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Abstract
AnArtificial Neural Network (ANN), a Machine Learning (ML) modeling approach is proposed to predict the ecological state of
the North Lagoon of Tunis, a shallow restored Mediterranean coastal ecosystem. A Nonlinear Auto Regressive with exogenous
input (NARX) neural network model was fitted to predict Chlorophyll-a (Chl-a) concentrations in the North Lagoon of Tunis as
an eutrophication indicator. The modeling is based on approximately three decades of monitoring water quality data (from
January 1989 to April 2018) to train, validate and test the NARX model. The most relevant predictor variables used in this
model were those having a high permutation importance ranking with Random Forest (RF) model, which simplified the structure
of the network, resulting in a more accurate and efficient procedure. Those predictor variables are secchi depth, and dissolved
oxygen. Various model scenarios with different NARX architectures were tested for Chl-a prediction. To verify the model
performances, the trained models were applied to field monitoring data. Results indicated that the developed NARX model
can predict Chl-a concentrations in the North Lagoon of Tunis with high accuracy (R = 0.79; MSE = 0.31). In addition, results
showed that the NARX model generally performed better than multivariate linear regression (MVLR). This approach could
provide a quick assessment of Chl-a variations for lagoon management and eco-restoration.
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Introduction

Transitional water bodies, such as coastal lagoons, are situated
at the interface between the continent and the sea. These are
active areas delivering essential ecosystem services (Mooney
et al. 2009; Newton et al. 2018), and they occupy approxi-
mately 13% of the world’s coastline (Barnes 1980). In these
semi-closed water bodies, the gradient from fresh to saline
water creates a rich biodiversity (Basset et al. 2013). In recent
decades, Mediterranean coastal lagoon ecosystems have been
especially exposed to anthropic eutrophication, primarily due
to urbanization (Zaldívar et al. 2008; Souchu et al. 2010).
Indeed, limited exports to the open sea and long periods of
residence time in these water bodies have resulted in the ac-
cumulation of nutrients, mainly from anthropogenic activities
(de Jonge et al. 2002; Newton et al. 2014). This excess of
nutrient inputs contributed to the eutrophication of the water
columns (Cloern 2001; Souchu et al. 2010).

Several studies have been conducted in coastal
Mediterranean lagoons to assess the eutrophication level.
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García-Ayllón (2017) stated that the Mar Menor lagoon, lo-
cated in the East of the Region of Murcia in Spain, has suf-
fered from an important process of intense anthropization over
the last five decades. One of the main indicators was the rapid
population growth of new jellyfish species, reaching more
than 100 million specimens each summer (Robledano et al.
2011). Thau Lagoon is another particularly interesting case of
Mediterranean coastal lagoon eutrophication. Thau lagoon is
an ecosystem located at the Mediterranean French coast,
known by supporting traditional shellfish farming activities
in France and which has been subject to eutrophication lead-
ing to large anoxic events associated with significant mortality
of shellfish stocks (Derolez et al. 2020). In this context, the
North Lagoon of Tunis, a South Mediterranean lagoon, locat-
ed in the north of Tunisia, provides a good example for the
diagnosis and study of eutrophication in Mediterranean coast-
al ecosystems. In fact, the North Lagoon of Tunis is one of the
most important restored lagoons in Tunisia, which has known
a critical ecological state substantially due to urban develop-
ment (Harbridge et al. 1976).

Chlorophyll-a (Chl-a) is the most essential pigment in aer-
obic photosynthetic organisms and its measurement is used as
an indicator of the phytoplankton biomass present in water
and thus, the degree of eutrophication of the ecosystem
(Tian et al. 2017). The probable presence of algae blooms that
have a major effect on the physical, chemical and biological
processes of the lagoon can be interpreted as elevated Chl-a
levels (Tian et al. 2017).

Cyanotoxins generated by cyanobacteria in lagoon water
could present a risk to human health (Watzin et al. 2006; Mc
Quaid et al. 2011; Kalaji et al. 2016). In situations where the
current cyanotoxin concentration is not available, Chl-a is also
widely recognized as a surrogate indicator of cyanobacterial
density (Wheeler et al. 2012). It is therefore important to mon-
itor Chl-a concentration and, in turn, to provide information
on the management of water quality.

The ability to automatically monitor water quality is very
useful, especially in vulnerable areas where (1) there is a high
threat of potential pollution events and (2) related socio-eco-
nomic activities that involve preventive actions are carried out
(Jimeno-Sáez et al. 2020). However, as far as we know, there
is no automated system that reliably measures the concentra-
tion of Chl-a in real time (Jimeno-Sáez et al. 2020).
Measurements of Chl-a must be performed in laboratories,
which implies high latency and high cost (Jimeno-Sáez et al.
2020). To avoid such inconveniences, most ecologists have
recently been using modeling techniques.

In terms of model building, there are typically two ap-
proaches in ecological modeling: (1) physically-based (or
conceptual) and (2) data-driven-based models (Babovic et
al. 2005; He et al. 2014; Zhang et al. 2016). Physical models
are complex and require complex mathematical methods, suf-
ficient physical data and high expertise and experience in their

implementation (Aqil et al. 2007; He et al. 2014). While data-
driven models are easier to implement, not so complex, and
remove the need for specialized knowledge of physical pro-
cesses controlling the transport of pollutants (Bowden et al.
2006), which make them popular and widely used for model-
ing complex natural processes, mainly in predictive modeling.
They can be helpful and valuable for modeling and predicting
eutrophication episodes in any natural ecosystem (Nayak et al.
2005; He et al. 2014).

The variables that influence Chl-a content in water
bodies are numerous and complex (Jimeno-Sáez et al.
2020). In the existing literature, different statistical ap-
proaches have been used to predict Chl-a concentrations
based on regression analyses (Su et al. 2015). However,
these traditional methods of data processing usually use
a linear relationship to simplify complex problems,
resulting in unsatisfactory results because they are not
sufficiently efficient to deal with complex non-linear re-
lationships between the variables involved (Su et al.
2015).

Machine learning (ML) algorithms have been shown to
be more efficient than conventional data processing
methods in assessing water quality (Abba et al. 2017),
as they are well suited for predicting non-linear and com-
plex functions. Previous studies have confirmed the supe-
riority of ML over traditional approaches in modeling
water quality parameters (Charulatha et al. 2017).
Among ML techniques, we can mention Artificial
Neural Networks (ANNs). ANNs imitate learning pro-
cesses of a human brain through training and calibration
of the network. This skill makes ANNs useful tools for
analyzing complex situations that are difficult to explain
with traditional methods (Daliakopoulos et al. 2005;
Samarasinghe 2007).

The ability to capture system dynamics and non-linearities
makes ANNs especially appropriate for the investigation of
natural systems, which usually have distinctive spatial-tempo-
ral variability (ASCE 2000).

ANNs algorithms have also been used to study Chl-a dy-
namics, since it is one of the variables representing algal bio-
mass, and has been considered one of the early warning pre-
ventive approaches to avoid the occurrence of potential algal
blooms (Chen et al. 2015). In a recent study, Li et al. (2017),
applied different types of ANNs to estimate the concentration
of Chl-a in 27 lakes in China, respectively. In recent study,
Tian et al. (2017) used an ANN to predict Chl-a concentra-
tions to an estuary reservoir in East China. Considering that
the ANNs achieved the best result for different water quality
parameters in several studies (Abba et al. 2017; Keller et al.
2018), including Chl-a, it can be expected that these models
will obtain satisfactory Chl-a estimation results in this study.

There are also many classifications in ANNs, such as the
Back Propagation Networks, Radial Basis Function

Wetlands (2021) 41: 111Page 2 of 17111



Networks, etc. The Back Propagation network is the most
commonly used learning algorithm (Rajaee et al. 2019). In
this study, a recent ANN approach namely, a nonlinear
autoregressive with exogenous inputs (NARX) neural net-
work was developed. NARX is neural network that belongs
to the non-linear back propagation dynamic neural networks
(Hayken 1999).

In terms of time and cost, reducing the number of variables
to be measured is very important. For this reason, it is of a
great interest to select specific variables that are most related
to Chl-a levels. ML provides an efficient technique to do that.
It is called the Random Forest model (RF).

RF has been applied in many studies. Indeed, in 2016,
Béjaoui et al. have investigated with the RF model the most
important predictor variables for Chl-a variations in the la-
goon of Bizerte, located in the north of Tunisia. In another
more recent research study, Béjaoui et al. (2018) have used the
RF model to study the dynamic of the plankton in Ghar Melh
lagoon, located in the north of the Tunisian Mediterranean
coast.

It is known that an early-warning proactive approach of the
Ch-a content is essential to prevent or mitigate the occurrence
of eutrophication episodes, especially in sensitive ecosystems
(Jimeno-Sáez et al. 2020) like the North Lagoon of Tunis. For
this reason, the use of NARX is essential to perform a one-step
ahead forecasting of Chl-a values in our study of the North
Lagoon of Tunis.

Given the superiority of the ML algorithms, this study has
been conducted to achieve the following objectives: (1) to
select the specific variables that are the most related to Chl-a
concentrations in the North Lagoon of Tunis, using, especial-
ly, RF model. To do so, different variables combinations were
tested, (2) to develop an ANN network to estimate and fore-
cast one step ahead of Chl-a concentrations based on NARX
neural network and to (3) validate the performance of the
model.

Several studies have been carried out on the eutrophication
process and water quality parameters of the North Lagoon of
Tunis (Ben Charrada 1992; Rezgui et al. 2008; Trabelsi-Bahri
et al. 2013). However, to the very best of our knowledge, there
is no previous research using ML models to predict water
quality parameters in this lagoon, specifically Chl-a
concentrations.

Materials and Methods

Study Area

The North Lagoon of Tunis is a well-mixed shallow coastal
seawater lagoon located in north of Tunisia (36°45′–36°52′ N
and 10°10′–10°20′ E) and Southern Mediterranean Sea
(Fig. 1). Covering about 22 Km2 with an average depth of

2 m (range between 0.5 and 3.5 m). This lagoon is one of
Tunisia’s main shallow water bodies (Trabelsi-Bahri et al.
2013). It is connected to the open sea at the Gulf of Tunis,
where water is exchanged with theMediterranean Sea through
Kheireddine channel, which measures 800 m in length and
40 m in width and has a mean depth of approximately 2.5 m
(Ben Charrada 1992).

In 1985, a major restoration project has been undertaken in
this lagoon to stop pollution and eutrophication (Van Berk and
Oostinga 1992). The ultimate goal of this project was to achieve
a good chemical and ecological status in this eutrophicated
lagoon and to achieve extensive land reclamation around it
(Trabelsi-Bahri et al. 2013). The goal was also to reduce the
water retention time in the lagoon (Trabelsi-Bahri et al. 2013).
These aims have been successfully accomplished by creating
an inlet/outlet tide-driven circulation system following the con-
struction of a longitudinal (East-West) separation dam across
the lagoon and inlet/outlet gates at the entrance of the canal
connecting the lagoon to the open sea (Trabelsi-Bahri et al.
2013). The gates and the separating dam permitted a good
circulation (Fig. 1) of the lagoon’s water (Van Berk and
Oostinga 1992). In addition, the shoreline was straightened to
prevent water stagnation (Trabelsi-Bahri et al. 2013).

The restoration project resulted in a clear improvement of
the biodiversity (Trabelsi-Bahri et al. 2013). As a matter of fact,
in January of 2013 the North Lagoon of Tunis was deemed a
“wetland of international importance”, Ramsar site (Mdaini et
al. 2019). However, being aware of the importance and fragility
of this ecosystem, it must always remain under observation.

Data Analysis

The monthly concentrations of Chl-a data along with physi-
cochemical parameters of water quality of the North Lagoon
of Tunis for the period from January 1989 to April 2018 were
collected.

In the present study, a set of seven environmental variables
known to affect Chl-a concentrations were monitored: Secchi
depth, dissolved oxygen, total phosphorus, total nitrogen, pH,
water temperature and practical salinity (Sp; IOC et al. 2010)
called salinity in this paper. Sampling campaigns have been
carried out from February 2014 through April 2018 at five
sampling stations (Fig. 1). Water samples were collected
about 10–20 cm below the water surface according to standard
methods. In addition, Al-Buhaira Invest company, which is in
charge of the ecosystem, provided us with long monthly time
series, as a part of the monitoring program for the lagoon, in
order to gather information on the physical and chemical char-
acteristics of the ecosystem.

All ML techniques in addition to linear model building
were performed using the MATLAB software MATLAB®
software (version 9.3.0.948333 (R2017b), The Mathworks,
MA, USA).
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Chl-a Concentrations

As above-mentioned, Chl-a concentrations were used as the
eutrophication indicator, thus to assess the ecological status of
the studied area. Water samples of 500 mL for Chl-a measure-
ments were filtered through a 0.45 μm pore-size membrane
(Millipore). Chl-a was extracted in 10 mL of 90% acetone
for 24 h in the dark at -20 °C following the protocols published
by Parsons et al. (1984). The extract concentration was ana-
lyzed spectrophotometrically according to the method of
Lorenzen (1967).

Figure 2 illustrates that the temporal variability of the Chl-a
in the North Lagoon of Tunis, is relatively low and approxi-
mately similar for stations 1, 2, 3, and 4, and is significantly
higher at station 5, which is the furthest from the sea water
inlet gate.

Physico-chemical Variables

Physico-chemical variables, including water temperature and
salinity were measured in situ using a WTW LF325 conduc-
tivity meter. pH was measured by a pH 330i WTW pHmeter.

The Secchi depth of the lagoon was measured with a 25 cm
diameter Secchi disc. the Secchi depth is the visibility of the

Secchi disc. In fact, the Secchi depth is a parameter indicator
of the transparency of the water column and it is the depth of
disappearance of the Secchi disc.

Since the end of the restoration works, the visibility of the
lake bottoms has improved significantly. In the absence of
strong wind the rapport (transparency / depth) generally ex-
ceeds 90% (Shili 1995).

Dissolved oxygen was measured by OXY 197 oxymeter.
Figure 3 shows that the temporal (seasonal and interannual)
variations of dissolved oxygen is relatively similar at all five
stations in the lagoon. This figure further illustrates that the
lagoon remains well oxygenated from the inlet to the outlet
gates. Thus, suggesting that the dissolved oxygen air-sea ex-
changes are efficient and that the lagoon ecological state re-
mains healthy.

Surface water samples were analyzed in the laboratory for
total phosphorus and total nitrogen. Samples for nutrient de-
termination were collected in 1000 mL acid-washed polypro-
pylene bottles and kept on ice until use.

Nutrient analyses were performed using a spectropho-
tometric method (Strickland and Parsons 1972) with a
UV-visible spectrophotometer. Total phosphorus and total
nitrogen were determined after alkaline peroxodisulfate
digestion in an autoclave using unfiltered water. For the

Fig. 1 Location of the study area
and water quality monitoring
stations (1–5). Arrows inside the
map represent the unidirectional
inlet/outlet water circulation
system
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determination of total phosphorus, the phosphorus com-
pounds were mineralized to orthophosphate ions in an
autoclave at 100 °C using a solution of sulfuric acid and
potassium persulfate.

Determination of total nitrogen compounds required high
oxidation of the nitrogenous ions into nitrates in an autoclave
using an alkaline solution of persulfate, then by the reduction
of nitrates to nitrites by passing through a cadmium column.
The nitrites formed were determined using sulfanilamide and
N-naphthyl-ethylene.

Modeling Approaches

Analysis of Variance (ANOVA)

Analysis of variance ANOVA was performed to ascertain if
there were any significant difference in physico-chemical con-
ditions and in Chl-a concentrations among the sampling sta-
tions in the North Lagoon of Tunis. ANOVA was also con-
ducted to verify any significant relationship between Chl-a
and the physico-chemical parameters.

Fig. 2 Temporal variability of
Chl-a in the North Lagoon of
Tunis at: (a) station 1; (b)
station2; (c) station 3; (d) station
4; (e) station 5; (f) mean
concentration of the five sampling
stations

Fig. 3 Temporal variability of the
dissolved oxygen in the North
Lagoon of Tunis at: (a) station 1;
(b) station 2; (c) station 3; (d)
station 4; (e) station 5; (f) mean
concentration the five sampling
stations
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Random Forest

ML algorithms are typically implemented with a set of predic-
tor variables (input variables) and one or more target variables
(output variables) represented as a continuous value for re-
gression problems (Kohavi and Jhon 1997) where maximiz-
ing accuracy is the main goal of predictive modeling (Motoda
and Liu 2002). To estimate a parameter of water quality we
can use all available predictor variables, or select a smaller
number of them. This can result in the inclusion of too few
or toomany inputs to the model, both of which are undesirable
(Maier et al. 2010). To address this issue, a predictor variable
selection stage had been considered in this study to eliminate
redundant data. The aim of reducing the number of predictor
variables in ML is to speed up the process of the learning
algorithm to boost predictive accuracy and increase the com-
prehensibility of learning results (Motoda and Liu 2002).
There are many parameters that influence the concentration
of Chl-a. This study performed a RF model to determine the
appropriate predictor variables that are the most important to
the Chl-a concentration. RF modeling is a relatively recent
ML approach based on decision trees and trained on a collec-
tion of input predictor variables in order to obtain an accurate
prediction of the output variable (Breiman 2001).

RF approach has many advantages. First, no probability
distribution of predictor variables is assumed. Second, it can
handle a large number of variables, selecting the most useful
ones among them (Mulia et al. 2013; Park et al. 2015). Third,
RF predictions are exceptionally accurate, since they come
from the average set of many simple models, thereby avoiding
the over-fitting problem typical of many non-linear regression
techniques (Phillips et al. 2008; Huang et al. 2015). Fourth,
Because each tree is built on a random subset of the original
data, no separate independent dataset or cross-validation ap-
proach is required to test the predictive performance of the
model (Were et al. 2015). Finally, RF technique is adequate
for natural ecosystems where there is a large amount of
physico-chemical and biological variables that have complex
relationships.

An interesting aspect of the RF model is that it can provide
a quantitative measure of the importance of the various pre-
dictor variables in the final result, which can be useful in
choosing the most important ones.

The method used to evaluate the ranking of the most im-
portant predictor variables from the RF model is the out-of-
bag (OOB) technique by permutation; a technique that mea-
sures how influential the predictor variables in the model are
at predicting the response variable (Chl-a). The effect of the
predictor variable increases with the value of this measure.

If a predictor variable has an effect on the prediction, then
the permutation of its values should have an impact on the
model error. If a predictor variable is not influential, the per-
mutation of its values should have little to no effect on the

model error (Mitchell 2011). It consists of calculating the gain
in the mean square error, which is computed by permuting
OOB data: for each tree, the prediction error on the OOB
portion of the data is recorded; the same is done by permuting
each predictor variable (Mitchell 2011). The differences be-
tween the two OOB errors are then averaged over all trees and
normalized by the standard deviation of the differences
(Mitchell 2011).

The mean of squared residuals (MSE) and coefficient of
correlation (R) were used to evaluate RF model performance.
MSE is a quantitative measure of the error acquired by the
model when a prediction for the target variable is made. It can
be sensitive to outliers and is best used in conjunction with
other metrics when outliers are present to evaluate a given
model (Cutler et al. 2007). If the MSE is close to 0, it indicates
a very close approximation to the actual values. The MSE is
defined as:

MSE ¼ 1

N

Xn

i¼1

yi � byið Þ2 ð1Þ

where:
yi and byi denote the modeled concentration and the ob-

served concentration of Chl-a, respectively and n is the num-
ber of data in each data set.

Prediction accuracy R represents the degree of correlation
between the prediction values and the observed values, and a
high R value (close to 1) means the prediction is close to the
observed value (Xu et al. 2019).

R ¼ 1�
Pn

i¼1 yi � byið Þ2
Pn

i¼1 yi ��yið Þ2
 !1

2

ð2Þ

where:

yi
− denotes the average of the observed values of Chl-a.
It is to be mentioned that the coefficient of determination

(R2) was calculated from R to contribute in the assessing and
comparing the performance of the models. Thus, useful infor-
mation can be obtained concerning the relative importance of
all variables and their capability of forecasting Chl-a
concentrations.

The RF model was simulated twice. First, considering
only the seven physico-chemical predictors we had for
predicting Chl-a concentrations. Second, we checked
whether for an observable spatial or seasonal dependence
among Chl-a predictors. In other words, we checked
whether the predictions of Chl-a concentrations could be
improved by considering the sampling stations and the
seasons as observed variables. This was done by includ-
ing two new categorical predictor variables representing
the five stations and the four seasons, respectively. This is
possible because RF models can handle both quantitative
and qualitative predictor variables.
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Nonlinear AutoRegressive with eXogenous Inputs (NARX)
Neural Network

ANN is a massively parallel-distributed information-process-
ing tool that aims to simulate the functioning of brain neurons
via a network of artificial neurons organized into layers
(Haykin 1999). The network receives a stimulus and converts
this input into a signal output via a transfer function (Jimeno-
Sáez et al. 2018). Because of its ability to assign meaning to
input parameters and to map the inputs to the outputs, the
ANN model is an effective modeling technique when the re-
lationships between the variables of the underlying physical
processes are complex or uncertain (Wei et al. 2001). These
neural networks are a non-linear modeling tool that can man-
age a large number of inputs to determine one or more outputs
(Fogelman et al. 2006).

There are many types of ANNs for different applications.
Generally, in ANNs, the direction of information flow be-
tween nodes or neurons, from the input to the output layer,
and each node in a layer is connected to each of the nodes in
the next layer (ASCE 2000). The neurons are linked to other
neurons via links that have an associated weight that reflects
their strength of connection and stores network information
(Jimeno-Sáez et al. 2018). The important feature of the trans-
fer function is that as input values changes, it provides a
smooth, distinguishable transition. In other words, a minor
change in the data, produces a minor change in the output
(Jimeno-Sáez et al. 2020). This transfer function is usedwithin
a certain proper range to constrain the outputs of neurons (Xu
et al. 2019). The most common threshold transfer functions
include a linear function, nonlinear gradient descent function,
stepwise function, and S-shaped function (Xu et al. 2019). In
NARX, the transfer function for the hidden layer is an S-
shaped (e.g. sigmoid) function, and the transfer function for
the output is a linear function (Xu et al. 2019).

Then, the propagation function computes the input to a neu-
ron from the outputs of its predecessor neurons and their con-
nections as a weighted sum (Rajaee et al. 2019). A bias term can
be added to the result of the propagation (Rajaee et al. 2019).

Therefore, the connection weights, biases, transfer and
propagation functions parameterize the mathematical relation-
ship between inputs and outputs of the network (Nguyen et al.
2007). These weights and biases need to be adjusted in the
training process of the networks to minimize the model error
(Jimeno-Sáez et al. 2020).

NARX model is a dynamic recurrent neural network that
encloses several layers with feedback connections (Hayken
1999). It has previously been applied by many researchers to
model nonlinear processes. In 1996, Lin et al. stated that
NARX network is a powerful modeling and validation tool
with a much faster convergence that generalizes much better
than other ANNs. There are many applications for the NARX
network in representing nonlinear dynamic behaviors.

A NARX model is defined as follows:

y tð Þ ¼ f y t � 1ð Þ; y t � 2ð Þ; ; yðt � ny
� �

; u t � 1ð Þ; u t � 2ð Þ; ; u t � 2ð Þ; ; u t � nuð Þ
ð3Þ

where: f is generally unknown and can be approximated, u(n)
and y(n) denote the input and output of the model at discrete
time step n, respectively.

The first step in a NARX model is to determine the input
and output variables. In our study, the output is the Chl-a
variable and the input variables are those having the highest
permutation importance according to RF model. To ascertain
that, different predictor variables combinations were tested.
The next step is to set up the network configuration, which
consists of determining the number of neurons in the hidden
layer and the number of time delays in the input layer to
maximize modeling ability. The prediction accuracy (weights
and biases) can be improved by adjusting these two parame-
ters (Xu et al. 2019). There is no default criterion to determine
the best structure, therefore we evaluated the performance of
the network with different structures, after a training phase
mostly based on the size of errors, such as checking the
MSE and R, as in the RF model. In addition, the error auto-
correlation function and input-error cross-autocorrelation
function were also checked to evaluate the NARX perfor-
mance. The autocorrelation error function describes how pre-
diction errors are related in time. For a perfect model of pre-
diction, the difference between the two errors should be small
enough to be statistically insignificant. This would mean that
the prediction errors are entirely uncorrelated with each other.
This also means that the values of error autocorrelation should
mostly be within a certain confidence interval of 95% (Xu et
al. 2019).

The input-error cross-correlation function describes how
the errors are correlated with the input sequence. For the ideal
prediction model, all correlations should be zero, except for
the one at zero lag (Xu et al. 2019).

Three training algorithms, which are the fastest and most
commonly adopted in NARX training were tested:
Levenberg-Marquardt algorithm, the backpropagation algo-
rithm and the Bayesian regularization algorithm.

Multiple scenarios with different predictor variables com-
binations (inputs) were tested to simulate the NARX model,
and the one with the best performance were used to develop
the network.

Results and Discussion

Data Properties

ANOVA revealed no significant difference among the sam-
pling stations in the lagoon for any of the physico-chemical
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variables or Chl-a concentrations, which is in general good
agreement with the observed data sets (except for Chl-a at
only station 5; Figs. 2 and 3). Therefore, all data were grouped
by months to reconstruct the monthly dynamics (mean of the
five stations) of each variable in the North Lagoon of Tunis
(such as in Figs. 2f and 3f).

In general, temperature, salinity and dissolved oxygen
measurements show typical trends of the southern
Mediterranean coastal marine climate (De Casabianca et
al. 1991; Armi et al. 2012; Dhib et al. 2016). The temperature
values indicate an apparent seasonal pattern. The minimum
and maximum temperatures recorded in winter (January)
and summer (July and August) varies between 8 and 30 °C,
with an annual average of 19 °C. salinity also shows a season-
al trend with a minimum of 32.75 in July and a maximum of
42 in November, a mean of about 36.5 in the lagoon.

The concentrations of dissolved oxygen display a strong
seasonal pattern, ranging from 5 mg/l in summer (July) to
11.5 mg/l in winter (December) in the lagoon. Concerning
the eutrophication indicator (expressed as Chl-a), its trend
shows an increase from winter (January) to summer (June)
reaching its maximum monthly concentration of about
3.65 µg/l in the lagoon. The total phosphorus concentrations
ranged from 4 µg/l to 65 µg/l in the North lagoon of Tunis.
Total nitrogen monthly concentrations in the lagoon ranges
between 200 and 1100 µg/l. Nutrient concentrations (total
phosphorus and total nitrogen) exhibit a common seasonal
variation, being relatively high in autumn and winter and
low in summer. The monthly pH values ranged from 7.2 to
8.7 during our study period, in the North Lagoon of Tunis. A
pH range of 6.5 to 8.5 is acceptable for aquatic biota according
to the APHA (1999). So we can state that the North Lagoon of
Tunis is in a good agreement with these limits.

Random Forest

Chl-a is one of the most relevant markers of water bodies’
presence and degree of eutrophication (Lu et al. 2016). In
the North Lagoon of Tunis, Chl-a monthly mean concen-
trations range from a minimum of 0.22 µg/L and maxi-
mum of 3.65 µg/L. Chl-a levels can have complex rela-
tionships with both nutrient components (total phospho-
rus, total nitrogen) and water quality variables (salinity,
pH, temperature, dissolved oxygen and Secchi depth) in
coastal ecosystems (Jimeno-Sáez et al. 2020). The RF is a
suitable technique from ML algorithms, when it comes to
dealing with complex relations between variables. The RF
model was trained on the North Lagoon of Tunis data-352
samples of 7 predictor variables (Secchi depth, dissolved
oxygen, temperature, salinity, total nitrogen, total phos-
phorus and pH) and one target variable, the Chl-a. The
implementation gave an R2 measure of about 0.62 and
MSE equal to 0.28. Figure 4 shows the ranking of

predictor variables according to their importance by
OOB technique by permutation. Only a few descriptors
contributed noticeably to the estimation of the Chl-a con-
tent namely, Secchi depth followed by the dissolved ox-
ygen and pH.

The most important pigment in aerobic photosynthetic or-
ganisms is Chl-a. The depth will impact the strength of sun-
light in water and thus the photosynthesis of most algae
(Frolov et al. 2012), explaining the strong correlation between
the depth and Chl-a.

Algae produce oxygen during the day and absorb it during
the night. Oxygen absorption also occurs during the process of
algae death and decay (Béjaoui et al. 2016). In agreement with
that, our findings have shown that dissolved oxygen is also
associated with Chl-a concentrations.

In addition, several studies have demonstrated the strong
correlation between Chl-a and pH (Menendez et al. 2001;
Zang et al. 2010; Wallace et al. 2016).

In decreasing order of importance, the other predictor var-
iables included in the RF model were: total phosphorus, total
nitrogen, salinity and temperature.

A direct comparison (scatter plot) of the observed and pre-
dicted Chl-a concentrations is shown in Fig. 5. The fitted RF
model was much better than the one reported by Béjaoui et al.
(2016) for Bizerte lagoon (R2 = 0.51), and similar to the one
reported by Béjaoui et al. (2018) for Ghar el Melh lagoon
(R2 = 0.64). Both lagoons are located in the Mediterranean
coast of north Tunisia. Hence, for the North Lagoon of
Tunis, the observed Chl-a concentrations were more accurate-
ly predicted than those of Bizerte lagoon. It is known that for
predictive modeling, the number of the observed data is very
important for the accuracy of the model (Béjaoui et al. 2016).
We used long-term of monthly observations that lasted ap-
proximately three decades in the North Lagoon of Tunis,
which makes the results of the RF accurate in the studied
ecosystem.

For comparison, a Multivariate Linear Regression
(MVLR) model was fitted in addition to the RF model. The
linear model parameters (Estimate) between predictor vari-
ables and Chl-a concentrations were almost consistent with
the relationships found with the above RF model (Table 1).
Both Secchi depth and dissolved oxygen were the two most
important predictors explaining Chl-a concentration levels.
Thus, the linear model quantitatively confirmed the outcomes
of the RF model.

MVLR gave an R2 of about 0.29. It’s obvious that the RF
model captures more efficiently the dependency of Chl-a con-
centrations on other variables than the MVLR. The quality of
the results is ensured by using the OOB procedure by permu-
tation. We can thus confirm that the RF model could be used
to better understand more complex dependencies among var-
iables since it has several advantages over traditional
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correlative analyses (i.e. a decrease in outlier sensitivity, no
implicit assumptions on data distribution).

According to the MVLR, the Chl-a concentrations had a
significant correlation with water quality variables, as secchi
depth, dissolved oxygen followed by total phosphorus in the
study area. However, the weakness of its performance sug-
gests that the use of traditional regression methods in the
modeling of such a complex process is meaningless, so there
is a great need to use more effective techniques (Mjalli et al.
2006).

This fact may support the conclusion drawn byMaier et al.
(2010) that using a linear approach to define which of the
potential input variables have a significant relationship with
the model output is not sufficient for the development of ANN
models.

All variables, were transformed, to normalize their distri-
bution prior to any modeling analyses. However, the transfor-
mations did not improve the performance of the MVLR.

The relationship between all variables is strictly nonlinear,
which is expected. Natural ecosystems are governed by a
number of complex processes due to the impacts of hydro-
climatic variables such as evaporation, temperature, precipita-
tion, etc. and anthropogenic contribution (Schramm 1999;
Viaroli et al. 2008).

In recent studies of similar lagoons located in the north of
Tunisia, Chl-a concentrations were found linearly not related
to the physico-chemical parameters (Béjaoui et al. 2016,
2018).

We performed all our modeling directly on the original data
using ML techniques, known for their abilities to deal with
non-linear complex time series processes. Fitting a model di-
rectly without transformation is advantageous for forecasting,
because forecasts are returned on the original scale.

A second RF model was also fitted by adding two new
categorical variables: station (for an observable spatial depen-
dence) and season (for an observable seasonal dependence).
The performance of the RF slightly decreases and attains an
R2 of about 0.59.

The addition of a new predictor variable containing spatial
information (station) appears to have little importance on the
model simulating Chl-a concentrations (Fig. 6). The existence
of a strong correlation between Chl-a concentrations and
secchi depth showed that depth data itself might be sufficient

Fig. 4 Predictors importance
ranking for the “first” RF model
to predict Chl-a content in the
North Lagoon of Tunis. The
importance of each predictor is
measured using the OOB
technique by permutation due to
each predictor

Fig. 5 RF Prediction of the Chl-a concentrations using the
physicochemical predictor variables data in the North Lagoon of Tunis.
Predicted response is Predicted Chl-a values and True response is
Observed Ch-a values
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for demonstrating the spatial variations of Chl-a concentra-
tions in the lagoon without including the categorical variable
(station). Moreover, for the RF model, the categorical variable
(season) did not really had an important effect on Chl-a con-
centrations. This finding was expected since the variable (tem-
perature) can interfere with the variable (season).
Additionally, we may state that this can be due to the climate
of Tunis, which stays relatively warm all along the year, in-
cluding winter.

RF is a good predictive technique to study the correlations
between physico-chemical and/or biological variables in
coastal ecosystems. Béjaoui et al. (2016), showed that mainly
dissolved inorganic nitrogen (NO3) along with dissolved ox-
ygen are the greatest contributors to Chl-a content in Bizerte
lagoon. Furthermore, in 2018, Bejaoui et al. reported that tem-
perature and silicates are the two most strongly correlated

variables to the plankton dynamics in Ghar Melh lagoon.
Although, the influence of the predictor variables of Chl-a
were different in several research works, the dissolved oxygen
and secchi depth generally were among the main variables.

For example, Palani et al. (2008) applied the ANN model
with location variables, orthophosphates (PO4) dissolved ox-
ygen and temperature as the explanatory variables to predict
Chl-a concentration. Li et al. (2017) selected the concentration
of total phosphorus and total nitrogen, temperature, secchi
depth, and dissolved oxygen among the most influential input
variables for Chl-a, using a genetic algorithm optimized back-
propagation neural network. Furthermore, Kuo et al. (2007)
defined the Chl-a model by the input of month, temperature,
pH, secchi depth, suspended solids (SS), PO4 and NO3.

It is important to highlight that the difference in the RF
results between the previous ecosystems, with the North
Lagoon of Tunis can be explained by the ecosystem specific-
ities as dimensions of water masses, different eutrophic states,
water depth and communication with the sea. In addition,
various modeling approaches, in addition to different field
works and laboratory analysis techniques may have contrib-
uted to these differences.

Nonlinear AutoRegressive with eXogenous inputs
(NARX) Neural Network

In this study, four scenarios with different input combinations
of the predictor variables are tested for estimating and fore-
casting Chl-a concentration values in the North Lagoon of
Tunis using the NARX network.

The first input scenario (S1) considered all parameters we had
as inputs without selection. The second scenario (S2) included

Table 1 Regression coefficients between Chl-a concentrations and
physico-chemical variables in the North lagoon of Tunis using linear
model (coefficients marked with (*) are statistically significant at p-
value < 0.05)

Estimate Std. Error t-value p-value

Intercept 3.434 2.3318 1.4727 0.14175

Dissolved oxygen -0.12818 0.05122 -2.5026 0.012792*

Total Phosphorus 0.012391 0.00753737 2.3059 0.021713*

Secchi depth -0.47539 0.17532 -2.7116 0.007032*

Temperature 0.0077276 0.013261 0.58275 0.56045

pH -0.19153 0.21548 -0.8882 0.37472

Salinity 0.027982 0.032362 0.86464 0.38784

Total Nitrogen -0.00012694 0.0001341 -0.94663 0.34449

Fig. 6 Predictor importance
ranking for the “second” RF
model to predict Chl-a content in
the North Lagoon of Tunis. The
importance of each predictor is
measured using the OOB
technique by permutation due to
each predictor
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only the threemost important predictor variables according to the
RF model. The third input scenario (S3) included only the most
highly correlated parameters according to the MVLR. the last
scenario (S4) included only the two most important predictor
variables according to the RF model. Summarized results of
predictor variables selection is shown in Table 2.

The NARX models with the four input scenarios described
in Table 2 were developed to simulate the Chl-a concentra-
tions. The four versions of each model represent four substan-
tially different Chl-a models, due to the different combina-
tions of variables used as predictors. Different ML models
are compared based on statistical indices (Jimeno-Saez et al.
2020) such as R, R2, MSE, etc. These performance measure-
ments are summarized in Table 3 for the NARX network.
Different parameters are tried for each NARX model and the
best one; with the minimum MSE and maximum R and R2 in
selected for the forecast of Chl-a task.

The topology with 10 neurons in one hidden layer and 2
lags in the input variables provided the best performance in the
prediction of Chl-a concentrations among all the scenarios.
Our study considered that a proportion of 70 % training,
15% validation and 15% test is a favorable implementation.

The Levenberg–Marquardt algorithm, an extensively rec-
ognized training algorithm, was used for minimizing nonlin-
ear functions. Training automatically stops when generaliza-
tion stops improving, as indicated by an increase in the mean
square error of the validation samples (Xu et al. 2019).

The comparative results between the four versions of
the NARX model reveal that the NARX with two inputs

selected by the RF algorithm yielded the best accuracy
among all the developed NARX models in term of higher
R and R2 and lower MSE values (R = 0.79; R2 = 0.62;
MSE = 0.31).

With three inputs, selected also according to the RF model,
the S2 scenario is the second most accurate model with a
performance close to the best one. Because simulating time
and over-fitting risks increase with the number of predictor
variables in predictive modeling, a good practice is to create
a model using as few predictor variables as possible (Jimeno-
Saez at al. 2020).

We now present one step-ahead (a month) forecasting re-
sults for the eutrophication indicator considering the three
datasets: Chl-a concentrations as the target, using secchi depth
and dissolved oxygen as external inputs.

Most of the NARX model errors were very close to zero
and fall within the confidence interval (Fig. 7), therefore the
autocorrelation errors were negligible. In general, the input-
error cross-correlation plot (Fig. 8) showed that all the corre-
lations fell within the confidence interval.

Furthermore, the obtained results (Fig. 9) show an overall
correlation of R = 0.79 between the actual data (targets) and
the predicted values (the outputs). The Error histogram was
checked. It presents a closely bell-shaped normal distribution
of the errors (Fig. 10). Given that, we can conclude that, re-
siduals of the NARX model are uncorrelated and normally
distributed.

The model’s fitness is described in Fig. 11 and a visual
comparison of Chl-a concentrations predictions with respect
to the observed data is shown. There is a fairly good match
between the observed values and the fitted values. The NARX
network was able to predict the high variability of Chl-a con-
centrations, therefore, the fitted model seems to be mathemat-
ically accurate and the NARX could be used on a new data set.
Given its effectiveness, multiple studies used neural networks
techniques to model the Chl-a contents as an eutrophication
indicator in coastal ecosystems. We can mention the study of
Nazeer et al. (2017), who suggested, using MLmethods, such
as ANN for a more accurate and efficient routine monitoring

Table 2 Summarized results of predictor variables selection

Algorithm N. of predictor variables
(inputs) selected

Predictor variables
selected

Input
scenario

NARX without inputs selection 7 All S1

NARX with three most important predictor variables selected with RF 3 Depth
Dissolved oxygen
pH

S2

NARX with the correlated predictor variables selected with MVLR 3 Depth
Dissolved oxygen
Total phosphorus

S3

NARX with two most important predictor variables selected with RF 2 Depth
Dissolved oxygen

S4

Table 3 Performance of
Chl-a estimation from
NARX models based on
four different input
scenarios

Scenarios R R2 MSE

S1 0.68 0.46 0.42

S2 0.75 0.56 0.31

S3 0.74 0.55 0.40

S4 0.79 0.62 0.31
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of coastal water quality parameters, particularly Chl-a, in a
coastal area of Hong Kong. In another study carried out in
the Mar Menor lagoon in Spain, a Multilayer Neural
Networks have been used for the eutrophication modeling,
considering Chl-a as the eutrophication indicator (Jimeno-
Sáez et al. 2020). In 2003, Lee et al. used back-propagation
learning algorithm for training the ANN to predict the algal
bloom dynamics of the coastal waters of Hong Kong using a
4-year set of phytoplankton abundance data. Lu et al. (2016),
used a back-propagation ANN model for the prediction of
Chl-a concentrations in lake Champlain in China.

By comparing the NARX results (R = 0.79; R2 = 0.62)
with the MVLR including just the two most important

predictors for the Chl-a concentrations, the performance
of the final linear model decreases further and attains an
R2 of about only 0.2. We can thus confirm that the rela-
tionship between the variable predictors and Chl-a con-
centrations is obviously non-linear and the use of the
NARX, RF and generally ML techniques, is adequate
for forecasting Chl-a contents in the studied lagoon.

The forecasting of the Chl-a content one month ahead
gave a value about 0.51 µg/L, which was close to the
observed value (0.5 µg/L). These values are very close,
which indicates a relative normal Chl-a level of monthly
variation in the lagoon and the accuracy of the developed
NARX model.

Fig. 8 The input-error cross-
correlation plot

Fig. 7 The autocorrelation error
plot
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Conclusion

The ecological stability of the North Lagoon of Tunis makes it
of a significant socio-economic and ecological values.
Multiples services are provided in this ecosystem, such as in
tourism (water sports), in fisheries, and in the conservation of
sea birds. Thus, it is necessary to improve our understanding
of the eutrophication process and of the interactions among
the water quality parameters in the lagoon, to adopt sustain-
able management strategies. One of the most important indi-
cator of the presence and degree of eutrophication in water
bodies is the Chl-a content.

The approach proposed in the current study relies on
a combination of ML methods, using NARX neural net-
work and RF model to predict and forecast Chl-a con-
centration in the North Lagoon of Tunis. Mainly secchi
depth along with dissolved oxygen are the greatest con-
tr ibutors to this eutrophication assessment and

forecasting. Our results agree well with findings from
other studies carried out on Mediterranean coastal la-
goons. It’s worth mentioning that, secchi depth and dis-
solved oxygen are very practical variables to measure,
without the need of extra laboratory analysis.

The NARX developed was able to predict Chl-a con-
centration dynamics fairly well using minimal input pre-
dictor variables. Our results show that complex behavior
in the eutrophication process could be modeled using
the NARX technique and, some extreme values were
successfully estimated.

The results confirmed the significance and usefulness
of intelligent modeling as a tool that is simple, rapid, easy
to operate and not costly. The developed model can be
used to (1) estimate Chl-a concentrations when the real
value is not available and to (2) simulate different water
quality scenarios for extreme ranges of input and output
parameters.

Fig. 9 Correlation between
original (target) and predicted
(output) Chl-a values obtained
with the NARX network
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It is important to mention that despite the important
amount of the observed data (approximately three de-
cades) used for developing the NARX, it has a very short
computational time.

In the wider context of the study of coastal lagoons and
other transitional ecosystems, our approach could be used to
assess and predict the eutrophication process of these natural
environments and help in decision-making by civil

authorities, as well as by engineers, economists, investors
and other interested stakeholders.

As perspectives, in order to improve the accuracy of the
model we would suggest, adding more data either by simula-
tion (in interpolating the available data), or ideally by
performing daily or weekly measurements, at least for the
most important parameters (Chl-a, dissolved oxygen, trans-
parency, nutrients), maybe not at all the stations but at a

Fig. 10 Error histogram of the
NARX network

Fig. 11 Measured and simulated
Chl-a concentrations using
NARX network in the North
Lagoon of Tunis
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minimum at the two stations 2 (in the north zone of the la-
goon) and 5 (in the south zone of the lagoon).
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