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Abstract

Over the past four decades, Long Island, NY, USA, has lost coastal wetlands at a rate of 4% per decade due to submergence. In
this study, we examined relationships between the rate of tidal salt marsh loss and environmental factors, including marsh
elevation, tidal range, and wastewater exposure through analysis of stable isotope ratios of marsh soils and biota. Our goal
was to identify factors that increase vulnerability of marshes to sea level rise, with a specific emphasis on the potential role of poor
water quality in hastening marsh loss. Our results suggest that wastewater exposure may accelerate loss of intertidal marsh, but
does not negatively impact high tidal marsh resilience to sea level rise. And while marsh elevation and tidal range were
statistically significant predictors of marsh loss, they similarly displayed opposite relationships among marsh zones. This study
suggests that different functional zones of coastal salt marshes may not respond similarly to global change factors, and that

elevation may be an important factor mediating eutrophication effects to coastal salt marshes.
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Introduction

Coastal wetlands are valuable ecosystems that provide habitat
for numerous marine and terrestrial species, improve water
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quality, stabilize coastlines, attenuate coastal flooding, and
sequester atmospheric carbon (Costanza et al. 1997; Kennish
2001). These important ecosystems are projected to decline by
10% to 45% in area by 2100 (Craft et al. 2009), due to rates of
sea level rise (SLR) and submergence exceeding rates of ele-
vation gain, a process that has been referred to as ‘marsh
drowning’ (Orson et al. 1985; Kirwan et al. 2010). Coastal
wetlands in the U.S. Mid-Atlantic region are particularly vul-
nerable to SLR due to local subsidence from isostatic read-
justment following the last glaciation (Engelhart et al. 2009),
as well as changes in pressure gradients between the Gulf
Stream and coastal waters that are causing SLR acceleration
(Sallenger et al. 2012). Marsh drowning was first described
for coastal New York by Hartig and coauthors in 2002, where
processes of interior pond formation, a widening of tidal in-
lets, and marsh edge slumping were found to be responsible
for over 50% loss of marshlands between 1924 and 1999 in
Jamaica Bay in New York City. Similar rates and patterns of
loss have been observed for salt marshes in Rhode Island
(Watson et al. 2017b), Cape Cod (Smith 2009), and
Chesapeake Bay (Beckett et al. 2016), indicating that marsh
loss due to submergence is widespread throughout the region.

The ability of tidal salt marshes to accumulate sediment
and organic matter at rates that keep up with relative SLR
can differ locally and is a function of plant biomass, mineral
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sediment deposition, and organic matter formation (Kennish
2001; Langley et al. 2009; Kirwan and Megonigal 2013;
Watson et al. 2014; Carey et al. 2017). Because sediment
transport pathways to Long Island (NY) tidal marshes have
been widely acknowledged to have been disrupted by anthro-
pogenic development (Peteet et al. 2018), the role of autoch-
thonous accretion is magnified. Aboveground growth of
emergent wetland plants enhances sediment trapping and re-
duces erosion of the marsh platform (Kirwan et al. 2010).
Belowground growth of emergent macrophytes leads to the
accumulation of organic matter, thus increasing marsh eleva-
tion (Langley et al. 2009). Factors that affect plant productiv-
ity, such as nutrient availability, wetland soil texture, or chem-
ical profile can thereby influence the ability of marshes to cope
with SLR. In addition, tidal range can play an important role in
marsh resilience to SLR. Marshes with a small tidal range
experience stress from waterlogging and poor drainage
(Stevenson et al. 1986), and higher tidal range marshes tend
to accumulate more sediment (Kirwan and Guntenspergen
2010) and experience enhanced plant productivity (Morris
et al. 2013a).

Over the past decade, a lively debate has focused on
the effects of nutrient enrichment on salt marsh resil-
ience to SLR. Evidence from long-term fertilization
studies has shown that excess nitrogen and phosphorus
in salt marshes can impede the accumulation of below-
ground biomass, as the plants alter their nutrient forag-
ing strategies (Turner et al. 2009; Turner 2010). The
decrease in belowground biomass can reduce peat sta-
bility, which in turn can increase soil erosion and marsh
loss (Deegan et al. 2012; Wong et al. 2015). It was
shown that excess nutrient loadings reduce the tensile
root strength of emergent marsh plants, impacting their
ability to withstand erosional forces (Hollis and Turner
2019). Furthermore, excess nutrients can be metabolized
by the marsh soil microbial community, promoting the
re-mineralization of organic matter and thereby reducing
the soil volume and elevation (Langley et al. 2009). In
addition to the direct effects of excess nutrients on
marsh plant growth, enhanced nutrient availability can
also lead to algal blooms and wrack deposits on the
marsh surface that decompose rapidly leading to spikes
increase marsh ammonia and sulfide levels (Watson
et al. 2015). These elevated ammonia and sulfide levels
can be toxic to marsh plants (van Katwijk et al. 1997),
facilitate bank erosion and thus the conversion of tidal
marsh to mudflats or open water (Kolker 2005; Wasson
et al. 2017).

However, other studies suggest that nutrient enrich-
ment can increase plant growth and the resilience of
tidal salt marshes to SLR. Several nutrient enrichment
studies documented enhanced marsh accretion associated
with increased stem density, which boosts sediment
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trapping (Morris et al. 2013a; 2014; Davis et al.
2017). Other studies have not found reductions in be-
lowground biomass (Anisfeld and Hill 2011; Davis
et al. 2017), or at least reported no negative effect on
overall marsh accretion (Graham and Mendelssohn
2014). While Morris and co-authors (2013b) acknowl-
edge that nutrients can stimulate microbial
remineralization of organic matter, they argue that the
effect on long-term marsh accretion is negligible, as
microbes utilize labile organic matter, whereas only re-
fractory organic matter significantly adds to the soil
volume. Also, recent work has pointed at the impor-
tance of soil texture and organic content in mediating
impacts of nutrient enrichment (Wong et al. 2015;
Wigand et al. 2016). Finally, high wastewater inputs
may expose coastal wetlands to toxicants completely
apart from altered nutrient availability.

This study investigated the combined effects of nutri-
ent enrichment and marsh elevation on the areal change
of tidal salt marshes on Long Island, New York, from
1974 to 2008. Remote sensing-derived classifications of
39 estuarine wetlands were analyzed for multi-decadal
trends in areal extent (Cameron Engineering and
Associates 2015) and tested for relationships with marsh
elevation relative to tidal datums and wastewater expo-
sure as indicated by biota §'°N ratios (Watson et al.
2018). We hypothesized that low-elevation salt marshes
would be disappearing more rapidly than high-elevation
marshes, as previous work has suggested high inunda-
tion levels as a key driver of loss (Watson et al. 2017a).
Because previous studies have suggested that nutrient
exposure has triggered marsh loss or declines in soil
organic matter elsewhere in New England (Deegan
et al. 2012; Wigand et al. 2009), we further tested the
hypothesis that salt marshes exposed to high wastewater
levels were lost at higher rates. The aim of this study
was thus to elucidate whether eutrophication was asso-
ciated with marsh loss on Long Island, and how this
relationship may interact with other important environ-
mental factors, such as tidal range and marsh elevation.

Materials and Methods

The study system of Long Island represents the largest
Island of the conterminous United States, which
stretches 190 km from its westernmost point in New
York City north-eastward into the Atlantic Ocean. Two
spines of glacial moraines are located close to the north-
ern shore of western Long Island, which fork around
Peconic Bay in the eastern part. An outwash plain
stretches from the moraines towards the southern shore,
where barrier islands and spits shelter several
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embayments. Tidal ranges vary, with microtidal regimes
of generally <1 m in eastern Long Island, 1-2 m on the
western South Shore, and mesotidal (2-3 m) regimes on
the northwestern coast. Tidal wetlands on Long Island
range from fresh and brackish to saline, which are dom-
inated by different plant communities. Typical fresh
marsh species are Typha angustifolia, Spartina
pectinata, Peltandra virginica, among others, while salt
marshes host communities of Spartina patens, Distichlis
spicata, and Limonium carolinianum at higher elevation
and Spartina alterniflora at lower elevation. The invasive
reed Phragmites australis is common in brackish por-
tions of Long Island marshes. Soil composition at sam-
pling locations included a significant sand textural com-
ponent (12-22%, mean 16%) (Desianti et al. 2019,
ESM1), and soil organic carbon ranged from 3 to 26%
with an average of 11%, which translates to approxi-
mately one-third (35%) of the soils being classified as
organic (Mocma 2005).

Marsh exposure to wastewater derived nutrient pollu-
tion was assessed through analysis of stable isotope ra-
tios of estuarine biota and soils (Watson et al. 2018), as
wastewater-derived dissolved inorganic nitrogen has a
heavier nitrogen isotopic signature in comparison with
marine-derived nitrogen sources (Cole et al. 2004).
Collections of the Eastern mud snail (Tritia obsoletus)
(50 site” "), Atlantic cordgrass (Spartina alterniflora) (5
green shoots site”! >10 m distant) and soil cores (0—
5 cm, 5 collections site” ! >10 m distant) were made at
each study location and processed for stable carbon and
nitrogen isotopes, which have previously been success-
fully employed as eutrophication indicators (Cole et al.
2004; Pruell et al. 2006). Soil and macrophyte material
was also analyzed for nutrient stoichiometric ratios (mo-
lar C/N). Snails were analyzed as whole tissue samples.
All samples were dried, milled and introduced into a
Vario Cube elemental analyzer interfaced to an
Isoprime 100 isotope ratio mass spectrometer (IRMS).
Isotope ratios for carbon and nitrogen are reported in
per mille notation as:

R,
58X (%0) _ |: sample

standard

1} x 1000%o

where R is the abundance ratio of the less common (a)
to the more common isotope. All samples were ana-
lyzed in duplicate for stable isotopic and elemental
composition with a mean difference between duplicates
of 0.07 %o for 8'°N and 0.1 %o 5'°C, and 0.7 for the C/
N ratio (Watson et al. 2018).

As previous studies have found higher rates of marsh
loss for low elevation marshes (Watson et al. 2014;

Cole et al. 2017), we generated an estimate of mean
marsh elevation relative to mean high water at each
study site. Digital elevation models (DEMs) with a 10-
m resolution were obtained from the USGS 3D
Elevation Program (U.S. Geological Survey and The
National Map 2017). These elevation data were derived
by light detection and ranging (LIDAR) surveys, con-
ducted in April 2013, before the growing season for
marsh plants on Long Island. The elevation bias intro-
duced by overwintering salt marsh vegetation was eval-
uated using ground-based real time kinematic GNSS
measurements and found to be within the error reported
for the DEM, therefore we did not apply a vegetation-
specific elevation offset (Fernandez-Nunez et al. 2017).
To obtain marsh elevation statistics, we generated 1000
random points on all wetland areas that fell within a
2 km buffer around each of the sampling locations for
eutrophication indicators. This sampling procedure al-
lows for the exclusion of points that fall on features
other than the marsh platform, such as tidal channels,
upland, or roads. Mean elevations of each marsh are
expressed relative to mean high water (MHW), utilizing
the online vertical datum transformation of the National
Oceanic and Atmospheric Administration (NOAA 2016).

Marsh loss at the 39 Long Island wetland sites was
quantified by comparing past and recent aerial imagery.
Changes in the areal extent of Long Island tidal wet-
lands, classified by vegetation type, were calculated
based on analysis of high resolution aerial imagery (col-
or near-infrared imagery) collected in 1974 and 2005 or
2008 by Cameron Engineering and Associates (2015).
Vegetation classes included intertidal marsh, tidal fresh
marsh, high marsh, and Phragmites marsh. In this study,
we investigate intertidal and high marsh only and adapt
the classification laid out by the New York State
Department of Environmental Conservation, with ‘inter-
tidal marsh’ denoting lower elevation marsh dominated
by Spartina alterniflora and ‘high marsh’ corresponding
to higher elevation marsh dominated by Spartina patens
and Distichlis spicata. The boundary between inter-tidal
marsh and high marsh roughly corresponds with MHW,
such that inter-tidal marsh is found below MHW and
high marsh above MHW. To characterize change rates
that were calculated for different time periods, loss rates
were annualized. For each sampling station of eutrophi-
cation indicators, we generated a 2-km buffer, and
intersected wetland extent polygons within this range
to exclude wetlands far from indicator locations.
Changes in the extent of intertidal marsh, high marsh,
fresh marsh, and Phragmites were expressed as percent
change relative to 1974. To avoid extremely small
marsh areas skewing the results, the area of each class
was only considered if it was greater than 1 m” at a
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given site. The resulting relative change estimates for
each wetland were used to test for relationships with
eutrophication indicators and average marsh elevation.
A partial least squares regression (PLSR) approach
was used to determine the relationship between trends
in marsh extend and marsh wastewater exposure, marsh
elevation, as well as tidal range. This method has the
advantage to be robust against collinearity of input var-
iables and is suitable for datasets with many variables
but few observations, as individual predictor variables
are split into latent variables (components), each de-
scribing as much covariance between the predictors
and observations as possible. The number of compo-
nents to include in the model is selected to minimize
the root mean square error after cross-validation and
maximize how much of the variance of the response
variable is explained. In order to aid variable selection
for PLSR, the relative importance of each variable is
assessed by calculating variable importance in the pro-
jection (VIP) metrics. The VIP score indicates what
fraction of the variance captured by latent variables is
explained by each predictor variable, with VIP > 1 sig-
naling high importance. Correlation matrices and hierar-
chical cluster analysis performed using between-groups
linkage served as an initial indicator for the selection of
meaningful parameters. These were individually
regressed with marsh areal trends and incorporated into
multiple regression analyses. The statistical analyses
were performed in R version 3.3.2 (R Core Team 2017).

Results

Stable isotope and stoichiometric ratios of soils and biota
displayed a wide range of values across the 39 Long Island
wetlands analyzed for this study (Supplemental Material).
There was a clear gradient in eutrophication indices between
the wetlands of densely populated western Long Island and
those of Shelter Island Sound and Peconic Bays in the east.
Higher §'°N values were found in western than eastern Long
Island wetlands were found in soils (7.8 +£0.3%0 vs 5.1+
0.4%o0), Spartina (9.4 +0.5%o vs. 7.0 £ 0.5%o0), and snail tissue
(11.5+0.4%0 vs. 9.5+0.4%0) (mean =+ SE) demonstrating
higher levels of wastewater exposure (Watson et al. 2018).
Overall, 13% of the 8480 ha Long Island marshes
investigated by this study were lost over the 34-year
time period, which reflects a loss rate of 32 ha per year.
The overall relative change in marsh area from 1974 to
2008 varied considerably, with the highest areal loss
occurring at Northport (64%) and the largest areal gain
at Fishers Island West Harbor (54%). Eleven wetlands
changed less than 10% and 26 wetlands lost more than
10% in area over the 34-year time span. LiDAR-derived
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average elevation relative to MHW for the Long Island
wetlands was 0.12 m below MHW, ranging from
—0.77 m MHW (Fishers Island East Harbor) to 0.52 m
MHW (Hutchinson River). The tidal range for these
marshes averaged 1.3 m but varied from 0.35 to
2.2 m across the east-west gradient of Long Island, with
more westerly sites having a larger tidal range and more
easterly sites having a lower tidal range (= 0.46,
p<0.001).

Biplots and a correlation matrix revealed a number of
significant relationships, especially between the §'°N of
soil, macrophytes and snails, and position along the
west to east gradient in population density and waste-
water pollution (Figs.1, 2 and 3). When the 39 tidal
wetlands were analyzed collectively, no significant rela-
tionship was found between the relative areal change,
tidal range, marsh elevation or stable isotopic ratios of
soils, plants, or snails, as indicators of wastewater ex-
posure. However, trends in areal marsh cover became
apparent when high marsh and intertidal marsh were
analyzed separately. Regression analysis indicated that
there is a statistically significant relationship between
soil, macrophyte, and snail 5'°N and the percent loss
of intertidal marsh, with higher rates of intertidal marsh
loss in areas exposed to higher wastewater inputs.
Conversely, lower rates of high marsh loss were found
in areas exposed to higher wastewater inputs. Similar
trends were found for tidal range, where tidal range
and high marsh loss rates were inversely correlated,
while for intertidal marsh, marsh loss was positively
correlated with tidal range. There was no significant
effect of mean marsh platform elevation above MHW
and the rate of high marsh loss, but lower marsh plat-
forms saw more rapid rates of intertidal marsh loss.

PLSR analysis (Table 1) showed a relationship be-
tween the loss of intertidal marsh area, eutrophication
indices, and marsh geomorphology. Four components
described 66% of the variation in intertidal marsh loss,
with high variable importance in projection (VIP) and
positive regression coefficients for marsh elevation and
S. alterniflora 5'°C, and negative regression coefficients
for tidal range and eutrophication indices (7. obsoletus
615N, T. obsoletus 613C, S. alterniflora 615N). A PLSR
model for high marsh area change explained 50% of the
variation in observations and high VIP values for tidal
range and eutrophication indicators (soil 5'°N, soil N,
S. alterniflora 85N, T obsoletus 515N).

Discussion

While the long-term average rate of Long Island tidal marsh
loss was found to be 13% or 0.4% aﬁl, considerable variability
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Fig. 1 Percent change in (a)
overall marsh areal extent for
study sites from 1974 to 2008; (b)
Percent change in high marsh
extent; (¢) percent change in inter-
tidal marsh extent
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Fig. 2 Correlation matrix
showing correlation coefficients
(r x 100), with positive
correlation coefficients in blue
and negative correlation
coefficients in red, and p values in
green, with darker values
indicating significant correlations
and lighter green values
indicating non-significant corre-
lations. Order of variables was
determined by hierarchical cluster
analysis
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was found between sites, allowing examination of environ-
mental factors that may promote or protect wetlands from
drowning associated with SLR. Previous studies have identi-
fied multiple factors that promote marsh drowning, including
accretion deficits, droughts leading to hypersalinity, and plant
stress leading to reduced rates of organic matter production
and peat formation (Carey et al. 2017). The areal change of an
individual marsh over time is likely a response to a combina-
tion of factors and the observed change across Long Island
sites is not expected to be uniform (Carey et al. 2017). While
individual relationships between marsh area change and envi-
ronmental predictors were modest, we were able to account
for over half of site-to-site variability in marsh loss (*>0.5)
considering exposure to wastewater in concert with tidal range
and marsh elevation. While wastewater constituents other than
nutrients may affect marsh health, their analysis is outside the
scope of this study, hence the following discussion focuses on
wastewater nutrients.

In contrast to previous studies, which largely report
nutrient inputs as having positive or negative effects on
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wetlands (Turner et al. 2009; Morris et al. 2013b), our
results instead suggest that exposure to wastewater
tended to decrease vulnerability to SLR among high
marsh, and yet increase vulnerability to SLR for inter-
tidal marsh. We thus suggest that nutrient over-
enrichment may have opposing effects on high and
low elevation marshes. While we did not directly test
the mechanisms through which nutrient enrichment pro-
motes marsh loss in low marshes, previous work has
suggested several mechanisms that might account for
this difference. First, coastal estuaries exposed to high
wastewater inputs tend to support nuisance blooms of
opportunistic macro algae, especially species of Ulva,
and large wrack deposits often accumulate along the
low marsh, which can disturb the growth of marsh
plants (Sfriso et al. 1992; Hartig et al. 2002; Newton
and Thornber 2013; Wasson et al. 2017). However,
these wrack deposits are often limited to the low marsh
or the marsh edge, and thus only negatively affect low
marsh.
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Second, in addition to physical effects of algal blooms, the
increase in labile organic matter inputs associated with eutro-
phication may fuel enhanced rates of sulfate reduction in nu-
trient enriched marshes. Sulfate reduction and organic matter
mineralization are a coupled process in anoxic marine sedi-
ments. High levels of sulfides are more likely to affect low
marsh negatively, as high marsh soils are often well oxygen-
ated and not prone to anoxia and sulfide accumulations
(Wigand et al. 2016).

Additionally, a recent study of extractable nitrogen and
biomass in Long Island marshes found higher levels of above-
ground biomass and lower levels of belowground biomass in
marshes with increasing levels of extractable nitrogen
(Alldred et al. 2017) consistent with the classical explanation
of reduced belowground growth where nutrient levels are
abundant. This shift in productivity pattern associated with
nutrient exposure may have different effects on high and low
marsh vegetation, which typically support different growth
forms of Spartina alterniflora (Howes et al. 1986), and in
the high marsh may result in shifts from low productivity to
high productivity species (Bertness et al. 2002).

High marsh change [%]

Finally, coastal wetland marsh zones may vary in nutrient
exposure based on their tidal height. Plants that are flooded
frequently may be more exposed to exogenous nutrients,
while exposure values for infrequently flooded high marsh
are likely more modest (Wigand et al. 2014). As recent reports
have documented reduced tensile strength in S. patens roots
associated with elevated nutrients (Hollis and Turner 2019),
this could translate into reductions in root tensile strength,
affecting primarily the low marsh. Lastly, other — potentially
toxic - constituents of wastewater may also alter plant health,
and exposure to such toxicants may also scale with tidal
height.

In addition to examining effects of wastewater exposure on
tidal salt marsh vulnerability to SLR, this study also examined
relationships between marsh loss and tidal range and marsh
elevation profile. Similar to our findings on wastewater en-
richment, we found different relationships between marsh loss
and predictor variables (tidal range, and marsh elevation), de-
pending on whether the focus was intertidal marsh or high
marsh. While numerous previous studies have highlighted
the vulnerability of low elevation and low tidal range marshes
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Table 1
the percent areal change of intertidal marsh and high marsh

Number of latent variables, coefficient of determination (Model R%), and root mean square error of prediction (RMSEP) for PLSR models of

Model statistics Inter-tidal marsh

High marsh areal

areal change (Model 1) change (Model 2)
Latent variables 4 3
Model R’ 0.66 0.50
RMSEP 39.21 33.29
Predictor statistics correlation VIP correlation VIP
Elevation (m) + 1.08 X X
tidal range (m) - 1.20 + 1.09
soil '°N - 1.00 + 1.37
soil N (%) - 0.92 + 0.94
soil C (%) - 0.92 + 0.82
T. obsoletus 5N - 1.14 + 1.20
T obsoletus 8"*C + 0.69 + 0.77
S. alterniflora §"°N - 0.88 + 1.04
S. alterniflora §"3C + 1.20 X X
S. alterniflora C (%) + 0.69 X X
S. alterniflora N (%) X X + 0.71
S. alterniflora C/N X X - 0.71
high marsh areal change (%) 1.12 X X
intertidal marsh areal change (%) X X - 1.14

Direction of correlations and VIP of predictor variables show significant positive associations (+) between wastewater exposure and high marsh change,
and negative associations (—) between wastewater exposure and intertidal marsh change. A VIP > 1 indicates a strong influence of the predictor on latent

variable of the PLS. Absence of correlation is denoted by (X)

to SLR (Stevenson et al. 1986; Watson et al. 2014; Kearney
and Eugene Turner 2016; Ekberg et al. 2017), our work sug-
gests more broadly that coastal salt marshes may support two
biogeochemically distinct zones — essentially a higher marsh
oxidized zone, and a more reducing low marsh zone that re-
spond differently to environmental forcings. Because few
studies have discriminated trends in high marsh and intertidal
marsh zones separately, this potential relationship may have
been obscured.

Conclusions

From 1974 to 2008, the 39 Long Island salt marshes investi-
gated in this study show differing trends in areal extent, with
an overall loss of 13%. The factors making salt marshes more
susceptible to SLR differed between marsh zones. In
S. alterniflora-dominated intertidal marsh, low elevation,
large tidal range, high soil carbon, and high wastewater expo-
sure were associated with higher rates of marsh loss. In con-
trast, large tidal ranges, high soil carbon, and high wastewater
exposure in the S. patens-dominated high marshes on Long
Island were associated with resilience to SLR. Collectively,
this work highlights the importance of considering functional

@ Springer

differences between intertidal and high marsh vegetation
when considering vulnerability to SLR, or other interacting
anthropogenic stressors.
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