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Abstract
To assess the effects of global change on peatland vegetation and biogeochemistry we used a long term (21 years) in-situ plot
scale manipulation experiment comprising nitrogen (N; ambient and 30 kg ha−1 yr−1), temperature (T; ambient and + 3.6 °C
during growing season) and sulfur (S; ambient and 20 kg ha−1 yr−1) treatments in an oligotrophic boreal peatland. Vegetation was
assessed by plant species cover estimates, while biogeochemical processes were characterized by measuring potential extracel-
lular enzyme activity (EEA) of glucosidase, cellulase, aminopeptidase, phosphatase, and sulfatase in the peat matrix. We
hypothesized that the plant communities would change in response to the N and T manipulations, and that belowground EEA
would respond distinctively to the applied treatments as well as to changes in plant community. We found vascular plant cover to
have strongly increased in the T treatment, whereas the Sphagnum cover collapsed in the high N treatment. Belowground we
found enhanced enzymatic C and N acquisition activity in response to the N treatment, but EEA showed no response to the T
treatment. No S effects were found, neither aboveground nor belowground. Contrary to our expectations, our data reveal a
mismatch between above-ground vegetation patterns and belowground decomposition processes. In particular, the large increase
in vascular plant cover in the warming treatment found no reflection in belowground EEA.

Keywords Plant–soil (below-ground) interactions . Global change ecology . Ecosystem function . Ecophysiology . Extracellular
enzymes . Enzyme stoichiometry . Plant functional types . Peat

Introduction

Two global change factors with strong potential to alter
peatland ecosystems are enhanced nitrogen (N) deposition
and climate change (Limpens et al. 2008; Dise and Phoenix
2011). Over the last few decades, anthropogenic reactive ni-
trogen (Nr) production has been greater than production from
all natural terrestrial systems combined (Galloway et al.

2008). The highest N deposition rates are measured in the
northern hemisphere (Dentener et al. 2006; Reay et al. 2008;
Bobbink et al. 2010), where peatlands form a dominant land-
scape element in boreal and sub-arctic areas. In these northern
latitudes 95% of the global peat reserves are found, storing
about 25% of the global soil carbon (C) pool (Gorham 1991;
Smith et al. 2004; Loisel et al. 2014). Most peatlands are
located at latitudes that have already seen substantial changes
in climate (IPCC 2014) and are currently undergoing changes
that could have severe implications for atmospheric C feed-
back processes. Thus, northern peatlands are under pressure
from both N deposition and climate change, and may be im-
pacted by either driver individually or in combination.

The reason why peat-forming, Sphagnum-dominated, oli-
gotrophic wetlands are among the most sensitive ecosystems
to enhanced N input, is that these strongly nutrient limited
ecosystems rely heavily on atmospheric deposition for their
N supply (Rydin and Jeglum 2006). Oligotrophic peatlands
are usually dominated by Sphagnum moss building the bot-
tom layer and by sparsely interspersed ericaceous shrubs and
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graminoid sedges (Rydin and Jeglum 2006). Sphagnum spe-
cies are regarded as “ecosystem engineers” (Vanbreemen
1995), monopolizing sparse nutrients (Malmer et al. 2003;
Turetsky 2003) and creating and maintaining an acidic, nutri-
ent poor, wet, and anoxic environment (Rydin and Jeglum
2006)— environmental conditions unfavorable for many vas-
cular plants. Sphagnum litter is by far the most recalcitrant
plant component in peatlands (Turetsky 2003; Dorrepaal
et al. 2005) and thus slows decomposition processes (Hájek
et al. 2011) and fosters C sequestration. As long as N deposi-
tion does not exceed the uptake rate by Sphagnum, the genus
will maintain its role as ecosystem engineer, and peatland
vegetation will remain relatively stable (Lamers et al. 2000;
Nordbakken et al. 2003). However, with elevated N deposi-
tion, peatland ecosystems typically respond with decreased
Sphagnum cover and increased vascular plant abundance
(Gunnarsson and Rydin 2000; Wiedermann et al. 2007;
Limpens et al. 2011), with cascading effects on the entire
peatland ecosystems (Limpens et al. 2008; Eriksson et al.
2010).

Despite the dominant role of Sphagna as ecosystem engi-
neers, vascular plants substantially influence biogeochemis-
try, ecosystem function and response to global change in
peatlands. Peatland plants differ in growth forms, root distri-
bution and architecture, as well as leaf longevity and levels of
resistance to decay – so the relative proportion and productiv-
ity of each plant functional type (PFT) has consequences for
the rates of key ecosystem processes impacting C cycling
(Belyea and Malmer 2004). For instance, the evergreen leaves
of the ericaceous shrubs are relatively recalcitrant compared to
the sedge leaf litter, which degrades easily (Dorrepaal et al.
2005). As a special adaptation to the anoxic conditions in
peatlands, sedges have an aerenchymal tissue structure which
provides the sedge roots with oxygen and allows for nutrient
mining in the deep peat, altering biogeochemical cycles in the
deep peat (Ström et al. 2003). Peatland sedge roots are typi-
cally non-mycorrhizal (Miller et al. 1999; Thormann et al.
1999). The co-occurring woody ericaceous shrubs lack
aerenchymal tissue, resulting in superficial root distribution.
Also, the ericaceous shrubs grow with associated mycorrhizal
symbionts, which produce the most diverse assemblage of
extracellular enzymes of any mycorrhizal fungi, and hence
have the potential to assimilate nutrients from complex poly-
mers via high extracellular activity of key enzymes, including
proteases, phosphatases, phenol oxidases, chitinases, and cel-
lulases (Cairney and Burke 1998; Martino et al. 2018). In
contrast, peatland sedge roots are typically non-mycorrhizal
(Miller et al. 1999; Thormann et al. 1999). Both the additional
oxygen evading from the aerenchymal sedge roots as well as
the diverse extracellular enzyme production by the ericaceous
roots in conjunction with the ericaceous mycorrhizae alter
biogeochemical processes in peat (Robroek et al. 2015;
Ward et al. 2015; Wiedermann et al. 2017). The abundance

and composition of vascular plants in peatlands are thus ex-
pected to influence belowground biogeochemical processes.

Only by linking aboveground and belowground patterns
and processes (Wardle et al. 2004; Van der Putten et al.
2013) it is possible to draw a more comprehensive picture of
ecosystem response to altered global change factors.
Aboveground effects in peatlands are commonly assessed
using vegetation surveys. Belowground activity is more diffi-
cult to assess, but measurements of potential extracellular en-
zyme activity (EEA) can provide information about important
belowground processes (Sinsabaugh 1994). Extracellular en-
zymes are produced by plant roots, mycorrhizae and free liv-
ing soil microorganisms, and catalyze reactions of N, phos-
phorus and C depolymerization in soil and peat (e.g., Allison
and Vitousek 2005; Wallenstein and Weintraub 2008;
Moorhead et al. 2012). Thus, environmental change-induced
effects on vegetation communities and associated nutrient and
C processing rates are expected to be reflected in changing
EEA (Caldwell 2005; Bardgett et al. 2014) and enzyme stoi-
chiometry (Moorhead et al. 2016).

To assess the effects of global change on peatland biogeo-
chemistry and vegetation, a long term (21 years) plot scale
manipulation experiment in an oligotrophic boreal peatland
was used. The factorial design of the experiment comprises
enhanced reactive N, T and S treatments. Early results from
the long-term experiment showed an increase in vascular plant
cover both in the N and the T treatments along with a sharp
decline of the Sphagnum carpet in response to the N treatment,
at 8 and 12 years after establishment (Eriksson et al. 2010;
Wiedermann et al. 2007). Sulfur effects on the peat vegetation
were negligible (Wiedermann et al. 2007). However, long
term vegetation responses are not known, nor have below-
ground processes as described by EEA been assessed in such
an experiment.

In the current study, newmeasurements of vegetation cover
from the long-term global change experiment were made to
assess whether the vegetation responses after 8–12 years of
experimental treatment represented a new stable state, or
whether those patterns were transient. Additionally, the EEA
were assayed to examine how belowground processes
responded to the experimental treatments and concomitant
vegetation responses. The specific enzyme assays were pri-
marily chosen to gain insights into the acquisition of the main
structural components of peatland biota (C, N, P). Our hypoth-
eses focus on the T and N treatment effects since previous
results from this experiment had shown no S effects on the
vegetation (Wiedermann et al. 2007).

Central Questions & Hypotheses

Q1: Will projections of vegetation responses to increased T
and N fertilization treatments based upon results from short
term experiments hold true in the long term? Q2: How do
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long-term enhanced T and N availability alone and in combi-
nation modify (A) the abundance and composition of peatland
vegetation, and (B) belowground decomposition processes
exemplified by extracellular enzymes responses?

Based on previous results from short term (8–12 years)
experiments we expected that vascular plant species cover will
increase in response to the T and N fertilization treatment,
whereas Sphagnum cover was shown to decline in response
to the N treatments (Limpens et al. 2008; Wiedermann et al.
2007). In terms of belowground responses we hypothesized
that C (glucosidase (BG) and cellulase (CBH)) and phospho-
rus mining enzymes (phosphatase (PHOS)) would be up-
regulated in response to the N treatment due to an anticipated
shift of microbial demands from being N limited to C
(Koyama et al. 2013; Cenini et al. 2016) and P limited
(Olander and Vitousek 2000; Saiya-Cork et al. 2002). We
hypothesized that the N mining enzymes (aminopeptidase
(LAP) c.f. (Sinsabaugh 1994) and chitinase (NAG) c.f.
(Kang et al. 2005)) would be down-regulated due to an excess
of mineral N (Olander and Vitousek 2000; Saiya-Cork et al.
2002). In the T treatment plots we expected that the elevated T
would directly increase microbial activity and enzyme process
rates (Bell et al. 2013; Steinweg et al. 2013), and additionally
that changes in the abundance and composition of vascular
plants would strongly modify the responses of extracellular
enzymes.

Materials and Methods

Site Description

The study was conducted in a Sphagnum-dominated boreal
peatland, Degerö Stormyr, located within the Kulbäcksliden
Research Park of the Vindeln Experimental Forests (64°11’
N, 19°33′ E; 270 m a.s.l.), about 70 km from the Gulf of
Bothnia in the province of Västerbotten, Sweden. The exper-
imental site is a poor fen (pH 4.5) with a peat depth of about
5 m (Malmström 1923), and is part of a 6.5 km2 mixotrophic
peatland system. At the experimental site the bottom vegeta-
tion layer is a closed Sphagnum carpet dominated by
S. balticum (Russ.). The vascular plant cover is sparse, and
dominated by the graminoid Eriophorum vaginatum L. and
the two ericoid dwarf-shrubs Andromeda polifolia L. and
Vaccinium oxycoccos L.

Experimental Design

The experiment was set up in the central part of the peatland in
1994. Treatments were first applied in 1995. The experiment
was set up according to a full factorial design with three ex-
perimental factors. The experimental plots used in this study
encompassed two levels of temperature (T) (ambient and +

3.6 °C), two levels of nitrogen (N) (ambient (2 kg N ha−1

yr−1), and (30 kg ha−1 yr−1)), and two levels of sulfur (S)
(ambient (3 kg S ha−1 yr−1), and (20 kg ha−1 yr−1)) respective-
ly (Granberg et al. 2001). Each experimental combination was
duplicated resulting in a total of 16 plots.

Plots measure 2 m × 2 m, and each plot is separated by 1 m
buffer zones. To prevent horizontal movement of the added
elements, all plots are surrounded by a polyvinyl chloride
frame which extends to 0.4 m deep in the peat. Monthly ad-
ditions of NH4NO3 and Na2SO4 during the growing season
have been carried out regularly for 21 years to achieve the
respective annual N and S loads. To simulate climate change,
warming chambers were used to raise mean air temperature by
+3.6 °C, as measured 0.25 m above the bottom layer. These
warming chambers consist of 0.5 m high and 2 mm thick
transparent polycarbonate side plates. During the snow-free
period of the year the plots are covered with a perforated clear
plastic film roof at 0.5 m height above the field layer. To allow
precipitation to enter the plots and to reduce unintentional
effects on humidity, the plastic film is perforated with holes
(diameter 20 mm), spaced 100 mm apart. For a more detailed
site description and for more information about the field ex-
periment see Granberg et al. (2001).

Sampling of Peat and Plant Material for Chemical
Analyses

In early July 2016, 21 years after the onset of the global
change experiment, two surface peat cores were taken from
each plot. One core was extracted from an Eriophorum dom-
inated tussock area and the other from a mostly Sphagnum
dominated inter-tussock. The cores measured 5 cm × 5 cm at
the surface and were cut to 10 cm below the WT level using a
sharp knife. For each core, the distance from the peat surface
to the water table level was recorded individually. Water table
levels were in a typical range for the time of year and ranged
from 5 cm to 17 cm in the tussock areas and from -2 cm
(submerged) to 12 cm in the inter-tussock areas. At the time
of sampling the plots did not show any signs of drought.
Following extraction from the peat matrix, each core was im-
mediately transferred into individually labeled plastic bags
and stored in a cooler in the dark until used for analyses within
the next few days.

The depth of the water Table (WT) relative to the peat
surface varies between and within plots, with N treatment
plots having particularly shallow, and heterogeneous, depth
to WT (Eriksson et al. 2010), see Plate 1). We decided to
use the average growing season WT (mean growing season
water table level is 13.1 cm; Eriksson et al. (2010) as a refer-
ence, and utilized the peat material from the cores above this
WT level for subsequent analyses. This approach resulted in
an average 11 cm tall core for the tussock samples, and an
average 5 cm tall core for the inter-tussock samples. The
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rationale for this sampling approach was to compare peat
samples that are similar in age and WT regime. All above-
ground green plant material was removed, then each core was
homogenized by first cutting the core into ~1 cm depth incre-
ments and then mixing these together by hand to create one
homogeneous sample of the entire core. Thereafter the ho-
mogenized peat cores were subsampled (15–20 pinches per
core), and about 6 g of peat was weighed out for the enzyme
slurry, and 20 g for dry weight and elemental analyses.

In addition to the peat cores, plant material from the three
dominant vascular plants and from S. balticum, the dominant
Sphagnum species, was sampled in mid July 2016 from the
same experiment. At ten locations within each plot the green
parts (including the capitula) of S. balticum were sampled
together with ten current annual shoots of V. oxycoccos and
A. polifolia, as well as green leaves from ten E. vaginatum
individuals. Samples were placed in labeled paper bags sepa-
rated by species and transported to the lab. The same day all
dead and foreign plant material was removed from the sam-
ples, which were then dried at 50 °C for 48 h for later chemical
characterization.

Vegetation Cover Analyses

In order to be consistent with the annual vegetation recordings
throughout the 21-year experimental period, cover estimates
by eye in percent cover of the entire plots were recorded for
each plant species in October 2016. The autumn colors make

it easier to distinguish the vascular and Sphagnum species and
thus provide for more accurate cover estimates.

Chemical Analyses

The dried leaf material from the three vascular plants and
S. balticum as well as the two dried peat samples (tussock,
inter-tussock) from each plot were ground using a ball mill.
Thereafter, all samples were analyzed for mass fraction of C
and N using an elemental analyzer (Flash EA 2000, Thermo
Fisher Scientific, Bremen, Germany).

Rationale for Selection of Specific Extracellular
Enzyme Assays

The measured enzymes in this study except sulfatase (SULF)
are assumed to be representative indicators of overall C, N,
and P acquisition (Sinsabaugh 1994). Glucosidase (BG) and
cellulase (CBH) are the primary enzymes that catalyze cellu-
lose and hemicellulose degradation (Sinsabaugh 1994).
Aminopeptidase (LAP) represents a key protease/peptidase
enzyme that catalyze the cleavage of amino acids from pro-
teins or other peptide substrates (Sinsabaugh 1994), and
chitinase (NAG) - frequently used to represent N cleaving
enzymes (e.g.: Kang et al. 2005; Bell et al. 2013; Li et al.
2019) - hydrolyzes oligomers of N-acetyl glucosamine in chi-
tin, found in fungal cell walls and invertebrate exoskeletons,
and peptidoglycan, the principal component of bacterial cell
walls. Phosphatase (PHOS) hydrolyzes phosphomonoesters,

PLATE 1 Photographs of the
experimental plots (2 × 2 m)
(clockwise from upper left):
control (C), nitrogen treatment
(N), nitrogen and temperature
treatment (NT), temperature
treatment (T). Photo credits: M.
M. Wiedermann
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liberating phosphate from common organic molecules such as
phospholipids and nucleic acids (Sinsabaugh 1994). Sulfatase
activity is known to increase in anoxic conditions
(Wiedermann et al. 2017), which is a crucial driver of bio-
chemical processes in peatlands (Bergman et al. 1999; Klüpfel
et al. 2014).

Assay for Measuring Potential Extracellular Enzyme
Activity (EEA) and Enzyme Stoichiometry

To quantify potential extracellular hydrolytic enzyme activity
in the peat matrix we closely followed the protocol by Bell
et al. (2013) using deep well incubations. To create the peat
slurry we used a 0.05 M sodium acetate buffer at pH 4.2
(ambient pH), added 6 g wet peat and used a hand blender
for 30 s to create a homogeneous suspension. Separate en-
zyme assays were run with each of the following six substrates
added at a concentration of 200 μM, which is enough to avoid
substrate limitation: 4-Methylumbelliferyl β-D-cellobioside
(Sigma M6018) for potential cellulase activity (CBH), 4-
Methylumbelliferyl β-D-glucopyranoside (Sigma M3633)
for potential glucosidase activity (BG), 4-Methylumbelliferyl
N-acetyl-β-D-glucosaminide (Sigma M2133) for potential
chitinase activity (NAG), 4-Methylumbelliferyl phosphate
(Sigma M888) for potential phosphatase activity (PHOS)
and 4-Methylumbelliferyl-sulfate (Sigma M7133) for poten-
tial sulfatase activity (SULF), and L-Leucine-7-amido-4-
methylcoumarin hydrochloride (Sigma L2145) for potential
aminopeptidase activity (LAP).

We used eight analytical replicates for each enzyme assay
and incubated 1000 μl of the peat-substrate slurry in the 2 ml
deep well trays at 25 °C in the dark for three hours. The peat
slurries were then centrifuged at 41 RCF for 3 min, and 250 μl
of the supernatant was transferred into opaquemicroplates and
read for fluorescence with excitation and emission wave-
lengths of 365 and 460 nm respectively (BioTek Synergy
H4 plate reader). To convert the fluorescence readings (output
from the software program Gen 5 2.01) into EEAwe followed
the protocol by Bell et al. (2013), which utilizes a 4-
Methylumbelliferone Sigma (M1381) standard curve for each
methy lumbel l i fe rone sample and a 7-Amino-4-
methylcoumarin Sigma (A9891) standard curve for the
methylcoumarin substrate (LAP).

Following the acquisition of the EEA, we used stoichio-
metric equations (c.f., Moorhead et al. 2016) with the mea-
sured EEA to assess how changes in N availability and T
translate into altered resource limitations.

Statistical Analyses and Data Visualization

Mixed effects models (Bolker et al. 2009) were used on the
peat core data to account for the nesting of the two microsites
(tussock, inter-tussock = “topography”) within each plot. For

data visualization and statistical analysis, R version 3.6.1 for
linux-gnu (R-Core Team 2019) and the following packages:
“lme4” (Bates et al. 2015), “car” (Fox and Weisberg 2011),
“MASS” (Venables and Ripley 2002), and “ggplot2”
(Wickham 2009), were used. The applied treatments (N- and
S addition and T treatment) were analyzed as fixed factors,
while the plot identity was analyzed as a random term.

For data from the peat cores with a normal distribution
(tested for with Shapiro test), linear mixed model fits using
REML (restricted maximum likelihood – preferred for small
sample sizes) were applied. The statistical results were extract-
ed from ANOVA tables using the “car” package in “R”:
Analysis of Deviance Table (Type III Wald F tests with
Kenward-Roger df). In the case of non-significant interaction
terms, the models were reduced to the main factors (N, S, T or
topography) only and the statistical results were extracted
from ANOVA tables using the “car” package: Analysis of
Deviance Table (Type II Wald F tests with Kenward-Roger
df). Following Bolker et al. (2009), results were extracted
from linear mixed-effects model fits by maximum likelihood
using Wald t-tests.

Vegetation cover data, which consisted of a single value
per plot rather than having a nested data structure, were ana-
lyzed via multiple regression models using the “lm” function
in R (p-values are based on Type III t-tests). In case of non-
significant interaction terms the models were reduced to the
main factors only. Model assumptions were tested with qq-
plots to assess model residuals.

Results

Vegetation Response

The most unexpected result was that, unlike after eight years of
experimental treatment (Wiedermann et al. 2007), the total vas-
cular plant cover did not show a significant positive response to
the applied N treatment after twenty-one years (Table 1).
Twenty-one years of experimental warming (T) have though
led to a large increase in total vascular plant cover, from an
average of 20% in the control plots to an average of 62% in the
warmed plots (Fig. 1). Concurrently, vascular plant litter inputs
have increased in the warmed plots (Table 1, Fig. 1). No effects
on the Sphagnum cover were detected as a function of T
(Table 1, Fig. 1), while Sphagnum cover declined drastically
in response to the N treatment (Table 1, Fig. 1). The two erica-
ceous dwarf shrubs responded differently to the applied exper-
imental treatments. V. oxycoccos cover increased in response to
the T treatment and declined in response to the TxN treatment
(Table 1), whereas A. polifolia did not show any significant
responses to the applied N treatments (Table 1). E. vaginatum
cover increased in response to the N treatment and the T treat-
ment and declined with the SxN interaction (Table 1). All three
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vascular plants individually responded with increased cover to
the T treatment (Table 1, Fig. 1), while the sulfur (S) treatment
alone had no effect on the vegetation cover (Table 1, Fig. 1).

Plant Chemistry

Mass percent N content increased in the annual leaves of
E. vaginatum and Sphagnum in the N addition plots
(Table 1, and supplemental material). Most drastically, for
Sphagnum the tissue N content tripled from an average of
0.53 (± 0.03) mg g−1 DM across the ambient N treatments to
an average of 1.54 (± 0.05) mg g−1 DM across the high N
treatments (for individual plot data see supplemental materi-
al). The T treatment led to lower foliar N concentrations for
E. vaginatum and A. polifolia. The T treatment also had a
negative effect on the foliar N concentrations of
V. oxycoccos, but only in combination with the S treatment
(SxT) (Table 1, supplemental material). There were no signif-
icant changes in mass percent C content in the leaf tissue for
any of the study species.

Microtopography and Peat Chemistry

Mass percent C content of the peat was higher in the tussock
area than in the inter-tussock area (Table 2, supplemental
material). Regardless of microtopographic position, both mass
percent C content and mass percent N content in the peat
increased in response to the N treatments (Table 1,
supplemental material).

Potential Extracellular Enzyme Activity (EEA)

The T and S treatments had no effect on the EEA of
any of the six measured enzymes (Table 2, Fig. 2).
Nitrogen addition was the only experimental factor lead-
ing to significantly altered extracellular enzyme activity
(Table 2, Fig. 2). In response to the N treatments, po-
tential cellulase activity (CBH), potential glucosidase
activity (BG), potential chitinase activity (NAG), and
potential sulfatase activity (SULF) all increased
(Table 2, Fig. 2). We also found different EEA activity
depending on the microtopographic position within the
plots (Table 2, Fig. 2). Potential chitinase activity
(NAG) was significantly higher in elevated tussock
areas (Table 2, Fig. 2), whereas potential phosphatase
activity (PHOS) was significantly lower in the elevated
tussock areas (Table 2, Fig. 2). Overall, potential ami-
nopeptidase activity (LAP) was very low compared to
the rest of the measured enzyme assays (Fig. 2). There
was significantly lower potential LAP activity in elevat-
ed tussock areas (Table 2, Fig. 2). The statistical results
of the measured LAP are highly driven by two inter-
tussock samples with particularly high activity in re-
sponse to the high N treatment. The LAP data thus
needs to be interpreted with caution.

Enzyme Stoichiometry

The total enzyme N acquisition activity (NAG+LAP)
rose in response to the N treatment, and also had

Table 1 Statistical results from multiple regression analyses on percent
areal cover: total vascular plants, plant litter, individual plant species; as
well as foliar tissue nitrogen (N) mass percent, using all 16 experimental
plots; Variables: N (nitrogen addition), T (temperature increase), S (sulfur

addition), plus interactions between treatments: TxN, SxN, and SxT. Plus
signs (+) to the right of the p-values indicate an increase, minus signs (−) a
decrease in response to the respective treatment

response variables experimental factors

model R2 model N T S TxN SxN SxT

Total vascular plant cover 0.73 F(3,12) p < 0.001 p < 0.001(+)

Total vascular plant litter 0.53 F(3,12) p = 0.024 p= 0.006(+)

Andromeda cover 0.58 F(3,12) p = 0.013 p = 0.003(+)

Vaccinium cover 0.94 F(6, 9) p < 0.001 p < 0.001(+) p < 0.001(−)
Eriophorum cover 0.86 F(6, 9) p = 0.002 p = 0.020(+) p = 0.003(+) p = 0.005(−)
Sphagnum cover 0.98 F(3,12) p < 0.001 p < 0.001(−)
Andromeda %N 0.63 F(3,12) p = 0.006 p = 0.002(−)
Vaccinium %N 0.81 F(6, 9) p = 0.007 p = 0.014(−)
Eriophorum %N 0.68 F(3,12) p = 0.003 p = 0.018(+) p = 0.002(−)
Sphagnum%N 0.97 F(3,12) p < 0.001 p< 0.001(+)
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significantly higher values in the elevated tussock areas.
In contrast, the per unit N acquisition ratio (NAG+LAP
normalized to peat N content) declined in response to
the N treatment, again differing depending on
microtopography with overall higher values in the tus-
sock areas (Table 2, Fig. 3). Both the total enzyme C
acquisition activity (CBH + BG) and the per unit C ac-
quisition ratio (CBH + BG normalized to peat C content)
increased in response to the N treatment (Table 2, Fig.
3). The enzyme N:P acquisition ratio (NAG+LAP)/
PHOS and the enzyme C:P acquisition ratio (CBH +
BG)/PHOS both responded positively to N addition in
the tussock areas (Table 2, Fig. 3). The enzyme C:N
acquisition ratio (CBH + BG)/(NAG+LAP) was un-
changed in response to the N treatment but differed
between the two microtopographic areas, with higher
values in the inter-tussock areas (Table 2, Fig. 3).

Discussion

Short term (8–12 years) experiments in peatlands often show an
increase in vascular plant abundance in response to enhanced N
conditions (Wiedermann et al. 2007; Kool and Heijmans 2009).
However, in this experiment after 21 years of treatment the net
effect of N addition on vascular plant cover was relatively minor
or neutral. Hence, the observed complete crash of the Sphagnum
layer due to N addition left substantial patches of bare peat un-
covered by vegetation (see Plate 1). Further, we observed an
intriguing mismatch between effects on aboveground vegetation
patterns and belowground processes. Whereas the total vascular
plant cover and the total vascular plant leaf litter production
responded with a pronounced increase in abundance to the T
treatment, EEA in the peat matrix responded solely to the N
treatments and not to T. The effects of S addition were negligible
both aboveground and belowground.
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Fig. 1 Cover estimates (% areal cover) of vascular plant- and Sphagnum
vegetation as well as vascular plant litter at the long term fertilization
experiment at Degerö Stormyr in July 2016; y-axes: cover estimate; x-
axes: experimental treatments: c = control, T = temperature (+3.6 °C),
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Fig. 2 EEA, measured as nmol
activity g−1 dry peat hr−1 of C, N
and P cycling enzymes in the long
term fertilization experiment at
Degerö Stormyr. Since no other
factor (T and S) showed
significant responses we plot only
the responses to the N treatments
(2 and 30 kg ha−1 yr−1 for the
control and N-addition,
respectively) and present them
separately for the inter-tussock
(dark gray) and tussock (light
gray) areas. Plotted quantities are
the median, and the 25th and 75th

percentiles. Whiskers show either
the maximum values or 1.5 times
the interquartile range of the data.
Points more than 1.5 times the
interquartile range at both ends
are individually plotted outliers

Table 2 Estimates of fixed effects produced by mixed effects models
with “plot” as random effect. For normal distributed data Wald F tests
with Kenward-Roger df are presented. Response variables: 1–6: potential
extracellular enzyme activity (EEA) (in nmol activity g-1 dry peat hr-1); 7–
13: enzyme stoichiometry; and 14 + 15: peat mass percent C and N
content. Modeled factors (fixed effects): N (nitrogen addition),

topography (tussock vs. inter-tussock); n = 16 plots. No temperature,
sulfur or interaction effects with T and S were significant . Only
significant (p < 0.05) p-values are presented in the table. Plus signs (+)
to the right of the p-values indicate an increase, minus signs (−) a decrease
in response to the respective treatment/variable

response variables experimental factors

N tussock N x topography

1) CBH F(1,12) p < 0.001 (+)
2) BG F(1,12) p < 0.001 (+)
3) NAG F(1,12) p = 0.040 (+) F(1,15) p = 0.002 (+)
4) PHOS F(1,15) p < 0.001 (−)
5) SULF F(1,9) p = 0.004 (+) F(1,12) p = 0.010
6) LAP F(1,12) p = 0.049 (−)
7) NAG+LAP F(1,12) p = 0.026 (+) F(1,15) p = 0.004 (+)
8) BG +CBH F(1,12) p < 0.001 (+)
9) BG +CBH/unit C F(1,12) p < 0.001 (+)
10) NAG+LAP/unit N F(1,12) p = 0.004 (−) F(1,15) p = 0.028 (+)
11) N:P EEA F(1,9) p = 0.007 (+) F(1,12) p < 0.001 (+) F(1,12) p = 0.017
12) C:P EEA F(1,9) p < 0.001 (+) F(1,12) p < 0.001 (+) F(1,12) p = 0.016
13) C:N EEA F(1,15) p = 0.009 (−)
14) peat % N F(1,12) p < 0.001 (+)
15) peat % C F(1,12) p < 0.001 (+) F(1,15) p < 0.001 (+)
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Vegetation Response

Sphagnum

The sharp decline in Sphagnum cover from the N treatment
coincided with a substantial increase in N tissue concentration
of the Sphagnum species as a function of the added N, which
has also been reported by similar studies (Berendse et al.
2001; Wiedermann et al. 2009b) and hints toward a direct
negative effect of high N availability on Sphagna (Table 1,
Fig. 1, and supplemental material). The unicellular leaf struc-
ture of the mosses and the absence of a cuticle permits
Sphagna to very effectively intercept and absorb airborne nu-
trients, in particular N sources, which leads to a competitive
advantage of the mosses over vascular plants in oligotrophic
conditions (Malmer et al. 2003; Vanbreemen 1995).
However, in eutrophic conditions the apparent lack of a mech-
anism to regulate N uptake, especially under high NH4

+ con-
ditions (Wiedermann et al. 2009a; Chiwa et al. 2016)

potentially leads to toxic N levels accumulating in the
Sphagnum tissue (Van Der Heijden et al. 2000).

Surprisingly, Sphagnum abundance remained unchanged in
the T treatments (Table 1, Fig. 1) despite the dense vascular
plant cover, on average 62%, which suggests that light levels
were not limiting to the Sphagnum species. In support of our
results, it has previously been reported by for instance Hayward
and Clymo (1983) andMalmer et al. (2003) that Sphagnum can
tolerate shading up to a vascular plant cover of about 60%.
Another possible indirect negative effect of the T treatment
on Sphagnum cover could be through drought effects. In our
study negative drought effects can likely be ruled out due to the
year-round comparatively high water table at the experimental
site (c.f. Peichl et al. 2014; Nijp et al. 2015).

Vascular Plants

For the cover of ericaceous dwarf shrubs, the earlier ob-
served positive responses after 8 years of experimental N
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Fig. 3 Stoichiometric ratios of
EEA, measured as nmol activity
g−1 dry peat hr−1 of C, N and P
cycling enzyme in the long term
fertilization experiment at Degerö
Stormyr. Since no other factor (T
and S) showed significant
responses we plot only the
response to the N treatments (2
and 30 kg ha−1 yr−1 for the control
and N-addition, respectively) and
present them separately for the
inter-tussock (dark gray) and
tussock (light gray) areas.
Plotted quantities are the median,
and the 25th and 75th percentiles.
Whiskers show either the
maximum value or 1.5 times the
interquartile range of the data.
Points more than 1.5 times the
interquartile range at both ends
are individually plotted outliers
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addition (Wiedermann et al. 2007) had mostly disappeared
after 21 years, which highlights the value of long term
experiments. Numerous studies report positive vascular
plant species responses to elevated N conditions (e.g.,
Kool and Heijmans 2009; Limpens et al. 2011). The ab-
sence of a positive vascular plant response to the applied N
treatment in this study might in part be explained by the
collapse of the matrix species (Sphagnum), thereby reduc-
ing structural support for some of the species and increas-
ing flooding stress. The collapse of the decaying moss
brings the water table closer to the peat surface (Eriksson
et al. 2010) thus reduces the aerated rooting space for the
ericaceous dwarf shrubs, whereas at the same time provid-
ing aerenchymal graminoids with a competitive advantage,
which is supported by our data in this study (Table 1, Fig.
1). These hydrological impacts of N addition in peatlands
might not only result in a vegetation shift towards eutro-
phic, aerenchymal graminoids but also shift biogeochem-
istry toward predominantly anaerobic processes. In this
study, we found support for this trend toward a dominance
of anaerobic processes from the measured potential sulfa-
tase activity (SULF) where we find highest SULF in re-
sponse to the N treatment particularly in the inter-tussock
areas (Table 2, Fig. 2).

Our findings showed dissimilar responses of the two erica-
ceous dwarf shrubs (Table 1, Fig. 1), challenging the utility of
the concept of trait based plant functional types in this context
(Cornelissen et al. 2003; Pérez-Harguindeguy et al. 2013). For
practical reasons, ecosystem modelers tend to operate with
species groups based on the concept of plant functional types
(Lavorel et al. 1997). However, our study demonstrates that
caution must be taken when generalizing individual species
responses to global change. The central role of Sphagnum spp.
(Turetsky 2003; Vanbreemen 1995) might have contributed to
the dissimilar response of the two ericaceous species, which
present different growth forms. Whereas A. polifolia is an
erect woody dwarf shrub, which at the experimental site typ-
ically grows up to a height of ~20 cm, V. oxycoccos with its
prostrate growth creeps on the Sphagnum surface. We attri-
bute the significant reduction of V. oxycoccos abundance in
response to the NT treatment in part to the complete collapse
of the Sphagnummatrix, which when intact provides structur-
al support for V. oxycoccos growth. Greater tolerance toward
flooding stress shown by Andromeda spp. as compared to
Vaccinium spp. was also reported from a mesocosm experi-
ment where water table level manipulations were part of the
experimental setup (Potvin et al. 2015). Our findings are in
line with previous results (e.g., Reich et al. 2001; Bret-Harte
et al. 2008) who also demonstrated that individual species
responses to global change can deviate greatly from expected
trait based plant functional type responses.

Potential Extracellular Enzyme Activity (EEA)

Despite the many factors that were anticipated to result in
altered EEA in response to the T treatment, our results
showed no responses of EEA to the T treatment. Instead
the only experimental factor that strongly influenced EEA
was N addition (Table 2, Fig. 2). Unlike in other ecosys-
tems where enhanced temperature itself coupled with suf-
ficient soil moisture often leads to enhanced extracellular
enzyme activity (EEA) (Bell et al. 2013; Steinweg et al.
2013), in oligotrophic peatlands the anticipated positive T
effect on EEA seems to be missing. In line with our re-
sults a similar lack of T response of EEA was also report-
ed from nutrient poor arctic peatlands (Weedon et al.
2013, 2014). Enzymes are protein structures, thus requir-
ing N for their syntheses. The sparse N resources in oli-
gotrophic peatlands, although creating a high demand for
decomposition processes to provide the much-needed nu-
trient, may also limit extracellular enzyme production.
Nitrogen limitation for enzyme production has also been
found in arctic tussock soils (Sistla et al. 2012) and has
been discussed earlier by Allison and Vitousek (2005).

Contrary to our expectation, elevated N conditions did
not induce higher potential phosphatase activity (Table 2,
Fig. 2). These results find support in another peatland
study by Li et al. (2019), who found a decline in phos-
phatase activity in response to N addition. Phosphatases
are produced by plants and microbes alike and despite
higher demand for labile C in response to N addition, no
such limitation was seen for P in our study. The lack of
apparent P limitation in this minerotrophic portion of the
peatland is in line with results from Olid et al. (2017) and
from previous results from the experiment in 2003, where
no differences in P concentrations of Sphagnum tissue
were found in response to the applied treatments
(Wiedermann, unpublished data). Alternatively, there
might be less of a demand for P and consequently for
phosphatases since the ericaceous dwarf shrub density ul-
timately declined in response to the N treatment, and the
rooting depth of the sedges is primarily in the deeper peat
zones below our peat core sampling depth.

Enzyme Stoichiometry

The long term experimental N addition might have result-
ed in a shift in microbial demands from being N limited to
increased belowground C limitation as indicated by the
applied stoichiometric equations on the measured EEA
(Moorhead et al. 2016). In accordance with our expecta-
tions, the total enzyme C acquisition activity (glucosidase
(BG) + cellulase (CBH)) per unit C (mass percent)
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increased with N addition, whereas the total enzyme N
acquisition activity (chitinase (NAG) + aminopeptidase
(LAP)) per unit N (mass percent) decreased with N addi-
tion (Table 2, Fig. 3). This suggests that in the N treat-
ments N availability now exceeds demand, thus N may no
longer limit decomposition processes, and resources are
exceedingly placed toward provision of C, which might
promote C loss from peatlands as described by for in-
stance Bragazza et al. (2006).

Discrepancy between the Aboveground and
Belowground Responses

The most striking outcome of this long term global
change experiment was the apparent discrepancy between
the aboveground vegetation response and the below-
ground decomposition processes, which seem at first
glance largely decoupled. We had anticipated that in the
T plots the substantial increase in vascular plant species
abundance of both the mycorrhizal ericaceous shrubs as
well as E. vaginatum, an aerenchymal graminoid, would
be reflected in increases in EEA (Bragazza et al. 2013;
Wiedermann et al. 2017). In terms of specific effects of
the increased vascular plant cover following the T treat-
ment, we expected additional root exudates from the vas-
cular plants to provide for additional labile C (Ström et al.
2003; Crow and Wieder 2005; Drake et al. 2013) which
might enhance glucosidase (BG) and cellulase (CBH) ac-
tivity. With higher ericoid species abundance in the T
treatment (thus increased ericoid mycorrhizal abundance),
we expected to measure higher potential phosphatase ac-
tivity (PHOS) due to a strong enzymatic capacity for P
mining by the ericoid mycorrhiza (Leake and Miles
1996). In addition, we anticipated the higher mycorrhizal
fungal biomass accompanied by higher chitin inputs to
lead to elevated chitinase (NAG) activity. Given the in-
creased vascular plant cover in the long term T treatment,
we had also anticipated that the higher leaf litter inputs
would provide for enhanced resource availability to be-
lowground decomposers and thus overall higher EEA.

The observed responses to the N addition treatment and
experimental temperature enhancement differing between
aboveground and belowground patterns invites several
plausible explanations: 1) The hydrological effects from
N addition overrides any positive N effects on the vascu-
lar plants. The N treatment led to a collapse of the peat
matrix which resulted in relatively higher water table
levels that could induce flooding stress on the ericaceous
dwarf shrubs. 2) Contrary to the belowground microbial
communities, the vascular plants are possibly less N lim-
ited. In response to the T treatment, both Eriophorum and

Andromeda increased in cover at the expense of tissue N
concentration, which dropped. The lower tissue N concen-
trations in the T treatments indicate that despite the uni-
versal low N availability in oligotrophic peatlands and the
already high C/N ratios of 47 for Andromeda and 35 for
Eriophorum, both species seem to be more temperature
limited. 3) N might have negative effects on mycorrhizal
colonization as shown for Ecto-mycorrhizal mutualists
(Yesmin et al. 1996; Lilleskov et al. 2002, 2011).
Negative N effects on belowground processes can result
from a complex web of interactions, about which relative-
ly little is known. It is however known that N addition
leads to shifts in microbial community composition (e.g.,
(Wallenstein et al. 2006; Dean et al. 2014) and has par-
ticularly negative effects on mycorrhizal fungi (Lilleskov
et al. 2011). Mycorrhizal fungi provide many benefits to
the host plant, such as enhanced nutrient uptake, addition-
al water supply, and protection from root pathogens
(Allen et al. 2003; Albornoz et al. 2016). It is thus possi-
ble that altered plant mycorrhizal interactions have led to
additional negative effects on the dwarf shrub abundance.

Conclusions

Our long term study in an oligotrophic boreal peatland found
an interesting contrast with aboveground vascular plants cover
strongly increasing in the T treatments, and belowground en-
zymatic processes only responding to the N treatment. The
large increase in vascular plant cover in the warming treatment
finding no reflection in belowground extracellular activity re-
mains a mystery awaiting to be explored in follow-up studies.
The initial response of the ericaceous dwarf shrubs to the
experimentalN additionwere found to be positive after 8 years
of treatment (Wiedermann et al. 2007), but after 21 years of
experimental treatment the initial effect was lost. An important
mechanism explaining the lack of positive responses of the
ericaceous draft shrubs to the applied N treatment in the long
term might be that the high N treatment led to the collapse of
the peat matrix, which resulted in relatively higher water table
levels that could induce flooding stress on the ericaceous
dwarf shrubs. We thus emphasize that such indirect effects
of chronic high N levels far exceeding the demands of the
Sphagnum species can only be elucidated by long term exper-
iments. Another interesting facet of our study are the negligi-
ble effects of S addition on both aboveground vegetation as
well as belowground enzymatic processes. Our study, by in-
tegrating effects of long term exposure to both elevated N, S
and T on peatland vegetation and biogeochemistry, provides
critical new insights contributing to a more coherent under-
standing of peatland ecosystem responses to global change.
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