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Abstract

Rivers and their watersheds play a key role in the global biogeochemical cycle of nitrogen and phosphorus in the biosphere. They
are also important economic resources for humans. However, little information is available on eutrophication of West African
coastal rivers due to costly analytical instruments and socio-economic difficulties. In this study, the spatial distributions of
chlorophyll-a biomass in the Comoé¢, Bandama, and Bia Rivers (Cote d’Ivoire) were mapped during the dry, rainy and flood
seasons, and chlorophyll-a dynamics were simulated using Artificial Neural Network (ANN) models. The results showed a state
of advanced eutrophication during the three sampling seasons. The best generalizable models obtained from the data collected
during 2 years and covering three hydrological seasons of the rivers forecasted between 76% and 85% of present chlorophyll-a
concentrations (static approach), and between 73% and 84% of future chlorophyll-a concentrations (both dynamic t and t+ 1
approaches). These models achieved satisfactory accuracy with low relative mean errors (MRE) ranging from 3.22% to 7.71%.
The results of this study suggest that ANN model could be an original and less expensive tool for monitoring river water
eutrophication in developing countries.

Keywords Modeling eutrophication - Artificial neural network - River - Céte d’Ivoire

Introduction

Eutrophication of surface waters such as rivers is one of the
most common environmental problems in the world in terms
of water quality. The main consequences of the excess of
nutrients in lakes, coastal waters, large rivers or small streams
are hypoxia/anoxia, increase of primary production (abundant
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algae growth) followed by increase of turbidity, disturbance of
the aquatic ecosystems equilibrium, among others which are
direct consequences of eutrophication (Gibson et al. 2000;
Yasin et al. 2010; Chen et al. 2016). The European
Environmental Agency defines eutrophication as an increase
in the rate of organic matter supply to an ecosystem, which
most commonly is related to nutrient enrichment enhancing
the primary production in the system (EEA 2001). Often, riv-
ers are important conduit of nutrients but algal production may
be very low due to light limitation (from turbidity or forest
cover), or high river velocity upstream. In contrast, eutrophi-
cation is more pronounced in rivers’ delta, estuaries, and in
lakes. The trophic state of lakes and tropical rivers is usually
classified into six grades based on chlorophyll-a concentra-
tions: 0—1.6 ng/L representing oligotrophic, 1.6-10 pg/L me-
sotrophic, 10-26 pg/L light-eutrophic, 2664 pg/L mid-eu-
trophic, 64—160 pg/L high-eutrophic, and > 160 pg/L
hypereutrophic (Jin and Tu 1990; Huo et al. 2013). The in-
creasing high anthropogenic inputs of nutrients in river water-
sheds are well known as the main culprit of eutrophication
(Aguiar et al. 2011; N’goran et al. 2019). Therefore, it is
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necessary to monitor the evolution of eutrophication for the
preservation of the freshwater quality.

Many indices such as the trophic indexes (TRIX, TLI, and
TSI) have been used for both the monitoring of the surface
water quality and classification of river and lake trophic levels
using the chlorophyll-a, nutrients concentrations along with a
few physicochemical parameters (Pesce and Wunderlin 2000;
Moscuzza et al. 2007; Pettine et al. 2007; Cunha et al. 2013;
Huo et al. 2013; Ota et al. 2015; Singh and Singh 2015; Wu
et al. 2018). Through linear regression, these indexes provide
an insight on how nutrient (i.e., dissolved inorganic nitrogen,
reactive phosphorus, total phosphorus), light availability and
other factors (e.g., dissolved oxygen, potassium permanga-
nate) stimulate algal biomass development (usually measured
as chlorophyll-a, Chl-a) and contribute to the increase of the
aquatic systems enrichment condition (Primpas and Karydis
2010; Cunha et al. 2013; Li et al. 2017).

However, the prediction of eutrophication from these
indices remains difficult given the interdependence and
complexity of climatic, geographical and ecological fac-
tors affecting this phenomenon. Artificial Neural Network
(ANN) is an increasingly popular alternative in environ-
mental modeling because of its high potential for
predicting complex relationships with precise accuracy
(Sudheer et al. 2002; Sudheer and Jain 2004; Lohani
et al. 2011; Wu et al. 2013; Wu et al. 2014; Huang and
Gao 2017; Chen et al. 2018). ANNs are mathematical
tools whose functioning is inspired by that of the human
brain. Like their biological counterpart, neurons in layers
receive, treat (by weighted summation), and transfer in-
formation generally via a nonlinear function (Assidjo
et al. 2008). It has been demonstrated that ANNs are bet-
ter than many linear and mechanistic regression models
because of their ability to simulate non-linear phenomena
including algal bloom dynamics and dissolved oxygen
(DO) from water quality monitoring data. For example,
Muller and Muller (2015) forecasted estuarine hypoxia
in the main-stem of the Chesapeake Bay using a wavelet
based ANN model. Chang et al. (2015) used ANNs to
successfully forecast the low flow velocity regime in a
constructed wetland in the Florida Everglades. Huo et al.
(2013) predicted eutrophication with indicators such as
DO, total nitrogen (TN), chlorophyll-a (Chl-a) and secchi
disk depth (SD) with reasonable accuracy in Lake Fuxian,
the deepest lake of southwest China, while Huang and
Gao (2017) simulated chlorophyll-a in Lake Poyang in
China using ANN models. However, studies in tropical
regions are concentrated primarily in Asia, and limited
data is available for West African rivers (Awad 2014;
Wang et al. 2015; Tian et al. 2017; Hao et al. 2019). As
an example, in Cote d’Ivoire, studies on eutrophication
modeling have been conducted only in lagoons (Yao
et al. 2017). Given that river waters are vital for people
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in rural areas, prediction of eutrophication in these waters
is necessary. The aim of this study was to model the
spatio-temporal evolution of chlorophyll-a, the main indi-
cator of eutrophication using Artificial Neural Network in
three typical rivers of Cote d’Ivoire (The Comoé,
Bandama and Bia Rivers) which are used for drinking,
fishing, bathing, and irrigation by the local populations
without any treatment. One of the main detrimental effects
of eutrophication is the increased occurrence of harmful
algae, especially Cyanobacteria which can present chronic
health risks to humans (Le Moal et al. 2019). For exam-
ple, liver cancer was observed in a population from cen-
tral Serbia following the consumption of water contami-
nated by Cyanobacteria (Svircev et al. 2009). Secondly,
eutrophication of these three rivers could result in socio-
economic impacts such as cost of water treatment and
financial problems for fishing communities. From field
data, simulations for different rivers were made; then,
the adequacy between predicted and target data was
discussed.

Materials and Methods
Study Area and Samplings

The present study was conducted on three main rivers: the
Como¢, Bandama and Bia Rivers which irrigate southeast-
ern Cote d’Ivoire (Fig. 1). The Comoé River originates from
the Banfora region in Burkina Faso and traverses 1160 km
in Cote d’Ivoire before discharging into Ebrié Lagoon and
the Gulf of Guinea. It has an annual average flow of about
106 m*/s and a drainage basin of 82,408 km?. The Bandama
River takes its source in the northern Cote d’Ivoire, between
Korhogo and Boundiali at an altitude of 480 m and flows
into Grand-Lahou Lagoon and the Gulf of Guinea in the
South. With a length of 1050 km, its catchment area covers
97,500 km? with an annual average discharge about 263 m*/s.

The hydrological regime of the Comoé and Bandama
Rivers is essentially a tropical transitional regime with a single
flood from August to October, and a long period of low water
from January to May (Fig. 2).

The Bia River is a small river located in the southeast
corner of Cote d’Ivoire. It originates from Ghana in north
of Chemraso, flows southward and discharges into Aby
Lagoon. The length of the Bia River is about 120 km in
Cote d’Ivoire, and the annual average discharge is 104
m’/s. The Bia River is linked to an equatorial transition
regime marked by two annual floods. The first (usually
the strongest) and second floods, occur during the June—
July period and the October—November period, respec-
tively (Durand et al. 1994; Girard et al. 1970).
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Fig. 1 Sampling stations along the Como¢, Bandama and Bia Rivers
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Fig. 2 Annual discharges of the Como¢, Bandama and Bia Rivers
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Six sampling campaigns were conducted in the Comog,
Bandama and Bia Rivers from March 2016 to November
2017 during the dry, rainy and flood seasons. Five stations
were sampled in the Comoé River from station COL1 to station
COS5, five in the Bandama River from station BA1 to station
BAS3, and five in the Bia River from station BIA1 to station
BIAS (Table 1).

Procedure, Reagents and Quality Assurance

A Multiparameter Meter with GPS - HANNA HI 9828 was used
to measure in situ parameters including temperature, pH, salinity,
conductivity and dissolved oxygen. Water samples were collect-
ed with a 2.5 L Niskin bottle at 0.3 m below the surface of the
streams. Water samples were filtered through a 0.45 um
Whatman GF/C filter and then stored in polyethylene flasks of
1 L volume (previously washed with 10% HCI and rinsed three
times with ultrapure water). Subsequently, these flasks were acid-
ified with sulfuric acid or hydrochloric acid, then stored at 4 °C
and protected from light in a cooler. Analyses were performed
within 72 h in the laboratory. Nutrients and chlorophyll-a analy-
ses were performed according to Rodier et al. (2009) reference
method. A portable spectrophotometer (HACH model DR/2400)
was used for analysis (Koroleff 1970 for ammonium ion
measurements; Grasshoff et al. 1999 for nitrates and Murphy
and Riley 1962 for phosphates). Chlorophyll-a was extracted
with 90% acetone in the dark and analyzed by Lorenzen’s meth-
od (Lorenzen 1967). Blanks were analyzed in each batch of

water samples throughout the entire analytical procedure. The
accuracy and precision of the results were checked by triplicate
measurements. The detection limits were 0.004 mg/L for PO,
0.002 mg/L for NH4", 0.005 mg/L for NO3 and 0.1 pg/L for
Chl-a. The errors in analyses in terms of standard deviations of
triplicate samples were found to be 0.001, 0.005, 0.02 mg/L and
0.38 ug/L for PO43_, NH,4*, NO; ™ and Chl-q, respectively.

Data Set

The time-series data collected during the 2 years allowed for a
characterization of water physico- chemical parameters and
the chlorophyll-a (Chl-@) values in the Comoé, Bandama
and Bia Rivers (Table 2). The data set consisted of 150 mea-
surements per parameter. These parameters (predictors) can
interact with the chlorophyll-a dynamics in rivers. We inves-
tigated the presence of associations between both predictor
and response variables by calculating Pearson and Spearman
correlation coefficients between all possible combinations of
variables. The correlation coefficients estimated between pre-
dictors and the response variable (Chl-a) demonstrated that
many of the predictor-response associations were nonlinear,
as evidenced by the values of the Pearson correlation scores
being lower than the Spearman correlation scores (Tables S1
to S3). This result suggested that such associations between
predictor variables and the response should not be modeled
with linear models. Therefore, ANNs are an ideal alternative
to model these relationships as they are better suited to

Table 1 Geographical locations of sampling stations and sampling period
2016 2017
Hydrological seasons of rivers
Dry Rainy Flood Dry Rainy Flood
River Area Latitude N Longitude W 1st sampling 2nd sampling 3rd sampling 1st sampling 2nd sampling 3rd sampling
Bandama BA1 Bafécao 6.035757 —4.916859  2016/03/18* 2016/06/09  2016/10/06 ~ 2017/03/15 2017/06/15  2017/11/17
BA2 N’zi 6.00297  —4.822094
BA3 Tiassalé 5.883404 —4.825975
BA4 Lahou 5263395 —4.967991
BAS5 Braffedon 5.144469 —4.971661
Comoé¢  COl Aniassu¢  6.638662 —3.711774  2016/03/17 2016/06/08  2016/10/05  2017/03/14 2017/06/14  2017/11/16
CO2 Manzan 6.458642  —3.394239
CO3  Alepe 5.30091 —3.393094
CO4 Bonoua 5262114 -3.613791 2016/03/16  2016/06/07  2016/10/04  2017/03/13  2017/06/13  2017/11/15
CO5 Bassam 5226616  —3.68545
Bia BIA1 Bianoua 6.019232 —-3.191507
BIA2 Ayamé 5.612799 -3.167517
BIA3 Aboisso 5474137 —3.202904
BIA4 Krindjabo 5.389706 —3.221596
BIA5S Thomandi¢ 5.362501 —3.205251
*yy/mm/dd
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account for the non-linear associations between the response
and the interactions among predictors (Li et al. 2013).

Neural Network
Artificial Neural Network (ANN) Model Development

Finding neural network models includes computing appropri-
ate weights and biases that minimize the discrepancy between
observed and simulated data. Development of artificial neural
networks were performed based on the Matlab neural network
toolbox R2018a Software. During all simulations, the
Levenberg-Marquardt algorithm (Levenberg 1944,
Marquardt 1963) was used to accelerate the training step.
Arttificial neural network models were built to predict chloro-
phyll-a concentration. The simulations were carried out ini-
tially with as predictors, all the ten parameters measured
(Temperature, pH, EC, DO, salinity, PO43 ~,NO;~,NH,", river
discharge, and pluviometry). Two approaches were consid-
ered in this study (Fig. 3). First of all, the static modeling of
the chlorophyll-a was performed using ten predictors consti-
tuting the input parameters X; and measured chlorophyll-a
values in the river as the output parameter Y;. Then, the dy-
namic models of chlorophyll-a were performed adding the
time, namely the month of the season during which the sam-
pling was conducted, to the ten previous predictors. The re-
sponse Y;(t) represents the forecasting chlorophyll-a concen-
tration in the river for the current season while the response
Y;(t+ 1) represents the chlorophyll-a concentration for the
next season in the river. It should be noted that the static
modeling approach forecasts the present values of chloro-
phyll-a without including the time (month) as an input param-
eter, while the dynamics modeling approaches forecast the
future values of chlorophyll-a (Fig. 3).

To form the network, data were randomly and evenly di-
vided into three subsets by the calculation algorithm: training
(50% of data), testing (25% of data) and validation (25% of

Static Network

Input layer Hidden layer Output layer Input layer
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Fig. 3 Structures of the Artificial Neural Network (ANN)
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Dynamic Network
(current season)

Hidden layer

data). The training subset is used for computing and updating
the network weights and biases (Assidjo et al. 2008). The error
in the testing set is monitored during the training process. The
testing error will normally decrease during the initial phase of
training, as does the training set error. However, when the
network begins to overfit the data, the error in the testing set
will typically begin to increase. When the testing error in-
creases for a specified number of iterations, the training is
stopped and the weights and biases of the minimum testing
error are returned. The validation data set are only used to test
the final solution in order to assess the performance of the
network (Assidjo et al. 2008).
All inputs were normalized using the following formula:

2x—x,
sy = i) _y (1)

(xmax_xmin)

Where x,,; is the normalized data ranging between —1 and 1,
x; 1s the initial data, and x,,,;, and x,,,,, are minimum and max-
imum values of the data set.

The network architecture has been optimized by varying
the hidden layer neurons number from 1 to 15 taking into
account the highest correlation coefficients of training (R,,)
and validation (R,,) phases, but also the lowest values of the
mean squared errors (MSE). For each hidden neuron, simula-
tions were carried out 1500 x 5 times by randomly generating
weights and the best result of the corresponding network ar-
chitecture has been registered. The transfer function of hidden
layer nodes was the tanh function and the linear function for
the output layer (Lee et al. 2016). Every hidden neuron pro-
duces an output y’; according to Eq. 2:

y,j = tanh(Zw,jxi + b/) (2)

Where w;; represents the weights, x; the inputs, b; the bias
associated with the output )’; and tanh is the transfer function
between the input layer and the hidden neuron.

Dynamic Network
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Each output neuron produces an output value Y; which
represents the predicted value of chlorophyll-a according to
Eq. 3:

Yi=X(vip';) +bi 3)

Where v;; represents the weights, '; the hidden neurons and
b; the bias associated with the output ¥; (Assidjo et al. 2008).

ANNSs models obtained appeared quite complex with
sometimes up to 13 neurons in the hidden layers. It was nec-
essary to carry out tests to ensure that there was no overfitting.
Thus, the relevance of the input variables of the ANN models
was estimated according to the Olden method (Olden et al.
2004) for chlorophyll-a prediction in each river. Connection
weight approach of Olden et al. (2004) calculates the product
of'the raw input-hidden and hidden-output connection weights
between each input neuron and output neuron and sums the
products across all hidden neurons (Plate 1 in supplementary
files). This approach assigned importance values to the pre-
dictors that were proportional to their influence on the output
of the model. These values were above zero if the predictor
had a positive association with the response variable and be-
low zero if the predictor had a negative association with the
response variable (Coutinho et al. 2019). Networks with
values of importance assigned to predictors below —0.5 or
above +0.5 were considered valid, in order to exclude overly
complex models. This filtering criteria gives the best results
and reduces to a maximum to 6, the number of neurons on the
hidden layer in the final models. When two predictor values
presented close importance or a linear correlation (Pearson), a
preferential choice was made for the one with the highest
importance. This would reduce the networks size at most six
predictors on the input layer, and that would provide a nice
trade-off between predictive powers while avoiding
overfitting. Thus, the simulations were redone 1500 x 5 times
with the predictors selected at the input by randomly generat-
ing new weights, and the best result of the corresponding
network architecture was registered. The raw data was provid-
ed in Tables S4 to S6 (supplementary files).

The principal component analysis (PCA) was also, applied
to data from the Comoé, Bandama and Bia Rivers (1650 mea-
surements per river) to examine potential factors driving the
physical and chemical parameters. The PCA was performed
using Statistica® version 7 software. All graphs were per-
formed using Sigmaplot® version 12.0 and 14.0.

Model Performance

Evaluation of the model performance consists in judging its
ability to predict chlorophyll-a dynamics in the Comoé,
Bandama and Bia Rivers. The ANN program calculated the
correlation coefficients for the training (R,,,) and validation
(Rya1) sets and the mean square errors for the training

(MSE,;,;,) and validation (MSE,,) sets. The best networks
were selected among those that achieve the highest perfor-
mance (i.€., high R,,, and R, with low MSE, ; values) with-
out overfitting (i.e., adequate fits for both training and valida-
tion sets). In all, 225 ANNs were built for each river after the
simulations. Networks were considered valid if they were
characterized by R,p,>0.5; Ry;1>0.5 and MSE< 1
(Coutinho et al. 2019).

Another approach is determination of Schwarz’s Bayesian
information criterion (BIC) (Schwarz 1978; Assidjo et al.
2008) obtained as follows:

BIC = log(MSE) +p logn(n) (4)

Where MSE is mean squared errors, n the number of train-
ing patterns and p the total number of network weights. So the
smallest BIC would give the best generalizable model.

The mean relative error (MRE) is also introduced to eval-
uate the performance of ANN models and to estimate whether
the obtained model is generalizable (Xu et al. 2015).

x 100 (5)

Where n is the number of the samples in test set.
From eq. (5), it is obvious that the smaller the MRE is, the
better generalization is achieved (Xu et al. 2015).

Results and Discussion
Chlorophyll-a Dynamics

The spatio-temporal distributions of the chlorophyll-a in the
Comoé¢, Bandama, and Bia Rivers during the dry, rainy and
flood seasons are shown in Fig. 4. Thematic maps were com-
puted using the ArcGIS/ArcMap environment based on
Inverse Distance Weighting (IDW) interpolation. The season-
al variation of phytoplankton biomass distributions, expressed
as chlorophyll-a showed no clear trend over the study period
(March 2016 to November 2017) at the three sites as a result
of urban and agricultural inputs. Very high chlorophyll-a con-
centration (164 ng/L) was observed during the flood season at
the mouth of the Comoé River (CO5), while a very low value
(6.20 pg/L) was obtained in the same river at Bonoua station
(CO4) during the flood season. Strong proliferation of phyto-
plankton had been noted in the estuarine part of the three
rivers during the three seasons because rivers are often impor-
tant conduit of nutrients to downstream habitats (Yasin et al.
2010). Yet, this proliferation was not pronounced upstream
especially during the dry and flood seasons, except at the
Manzan station (CO2) where rainwater runoffs loaded in ni-
trates led to an increase in photosynthetic activity (de Sousa
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Fig. 4 Spatio-temporal chlorophyll-a dynamics in the Como¢, Bandama
and Bia Rivers from March 2016 to November 2017. Data plotted are
average concentrations obtained from March 2016 and March 2017

Barroso et al. 2016). Pearson correlation analyses were per-
formed to test for associations between chlorophyll-a abun-
dance and measured environmental parameters, especially ni-
trate and phosphate. (Tables S1 to S3). Chlorophyll-a corre-
lated positively with phosphates in the Bandama and Bia
Rivers and with nitrates in the Comoé River. The river dis-
charge and dissolved oxygen (DO) correlated negatively with
chlorophyll-a in the Bandama and Bia Rivers, respectively.

@ Springer

during the dry season, June 2016 and June 2017 during rainy season,
and October 2016 and November 2017 during flood season

The lower yet significant Pearson correlation scores observed
(range: - 0.236 to +0.433) suggest that the variation of these
nutrients and physicochemical parameters could linearly ac-
count for the chlorophyll-a values. The chlorophyll-a values
increased with phosphate inputs in the Bandama and Bia
Rivers, and nitrate increased with chlorophyll-a in the
Como¢ River mainly in the rainy season. This result could
indicate a limitation of nitrogen in the Comoé River and
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Table 3

The classification scheme for Chl-a biomass in the Comoé,

Bandama and Bia Rivers according to the classification of the European
Environmental Agency (EEA 2001). Data are average concentrations

obtained from March 2016 and March 2017 during the dry season,
June 2016 and June 2017 during rainy season, and October 2016 and
November 2017 during flood season

Classification of the European Environmental Agency (EEA 2001)

Chl-a (ng/L) 0-1,6 1,6-10 10-26 2664 64-160 >160
Trophic state Oligotrophic Mesotrophic Light-eutrophic Mid-eutrophic High-eutrophic Hypereutrophic
Assessment of the trophic state of rivers according to the classification of EEA (2001)
River Dry Rainy Flood
Chl-a (ng/L) Trophic state Chl-a (ng/L) Trophic state Chl-a (ng/L) Trophic state
Comoé COl 29.84 Mid-eutrophic 47.25 Mid-eutrophic 12.42 Light-eutrophic
CcO2 55.49 Mid-eutrophic 103.68 High-eutrophic 7.29 Mesotrophic
COo3 84.02 High-eutrophic 48.87 Mid-eutrophic 119.16 High-eutrophic
CO4 12.69 Light-eutrophic 19.17 Light-eutrophic 6.21 Mesotrophic
COs5 123.93 High-eutrophic 83.70 High-eutrophic 164.16 Hypereutrophic
BA1 13.01 Light-eutrophic 15.93 Light-eutrophic 10.08 Light-eutrophic
BA2 55.62 Mid-eutrophic 20.52 Light-eutrophic 90.72 High-eutrophic
Bandama BA3 51.30 Mid-eutrophic 89.37 High-eutrophic 13.23 Light-eutrophic
BA4 39.96 Mid-eutrophic 70.47 High-eutrophic 9.45 Mesotrophic
BAS 91.67 High-eutrophic 86.94 High-eutrophic 96.39 High-eutrophic
BIAI 18.50 Light-eutrophic 27.81 Mid-eutrophic 9.18 Mesotrophic
BIA2 26.87 Mid-eutrophic 40.77 Mid-eutrophic 12.96 Light-eutrophic
Bia BIA3 18.23 Light-eutrophic 19.17 Light-eutrophic 17.28 Light-eutrophic
BIA4 39.33 Mid-eutrophic 34.56 Mid-eutrophic 44.10 Mid-eutrophic
BIAS 64.40 High-eutrophic 92.61 High-eutrophic 36.18 Mid-eutrophic
Static
20- Dynamic (t)
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1.5
1.0 2]
i (L « |
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Fig. 5 Bar plot depicting the relative importance of predictors for the response estimated from ANN weights through the Olden method
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Table 6 Characteristics of the models obtained for each river
River Static Dynamic (t) Dynamic (t+ 1)

Network model R, Rya MSE,, BIC  Network model R,,, Rys MSE,; BIC  Network model R,,, Ry, MSE,,; BIC
Comoé  5-5- 1% 0.96 0.75 0.09 -1.01 4-6-1 0.90 0.82 0.11 -0.90 5-3-1 0.88 0.63 0.13 -0.85
Bandama 6-5 -1 091 0.67 0.15 -0.78 5-3-1 0.85 0.66 0.22 -0.63 6-6-1 093 0.67 0.21 —0.64
Bia 4-4-1 0.87 0.86 0.05 -124 6-5-1 098 0.95 0.07 -1.15 54-1 0.90 0.73 0.07 —-1.11

*The 5-5 - 1 architecture translates 5 neurons in input layer (X;), 5 nodes in hidden layer and 1 neuron for output (Chl-a)
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phosphorus in the Bandama and Bia Rivers, respectively, dur-
ing the rainy season. Overall, the map distributions and the
presence of associations between the chlorophyll-a abundance
with the environmental parameters measured, show that chlo-
rophyll-a dynamics in the rivers could be dictated by nitrates
and phosphates availability, point sources and diffuse sources
as well as the river flow.

Eutrophication State

The trophic status of the rivers was assessed using the classi-
fication scheme for Chl-a biomass (EEA 2001). The water
quality of the Comoé, Bandama and Bia Rivers was most
often under the mesotrophic state during the three sampling
seasons (Table 3). This finding confirms our rationale that
high nutrient concentrations result in sometimes a
hypereutrophic state of the rivers, especially during the flood
season as revealed by the significant correlations obtained
between nutrients and algae (Chl-a). In addition, during the

STATIC

2504

Measured

eeee Predicted

Chla(ug/l)

dry and rainy seasons, abundant sunlight, water temperature
and aquatic chemistry create an ideal environment for algae
growth. Algae blooms in rivers in summers were related to
nutrient enrichment, especially in nitrogen and phosphorus
from primarily agriculture non-point pollution (Wang et al.
2004; Zhang et al. 2011).

Predictive Power

The relative importance of the predictor values in the best
performing ANNs was estimated using the Olden method
(Olden et al. 2004) (Fig.5). The further away from zero, the
more important the predictor was, regardless of sign. Given
the performance of static modeling of Chl-a in the three rivers,
the high scores R, (range: 0.67 to 0.86) and the low MSE,
(range: 0.05 to 0.15) testified to the accuracy of ANN net-
works obtained with at most six predictors such as water sa-
linity, EC, temperature, PO43 ", pluviometry, NO;  (Table 4).
Although the predictor importance varied among these
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Fig. 7 Measured and predicted values of Chlorophyll-a from static and dynamic approaches in the Comoé River
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networks, the overall ranking of the predictors was conserved.
Four to six predictors forecasted the measured Chl-a values
using the dynamic approaches. The high scores R, (range:
0.63 to 0.95) and the low MSE,, (range: 0.07 to 0.22) sup-
ported the accuracy of the obtained ANN networks.

A PCA analysis was performed on the samples collected from
all rivers and seasons (the dry, rainy and flood seasons) to exam-
ine factors driving the distribution of the studied parameters in
the rivers (Table 5). The results showed three significant compo-
nents for each season, accounting for 71.3, 72.7 and 71.2%,
respectively, of the total variances of information contained in
the original dataset. Water EC, salinity, pluviometry and river
discharge showed high loadings (absolute weight > 0.6) on factor
1 during the three seasons. Moreover, the Pearson correlations
showed linear associations between river discharge with
pluviometry, EC and water salinity, but there was no linear asso-
ciation of these parameters with Chl-a. The factor 1 shows that
pluviometry (rainfall) may drive the distribution of water EC,
salinity, and river discharge in the rivers.

STATIC

2004

Measured

eeee Predicted

1504

Chla(ug/D

y oo sa 0 vy

Dry ' Rainy' Flood
2017

Factor 2 showed high loadings (absolute weight > 0.6) with
pH and DO during the dry season, with PO,*~ and NO5~
during the rainy season, and with NO;  and temperature dur-
ing the flood season. Moreover, the Pearson correlations
showed linear associations between PO,> and Chl-a in the
Bandama (r=0.29) and Bia (r = 0.43) Rivers, while NO;  and
Chl-a had linear association in the Comoé River (r=0.37).
The rainy and flood seasons caused excess phosphorus and
nitrate inputs probably through soil erosion; this may lead to
hyperfertilization of the environment and an increase in pri-
mary production (Gladyshev and Gubelitc 2019). So, factor 2
shows that PO,>~ and NO5 ™ impact chlorophyll-a abundance.

Factor 3 showed high loadings (absolute weight > 0.6) with
NO;~ during the dry season; with NH4* during the rainy sea-
son, and with DO during the flood season. This factor shows
that DO and NO;~ and NH," ions may impact chlorophyll-a
abundance. Algal growth in the aquatic system was also ac-
companied by a drop in oxygen demand, as example in the
Bia River where a negative linear correlation between Chl-a
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Fig. 8 Measured and predicted values of Chlorophyll-a from static and dynamic approaches in the Bandama River
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and DO was obtained (r=— 0.18). Overall, the PCA results
show that rainfall and the seasons play a key role on the dis-
tribution of the physical and chemical parameters in the rivers.

Chlorophyll-a Prediction

The highest R,,, and R, values corresponding to the lowest
MSE,, and BICs of each river are recorded in Table 6. The cor-
relation coefficient R,,, varied from 0.85 to 0.98 for the training
subset, while the correlation coefficient R, varied from 0.63 to
0.95 for the validation subset. Further, the choice of potentially
generalizable ANN models was made taking into account the
lower values of MSE,, (0.05 to 0.22) and the BIC (< — 0.5).
These results allowed to identify the models of the network archi-
tecture (Ngoran et al. 2009; Yao et al. 2017) that can simulate the
dynamics of chlorophyll-a in the Como¢, Bandama and Bia
Rivers, according to both approaches (i.e., static and dynamic).
Yet, since the best network model is a compromise between the
results obtained during the computing process (training and vali-
dation) and the adequacy of the simulated and observed values,

STATIC

160+

Measured

eeee Predicted

140

120

Chla(ug/b

regression plots were constructed to compare experimental and
predicted data of chlorophyll-a in the three rivers (Fig. 6). ¥, is
the target variable (i.e., measured chlorophyll-a) and Y, is the
simulated variable (i.e., predicted chlorophyll-a). Each graph con-
sists of one dashed line called a best-fit line (y = T, i.e., predicted =
experimental data) with a correlation value (R,;) on the plot. The
best generalizable models are the ones that predict more than 50%
(Ra>0.5) of the chlorophyll-a value (Mandal et al. 2015).

As shown in Figs. 6 and 7, the 5-5 - 1 model predicted 76%
of the static evolution of chlorophyll-a, while the 4-6 - 1 and
5-3 - 1 models predicted 82% and 76%, respectively, of the
dynamic evolution of chlorophyll-a at season (t) and the next
season (t+ 1), in the Comoé River. Overall, the high R,,, (>
0.85) and R, (> 0.60) scores presented in Table 6 and the low
discrepancies between expected and observed values
displayed in Fig. 7 are indicative of a good prediction of the
chlorophyll-a in this river by ANNs models.

With regard to the Bandama River, the 6-5 - 1 model predict-
ed 76% of the static evolution of chlorophyll-a, while the 5-3 - 1
and 6-6 - 1 models predicted 79% and 73%, respectively, of the
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Fig. 9 Measured and predicted values of Chlorophyll-a from static and dynamic approaches in the Bia River
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dynamic evolution of chlorophyll-a at season (t) and the next
season (t+ 1). This is supported by Fig. 8 on which the static
and dynamics (t and t+ 1) approach curves showed very similar
values between predicted and field measurements. Moreover the
high R, (> 0.85) and R, (> 0.65) scores presented in Table 6
and the low discrepancies between expected and observed values
displayed in Fig. 6 are indicative of the good prediction of the
Chlorophyll-a in this river by ANNs models.

As for the Bia River, the 44 - 1 model predicted 85% of the
static evolution of chlorophyll-a, while the 6-5 - 1 and 54 - 1
models predicted 84% and 79% of the dynamics of chlorophyll-
a at season (t) and the next season (t+ 1), respectively. As seen
on Fig. 9, the static and dynamic approach curves predicted
chlorophyll-a values very close to the field data. Moreover the
high R, (> 0.85) and R, (> 0.70) scores presented in Table 6
and the low discrepancies between expected and observed values
displayed in Fig. 6 are indicative of the good prediction of the
Chlorophyll-a in this river by ANNs models.

In general, the ANN models showed a high degree of con-
sistency between the field and prediction data.

The Bia River MREs were 3.90, 3.66, and 5.27%, respective-
ly, for the static and dynamic approaches (t and t + 1), indicating
low difference between the outputs of the ANN models and field
data. Therefore, the 44 - 1, 65 - 1 and 54 - 1 models are
generalizable for the Bia River (Table 7). The same was true
for the 6-5 - 1, 5-3 - 1 and 6-6 - 1 models in the Bandama
River with MRE values of 4.58, 3.95 and 3.70%, respectively,
and for the 5-5 - 1, 4-6 - 1 and 5-3 - 1 models in the Comoé
River with MRE values of 7.71, 5.51 and 3.22%, respectively.

This study revealed nine best neural networks for forecasting
Chl-a concentrations in the Comoé, Bandama and Bia Rivers.
The neural networks were successful in modeling between 73
and 85% of the response (chlorophyll-a concentration) with at
most six predictor variables. The network performance was rel-
atively comparable to that of ANNs built by Coutinho et al.
(2019) (82%) to model Chl-a abundance in Guanabara Bay,
Rio de Janeiro using water temperature, transparency, total nitro-
gen, total phosphorus, and salinity as relevant predictors and by
Flombaum et al. (2013) (68%) to model microbial abundance in
the Global Ocean. Therefore, the neural network approach is a
successful method of modeling such complex and non-linear
phenomena as algal blooms in freshwater systems with different
environmental conditions. Thus, the hypothesis that ecosystem
processes are best modeled when non-linearity of relationships is
assumed is retained (Recknagel et al. 1997; Wilson and
Recknagel 2001). Yet, Recknagel et al. (2002) and Park et al.
(2015) showed that artificial neural network models can be pow-
erful short-term predictors of the timing of algal bloom events but
are difficult to generalize and do not provide explicit explanation
of underlying processes. The differences in the precision ob-
served for the nine final networks in the present study could have
been due to the need to include biotic predictors in modeling the
response (Tromas et al. 2017).

Performance of the ANN models obtained

Table 7

Bia

Bandama

Comoé

Model validation parameter

Dynamic (t+1)

54-1

Dynamic (t)

Dynamic (t+ 1) Static
6-5-1

Dynamic (t)

5-3-1

Static

Dynamic (t+ 1)

5-3-1

Dynamic (t)

Static

-1

6-5-1

5-5-1

> 0.5
5.27
Low

>0.5
3.66
Low

> 0.5

> 0.5
3.70
Low

>0.5
3.95
Low

>0.5
4.58
Low

> 0.5
3.22
Low

>0.5
5.51

Low

>0.5
7.71
Low

Correlation value (Ry;)

MRE (%)

3.90
Low

MRE state

Generalizable Generalizable Generalizable Generalizable Generalizable Generalizable Generalizable Generalizable

Generalizable

Model performance
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Environmental Significance

Results from this study demonstrate that the Comoé, Bandama
and Bia Rivers are in an advanced eutrophication state, based
on Chl-a observations over 2 years. A number of environmen-
tal parameters such as water temperature, pH, EC, salinity,
PO,*", and river discharge were found as significant drivers
of chlorophyll-a concentration depending on the river.

Overall, the ANN model simulations data fitted accurately
the field measurements; therefore, they can be useful as alert
tool for decision-makers in the monitoring of chlorophyll-a
(thus, the eutrophication phenomenon) evolution in the
Comoé, Bia and Bandama Rivers.

Conclusion

The monitoring of riverine water eutrophication state in West
Africa represents a major challenge for the leaders as these
waters are vital for the subsistence of populations. This study
revealed that chlorophyll-a dynamic in the Comoé, Bandama
and Bia Rivers was characterized by higher levels upstream
during the rainy season as well as very high values down-
stream in the estuarine parts during the dry, rainy and flood
seasons. Chlorophyll-a concentrations in the rivers resulted
mainly from anthropogenic inputs such as agricultural and
urban runoffs, leading to a progressive deterioration of the
waters. Artificial neural network (ANN) models predicted
up to 85% of the chlorophyll-a concentrations in the rivers
with satisfactory accuracy. Therefore, the result of this study
demonstrates that the degree of eutrophication in tropical riv-
ers can be predicted successfully using ANN models with few
data in the field, which could benefit river management with
less cost for water quality monitoring. It should be appropriate
to raise awareness of the populations on the moderate use of
agricultural inputs in order to reduce water eutrophication.
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