (COD,  mgO2/l) 47.5 ± 2.58 81.33 ± 9.72 75.5 ± 2.2 49.42 ± 2.86
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contrast, temperature was higher in the dry period in both 
land uses  (F1,34 = 51.67, p < 0.001). Biochemical oxygen 
demand showed differences between hydrological periods, 
with higher values in the dry period, only in agricultural 
RWs  (F1,6 = 16.98, p = 0.006).

Macrophytes

We recorded 15 species during the study, and the total cov-
erage of macrophytes was always greater than 60% in the 
RWs studied (Table 2). The order Poales was the best rep-
resented in both land uses. Typhaceae was the family with 
higher relative coverage in agricultural RWs and Cyperaceae 
in livestock ones. No significant differences were found in 
richness (estimate = 0.18, zvalue = 0.43, p = 0.670; esti-
mate = 0.29, zvalue = 0.65, p = 0.51), diversity  (F1,7 = 0.10, 
p = 0.763;  F1,7 = 1.72, p = 0.231) or total coverage  (F1,7 = 
0.00, p = 0.956;  F1,7 = 0.94, p = 0.346) between land uses 
and hydrological periods, respectively. Coverage of floating-
anchored species was higher in agricultural RWs than in 
livestock RWs  (F1,7 = 637.14, p < 0.001), where coverage of 
emergent macrophytes was higher  (F1,7 = 82.41, p < 0.001). 
Submerged macrophytes were not recorded in agricultural 
RWs. The emergent macrophyte Typha latifolia, and the 
floating anchored macrophytes Hydrocotyle ranunculoides, 
Alternanthera philoxeroides, and Ludwigia peploides were 
the dominant species in the agricultural RWs, whereas the 
emergent macrophytes Iris pseudacorus and Schoenoplectus 

californicus were the dominant in livestock RWs. Unlike the 
normal period characterized by a higher coverage of emer-
gent macrophytes  (F1,7 = 19.70, p = 0.003), the dry period 
was characterized by a higher coverage of a free-floating 
species (Lemna gibba,  F1,7 = 10.73, p = 0.014, Online 
Resource: Table S3).

Macroinvertebrates

A total of 63 taxa of macroinvertebrates belonging to 24 
orders were collected in the RWs studied (Online Resource: 
Table S4). During all the study 41 taxa and 20 orders were 
found in agricultural RWs whereas livestock RWs presented 
58 taxa and 23 orders. Taxa richness differed significantly 
between land uses (Fig. 3, estimate = 0.39, zvalue = 2.68, 
p = 0.007). Differences in the number of insect families were 
also found, with a total of 18 families in agricultural RWs 
and a higher number of 23 families in livestock RWs (Online 
Resource: Table S4). Mean density also differed between 
land uses  (F1,37 = 31.26, p < 0.001), with agricultural RWs 
showing half the density of livestock RWs (Fig. 3). In addi-
tion, the density found during the dry period for the two 
land uses was half that recorded for the normal period 
 (F1,37=34.40, p < 0.001, Fig. 3). Diversity only showed sig-
nificant differences between land uses in the dry period  (F1,37 
= 5.48, p = 0.025), with higher values in livestock RWs than 
in agricultural RW (Online Resource: Table S5).

Table 2  Macrophyte species 
coverage (* <5%; ** 5–25%; 
*** >25%) in the riverine 
wetlands of agricultural and 
livestock land use in the two 
hydrological periods

Also, total coverage and life forms are given: E, Emergent; F-A, Floating anchored; F-F, Free-floating; S, 
Submerged

Agriculture Livestock

Species Life forms normal dry normal dry

Typha latifolia L. E ** *** *
Sagitaria montevidendis CHAM. et SCHLTDL. E * *
Eleocharis montana (H.B.K.) ROEM. Et Schult. E * **
Polygonum punctatum Elliot E * ** *
Iris pseudacorus L. E *** *
Gymnocoronis spilanthoides (Don) DC. E * ** **
Schoenoplectus californicus (C. A. Meyer) Soják E *** ***
Lilaeopsis sp. Greene E *
Hydrocotyle ranunculoides L. F-A *** * * **
Alternanthera philoxeroides (Mart.) Griseb. F-A ** **
Ludwigia peploides (Kunth) P. H. Raven F-A ** ** *
Lemna gibba L. F-F ** **
Myriophyllum aquaticum (Vell.) Verdc. S * *
Stuckenia pectinata (L.) Börner [= Potamogeton 

pectinatus (L.)]
S *

Ceratophyllum demersum L. S **
Total coverage (%) 67 87 85 84
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Regarding FFGs, 26 taxa were identified as predators, 23 
as collector-gatherers, 7 as scrapers, 5 as collector-filterers, 
and 2 as shredders (Online Resource: Table S4). Free-living 
aquatic nematodes were not included in the FFG analysis 
due to the controversies in the FFG classification (Moens 
et al. 2006; López van Oosterom et al. 2013). In the com-
parison between land uses, agricultural RWs showed higher 
relative abundance of predators  (F1, 37 = 5.87, p = 0.020) 
and scrapers  (F1, 37 = 6.15, p = 0.012, Fig. 4). By contrast, 
livestock RWs exhibited a higher relative abundance of 
collector-gatherers in both periods  (F1, 37 = 6.50, p = 0.015) 
and a higher relative abundance of collector-filterers in the 
dry period, coinciding with a reduction of this FFG in the 
agricultural RWs (significant interaction,  F1, 37 = 10.567, 
p = 0.002; Fig. 4). Differences between hydrological peri-
ods were also found: the dry period exhibited higher rela-
tive abundance of predators  (F1, 37 = 28.63, p < 0.001) than 
the normal period, which had a significantly higher relative 
abundance of shredders  (F1, 37 = 26.39, p < 0.001, Fig. 4).

The assemblage compositions differed significantly 
between land uses (PERMANOVA: pseudo-F1,37 = 16.46, 
P = 0.001) and hydrological periods (PERMANOVA: 
pseudo-F1,37 = 12.39, P = 0.001). Based on SIMPER 

analysis results, the dissimilarity between land uses in 
the normal period was 48%, whereas the dissimilarity 
increased to 67% in the dry period. The taxa that con-
tributed the most to differences between agriculture and 
livestock were the amphipod, Hyalella curvispina (Shoe-
maker, 1942) (5.80%), the aquatic worms, Oligochaeta 
(5.33%), the limpet, Uncancylus concentricus (dOrbigny, 
1835) (5.29%), the copepods, Cyclopoida (5.18%), the 
water fleas, Cladocera (4.97%), the non-biting midges, 
Chironomidae (4.79%), and the mayfly, Caenis sp. 
(4.64%) (with higher abundance in livestock than agri-
cultural RWs) and the planarians, Dugesiidae (4.68%) 
and the springtails, Entomobryidae (3.47%) with higher 
abundance in agricultural RWs. The differences between 
hydrological periods were attributed to the decreased 
abundance of H. curvispina (7.92% in livestock, 7.48% 
in agriculture), Dugesiidae (5.29% in livestock, 10.42% 
in agriculture), and Caenis sp. (4.88% in livestock) in dry 
periods and the increased abundance of particular taxa 
such as the roundworms, Nematoda (4.00% in livestock, 
4.09% in agriculture), Cyclopoida (3.79% in livestock, 
5.73% in agriculture), and the biting midge, Ceratopogo-
nidae (4.43% in livestock).

Fig. 3  Mean and standard error of macroinvertebrate taxa richness, density and Shannon diversity in the agricultural and livestock riverine wet-
lands in the two hydrological periods

Fig. 4  Relative abundance of 
macroinvertebrate functional 
feeding groups in the agricul-
tural and livestock riverine 
wetlands in the two hydrologi-
cal periods
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Discussion

Our results suggest that agricultural land use had a strong 
influence on the physical and chemical parameters, mac-
rophyte structure, and macroinvertebrate metrics of the 
Pampean lowland RWs studied. The physical and chemical 
characteristics found for agricultural RWs denote water 
quality degradation of these wetlands in comparison with 
livestock RWs according to the first studies of the region 
(Tarda et  al. 2019; Cochero et  al. 2020; Gómez et  al. 
2022).

The high concentration of nutrients in RWs with agri-
culture in their catchment is typical of freshwater systems 
in agricultural areas because the high amount of fertilizer 
used in crops increases the concentration of nutrients in 
the surrounding freshwater systems (Carpenter and Ben-
nett 2011; Egler et al. 2012; Mugni et al. 2013; Ruiz-Picos 
et al. 2016). Phosphorus concentration found in livestock 
RWs was near the base values for basins of the region 
(Feijoó and Lombardo 2007) and agriculture values were 
similar to those found on lowland streams with the same 
land use (Solis et al. 2016, 2018). However, for both land 
uses the concentration exceeded the local guide values for 
biota protection (PT < 0.01 mg/l, ACUMAR 2019) being 
classified as highly eutrophic waters (PT > 0.02 mg/l) by 
international criteria CCME (2004). In contrast to the 
agricultural RWs, the higher conductivity, TDS, and pH 
found in livestock RWs agreed with the characterization 
performed by Molina et al. (2017) for aquatic environ-
ments associated with pastures, herbaceous, and shrub 
vegetation. In particular, in pasture catchments like those 
studied, cattle have free access to wetlands for watering, 
which can increase the total dissolved solids and conduc-
tivity due to the constant disturbance and resuspension of 
the substrate (Gary et al. 1983; Roche et al. 2013). Also, 
the higher conductivity of the livestock RWs could be 
produced by the groundwater contribution (Caruso 2002).

In accordance with our results, changes in macrophytes 
species resulting from agricultural land use were also 
recorded for USA wetlands (Gustafson and Wang 2002). 
Submerged macrophytes were absent and floating macro-
phyte coverage increased in agricultural lands, as docu-
mented in the context of increased nutrient load (Rasmus-
sen and Anderson 2005). Besides, other authors addressed 
a lower coverage of emergent macrophytes in wetlands 
(Lougheed et al. 2001) and lowland streams (Zgola 2014) 
rich in nutrients. Species composition could change in 
relation to agricultural land use as well. In our work, we 
found T. latifolia and H. ranunculoides as the dominant 
species in agricultural sites. Typha spp. are considered to 
increase their dominance in nutrient-enriched wetlands 
(Cooper et al. 2006; Craft et al. 2007; Rejmánková 2011). 
These species can benefit from agricultural nutrient pulses 

by taking up nutrients rapidly and funneling them into 
growing tissues (Zedler and Kercher 2004). Similarly, H. 
ranunculoides is known to increase its growth and bio-
mass with increasing nutrient availability in laboratory 
conditions (Hussner and Lösch 2007). But, not only the 
surrounding land use can determine the macrophyte com-
position, also the physical attributes and the hydrologic 
disturbance affects the relative abundance of macrophyte 
species (Lacoul and Freedman 2006). The higher concen-
tration of TDS and the shallow and wide characteristic of 
the livestock RWs allowed the development of a higher 
coverage of emergent macrophytes in agreement with pre-
vious studies (Feijoó et al. 1999; Egertson et al. 2004). 
Despite the land use, macrophyte coverage was high in 
the four RWs studied, giving these wetlands a high habitat 
complexity (Thomaz and Cunha 2010). On the other hand, 
as it was found in other wetlands (Cooper et al. 2006; Craft 
et al. 2007; Moges et al. 2017) the order Poales was the 
best represented. Regarding hydrological conditions, the 
high coverage of L. gibba found in the dry period cor-
relates with the increase in the coverage of floating mac-
rophytes documented at low flows by other authors (Cao 
et al. 2018; Fraaije et al. 2018). Lower flow velocities lead 
to a predominance of more typically lentic plant commu-
nities, such as free-floating species (Fraaije et al. 2018).

Although the use of macroinvertebrates as indicators 
of agricultural wetland land use is still discussed (Batzer 
2013; Gleason and Rooney 2017), we found that this 
assemblage responded to the effect of agriculture on the 
RWs studied, and can be considered good indicators of 
land use in this wetlands. In agreement with the results 
found in other types of wetlands around the world, lower 
richness and density were observed in wetlands with inten-
sive agricultural land use. That is the case for example for 
some Mediterranean littoral wetlands (Ortega et al. 2004) 
and ponds (Della Bella and Mancini 2009), North Ameri-
can floodplain wetlands (Chipps et al. 2006) and Chinese 
wetlands (Wu et al. 2019) impacted by intensive agricul-
tural activities. Similar values of taxonomic richness were 
found between our research and those previously men-
tioned, showing mean values near to 25 in reference wet-
lands and near to 13 in agricultural ones. Besides, Epele 
and Miserendino (2015), found a mean taxonomic richness 
of 20 in Patagonian wetlands with extensive livestock and 
a decreased number of insect families with the increased 
concentration of total phosphorus and nitrogen. In line 
with our results for RWs, Arias et al. (2020) and Solis 
et al. (2017) also found that mean density was twice as 
high between streams of the Pampean region with exten-
sive livestock and intensive agriculture in their surround-
ings. Interestingly, in comparison with Pampean streams 
(Ocon and Rodrigues Capítulo 2012; Solis et al. 2017, 
2018; Arias et al. 2020) the RWs studied, regardless of the 
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land use, presented a higher number of macroinvertebrate 
orders, highlighting the importance of its presence in the 
streams.

The reduction in taxonomic richness is usually related to 
the loss of sensitive taxa in agricultural land use (Gerth et al. 
2017). High percentages of agricultural land cover reduced 
the number of sensitive macroinvertebrate taxa and produced 
a macroinvertebrate community composition that reflected 
an altered habitat (Genito et al. 2002). In coincidence with 
Mugni et al. (2013), Solis et al. (2017, 2018) and Marrochi 
et al. (2021), who studied streams in the Pampean region, our 
results in RWs suggest that the deterioration in water quality 
generated by intensive agriculture could cause a decrease 
on the abundance of sensitive macroinvertebrate taxa such 
as H. curvispina and Caenis sp. Cooper et al. (2006) also 
found less abundance of a Hyallela species (Hyalella azteca) 
in wetlands adjacent to agricultural land. In addition, we 
found that tolerant taxa such as Dugesiidae and Entomo-
bryidae characterized agricultural RWs, in coincidence with 
the results of Solis et al. (2018). We also recorded the pres-
ence of some sensitive invertebrates according to Rodrigues 
Capítulo et al. (2001) that were found only in livestock RWs 
such as Lestes, Rhionaeschna, and individuals of the Sim-
uliidae family.

Feeding strategies of macroinvertebrates could also 
reflect the adaptation of species to stressors and form part 
of a unified measure across communities differing in taxo-
nomic composition (Tomanova et al. 2006). The effect of 
agricultural land use could be reflected in a greater relative 
abundance of scrapers and predators in RWs. The increase in 
the frequency of scraper feeding habits is expected to occur 
in nutrient-enriched environments (Dolédec et al. 2006; 
Statzner and Bêche 2010). On the other hand, predator abun-
dance was associated with the higher density of Dugesiidae 
and Helobdella sp., considered tolerant taxa by other authors 
(Rodrigues Capítulo et al. 2001; Solis et al. 2019). The low-
est proportion of collector-filterers in agricultural RWs in the 
dry period was in accordance with Gebrehiwot et al. (2017), 
who found a decrease in this FFG at organic polluted sites of 
Ethiopian wetlands in a dry period. Also, the relative abun-
dance of this FFG is considered to be a useful metric for 
characterizing the ecological condition of river-associated 
wetlands in Eastern Africa (Mereta et al. 2013).

The presence of different life forms of macrophytes can 
also drive the composition of invertebrate FFG by determin-
ing the availability and type of food resources (Cremona 
et al. 2008; de Souza Rezende et al. 2019). In this sense, sub-
merged macrophytes are usually related to a greater abun-
dance of collectors-gatherers (Cremona et al. 2008; Peiró 
et al. 2015; de Souza Rezende et al. 2019), because its archi-
tecture allow the retention of more detritus (Sand-Jensen 
1998). In our study, this life form was absent in agricultural 
RWs in concordance with the lower proportion of this FFG. 

On the other hand, the highest proportion of predators in 
agricultural RWs and in the dry period could be related to 
the higher coverage of floating-leaved macrophytes. This 
life form provides little habitat in the vertical dimension that 
promotes a higher exposure to visual predators compared 
to the other macrophyte life forms (Gosselain et al. 2005). 
In this sense, the land use and hydrological period effects 
observed in the macrophyte assemblages could also contrib-
ute to the differences in the proportion of FFGs.

Much of the current knowledge about the ecological 
response of macroinvertebrates to droughts is related to 
the effects of largely predictable seasonal droughts rather 
than supra-seasonal events (Lake 2003). Species inhabiting 
temporal ecosystems that suffer predictable droughts have 
different resistance mechanisms, including tolerance to the 
deterioration of water quality conditions and the presence of 
desiccation-resistant life history stages (Bogan et al. 2017). 
Also, resilience mechanisms such as dispersal to rewet-
ted habitats from refugia are common among taxa adapted 
to temporary-wetland habitats (Boulton and Lake 2008). 
On the other hand, faunal recovery from supra-seasonal 
droughts varies from one case to another (Lake 2003). Gen-
erally, species are vulnerable to these events as they are not 
adapted and cannot escape the disturbance events in time 
(Boulton 2003). The unusual absence of precipitation, the 
high evapotranspiration in summer, and the loss of connec-
tion with the groundwater in agricultural areas (Rodrigues 
Capítulo et al. 2020) led the Carnaval RW to be dry in the 
February campaign. The lower oxygen concentration in RWs 
surrounded by agricultural land indicated a higher effect of 
the dry period on the water characteristics of these RWs. 
According to Robinson et al. (2004), reduced flow com-
monly leads to decreases in dissolved-oxygen content, which 
is critical to the survival of many aquatic species and can 
also affect their distribution and abundance. This condition 
was associated with the lower macroinvertebrate diversity, 
the wide difference in taxa richness, and the higher dissimi-
larity in macroinvertebrate composition found in agricul-
tural RWs in comparison with livestock RWs during the dry 
period.

In line with our findings on the RWs studied, it is known 
that natural low flows cause decreases in invertebrate densi-
ties (Wood and Armitage 2004). Some authors suggested 
that this decrease occurs in response to changes in competi-
tion and predation because habitat area decreases and food 
quality and quantity are altered by flow reduction (Cowx 
et al. 1984; Wood et al. 2000). Furthermore, invertebrate 
community composition often changes in response to low 
or reduced flow in streams (Gore et al. 2001; Suren et al. 
2003) and wetlands (Sim et al. 2013). The increase in the 
density of particular taxa associated with the dry period in 
macroinvertebrate assemblages was similar to that reported 
by other authors. Larned et al. (2007) also found Nematoda 
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and Copepoda to be resistant to desiccation. Desiccation-
resistant stages are well-known in copepods (Dahms 1995), 
and aquatic nematodes are believed to survive extended 
dry periods in a state of anhydrobiosis (Drummond et al. 
2015). Moreover, Ceratopogonidae larvae appear almost 
immediately when surface flows resume, suggesting that 
they use the hyporheic zone as a refuge from surface dry-
ing (Stanley et al. 1994; Stubbington 2012). Conversely, 
H. curvispina and Caenis sp. decrease their abundance in 
the dry period. There are no previous reports on changes 
in the abundances of these taxa under drought conditions. 
However, other related species have been studied. Ladle 
and Bass (1981) and Wood and Armitage (2004) recorded 
similar responses of the amphipod Gammarus pulex (L.) to 
dry conditions. Regarding Caenis sp., the reduced flow and 
decreased water velocity were documented to be detrimen-
tal to other Ephemeroptera taxa (Calapez et al. 2017). With 
regards to FFGs, in agreement with our results, the effects 
of a flow reduction in streams and wetlands were associ-
ated with an increase in the prevalence of predators and a 
decrease in shredders (Bêche et al. 2006; Statzner and Bêche 
2010; Gebrehiwot et al. 2017). Reduced velocities could 
favor invertebrate predators by removing velocity-mediated 
predation refugia (Dewson et al. 2007) and affect shredder 
abundance by modifying the quality of resources (Statzner 
and Bêche 2010).

The results showed the combined effects of nutrient 
loading and hydrological disturbances in the RWs studied. 
Similar results were mentioned by Green et al. (2017) for 
the Doñana wetlands in Spain, a more complex system of 
wetlands than the studied and recently for headwater streams 
of the region on fish assemblages (Paredes del Puerto et al. 
2022). As Green et al. 2017) mentioned, decisions from 
informed policy makers can promote ecosystem resilience to 
global threats through local measures. The correct manage-
ment of agricultural activities in the land surrounding a river, 
as part of integrated watershed management, is of paramount 
importance to the conservation of associated wetland water 
quality (Wang 2001). Therefore, unsustainable agricultural 
practices could be replaced with environmentally-friendly, 
ecological agriculture to preserve wetland ecosystems (Zou 
et al. 2018).

Conclusions

The findings provide evidence of the importance that the 
surrounding landscape has in the environmental character-
istics and macrophyte and macroinvertebrate assemblages of 
the lowland RWs studied. The differences between land uses 
were greater during a drought period, which could indicate 
a higher sensitivity to different hydrological conditions in 
those wetlands surrounded by intensive agricultural systems 

in comparison with those surrounded by extensive livestock 
considered as reference for the region.

Despite the land use, the great macrophyte coverage and 
the high number of macroinvertebrate orders in the RWs 
studied indicates the importance of these systems in the 
basin and the value of their conservation. The differences 
found in macroinvertebrate FFGs could also be influenced 
by the composition of macrophyte assemblage, indicat-
ing the role and importance of aquatic plants in lowland 
RWs. In this sense, the combined use of macrophytes and 
macroinvertebrate assemblages were a powerful tool for 
describing and assessing the riverine wetlands studied. 
The metrics evaluated were useful for studying the land 
use of the catchment and the hydrological conditions.

Our study was constrained by the low number of RW 
still preserve in the region and thus low replication of 
riverine wetlands at each land use. However, further 
studies in the region and in the study sites will allow for 
more robust and generalized assessments of patterns we 
observed in this study. Despite this observation, consider-
ing the limited knowledge about this type of wetlands, we 
provide valuable information for future projects of conser-
vation and management of these environments.
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