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Abstract

Atlantic white cedar (AWC) stands form peat substrates in association with a seasonally flooded, saturated hydrologic regime.
Less than 2% of the AWC swamp land area present during the pre-colonial era remains, and most of the current area now exhibits
a temporarily flooded hydrologic regime. The purpose of this study was to quantify radial AWC growth at time scales that were
cumulative (throughout ~60-year lifespans) and annual to clarify the relationship with hydrologic regime and climate in drained
and undrained stands. Two 60-year-old stands having either drained or undrained conditions were selected in national wildlife
refuges in Virginia and North Carolina, USA. Shallow groundwater wells fitted with continuous recorders measured depth-to-
water-table during the 1999 calendar year to verify hydrologic regimes, and tree ring widths were evaluated from 54 trees per site.
Cumulative time scale growth of individual tree stems was strongly suppressed by high water tables in the undrained stand.
Annual growth rates among climate variables also diverged such that wetter months were positively correlated with tree ring
width in the drained stand. Results suggest that AWC tree ring growth patterns can provide natural resource managers with

insights into historic hydrologic conditions that influence ecosystem services and biodiversity.
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Introduction

Atlantic white cedar (AWC, Chamaecyparis thyoides L.
(B.S.P.)) is an obligate hydrophyte (USDA Plants Database
2018) that is the sole dominant tree species in a globally
threatened type of forested peatland which was once a com-
mon swamp type (Noss et al. 1995). The species occurs along
the outer US coast from Maine to Mississippi. AWC tolerates
nutrient poor, highly acidic, and anoxic substrates classified as
histosols and consisting of deep peat accumulations in some
locations; the largest stands originally occurred in Virginia and
North Carolina (Laderman 1989). Of the <2% of this ecosys-
tem type that remains since the pre-colonial era, some stands
are undrained and exhibit a seasonally flooded, saturated hy-
drologic regime (FGDC 2013) which protects a seed refugium
that supports regeneration following fire or harvest (Little Jr
1950; Wurst et al. 2015). Other remnant stands are effectively
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drained and exhibit a temporarily flooded or similar hydrolog-
ic regime (FGDC 2013, Fred Wurster personal
communication) which facilitates microbial oxidation of peat
(Reddy and Patrick 1975). Growth parameters may be posi-
tively correlated to water availability as reported for forested
floodplain species such as black walnut, Juglans nigra (L.)
(Dudek et al. 1998) and oaks, e.g., Quercus robur (L.) (Gricar
et al. 2013).

Cumulative growth of individual AWC trees is affected by
a wide array of ecological conditions which include landscape
position and the effect of peat on water tables. AWC swamps
typically occur in a somewhat isolated hydrogeomorphic set-
ting on the landscape and most swamps in this setting do not
receive nutrients from overbank flooding (Brinson 1993). As
peats develop, site conditions are further modified via increas-
ing water holding capacity and the capillary fringe, a saturated
layer of water under tension which can rise more than 60 cm
above the phreatic water table (Verry 1997). The cumulative,
negative effect of soil saturation on growth of various peatland
tree species is evidenced by low tree height and circumfer-
ence, and many northern countries with vast peatlands have
developed extensive drainage plans to support silviculture
goals since late in the twentieth century (Trettin et al. 1997).
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In the mid-Atlantic region of the US, drainage of AWC stands
occurred by the mid-nineteenth century where peat accumu-
lations were shallow, and extended to areas with deep peat by
the mid-twentieth century (Lilly 1981). Several ecosystem
services are associated with a seasonally flooded, saturated
hydrologic regime (FGDC 2013) in natural peatlands.
However, where ditches have been effective, temporarily
flooded hydrologic regimes develop and most ecosystem ser-
vices are negatively impacted.

Drainage can also alter water relations within peat. Long-
drained peats exhibit biochemical and physical changes
resulting in hydrophobic surfaces (Valet et al. 1991) that se-
verely limit capillary rise (Lilly 1981), resist rewetting
(Dolman and Buol 1967; Michel et al. 2001), and increase
risk of peat-burning fire. In the Dismal Swamp, a 320-km
ditching network drained most of the 400,000-ha swamp
(USFWS 2018) and exerted cumulative effects on various
ecological functions (e.g., Megonigal and Day Jr 1992) in-
cluding tree growth which was demonstrated using basal area
increment of tree rings (BAIL) in loblolly pine, Pinus taeda L.
(Phipps et al. 1978). Most of the last 1200 ha of AWC stands
were destroyed by fires in 2008 and 2011 (Hutchins 2011,
Bryan Poovey personal communication) and growth rates
have not been reported.

Annual growth of AWC can be assessed through creation
of unitless tree ring indices, which have successfully modeled
ring response to annual climatic conditions in other species
(Fritts 1976; Cook 1985), but rings may be complacent where
moisture limitation to growth is infrequent (Dudek et al. 1998;
Copenheaver et al. 2007) and where peatland soils retain
moisture. Effects of precipitation also may be limited in
AWC since roots can develop deeper according to water level
(Korstian and Brush 1931; Little Jr 1950; Laderman 1989;
Burns and Honkala 1990), and extensive microptopographic
variation within AWC swamps influences oxygen distribution
and availability (Ehrenfeld 1995; Atkinson et al. 2003).

Annual rings may be insensitive to temperature in the mid-
Atlantic region located near the center of the species’ distri-
bution. Conversely, AWC found in Maine and thus at the
northern extent of the range, exhibits temperature sensitivity
which exceeds that of precipitation (Hopton and Pederson
2005; Pearl et al. 2017). Raney et al. (2016) suggested that
high water tables in peatlands buffer some temperature re-
sponses among conifers, which could also limit ring
sensitivity.

Hydrologic conditions and climate correlations have been
reported for bald cypress (Taxodium distichum (L.) Rich.)
(Stahle and Cleaveland 1992; Keim and Amos 2012; Stahle
et al. 2012); however, similar studies are lacking for AWC.
Natural resource managers may seek characterization of hy-
drologic regimes given the links to ecosystem services and
biodiversity, as well as restoration planning. The purpose of
this study was to characterize AWC tree ring growth responses
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at time scales that are cumulative (~60-year lifespan terminat-
ed by a hurricane in 2003) and annual (20-month climate
model of annual growth) in stands representing disturbed
(drained) and undisturbed (undrained) hydrologic regimes.

Site Descriptions

Alligator River National Wildlife Refuge (Alligator River),
and the Great Dismal Swamp National Wildlife Refuge and
North Carolina Dismal Swamp State Park (Dismal Swamp)
represent the northernmost reaches of what Shaler (1890) re-
fers to as swamp country in the Outer Coastal Plain Province.
After reviewing historical logging records and aerial photos
with refuge personnel, a ~60-year-old AWC stand in Alligator
River and in Dismal Swamp were selected.

Alligator River

Alligator River is located in the Albemarle Peninsula of east-
ern North Carolina and was established in 1984 (35°50°N,
75°53°W). It contains about 61,600 ha of forested land, bor-
dered on the west by the Alligator River, the east by Croatan
and Pamlico Sounds, and to the north by Pamlico Sound
(Laderman 1989) (Fig. 1). Elevation ranges from sea level to
3.7 m (Laderman 1989).

In addition to AWC, woody species representing >10%
relative importance value (RIV) include swamp tupelo
(Nyssa biflora Walt.) in the canopy and sweet pepperbush
(Lyonia lucida (Lam.) K. Koch), holly (/lex coriacea (Pursh)
Chapman), and red bay (Persea borbonia (L.) Spreng.) in the
subcanopy (Shacochis et al. 2003). Soils on the peninsula
contain layers of silt, clay, sand, and shells beneath deep peat
accumulations (Heath 1975). Organic matter, bulk density,
and pore water pH was 97%, 0.10 SE 0.01 g/cc, and 3.5 to
3.6, respectively (Thompson et al. 2003).

Dismal Swamp

Dismal Swamp is located on the Virginia/North Carolina bor-
der about 250 km east of the coast (36°32°N, 76°28’W). The
refuge contains 45,300 ha and is bordered by an escarpment
(the Suffolk Scarp) to the west and the Atlantic coast to the
east. The swamp ranges in elevation from 4.6 to 7.6 m and
decreases in elevation approximately 0.2 m/km towards the
east (Carter 1987; Laderman 1989).

Woody species representing >10% RIV include red maple
(Acer rubrum L.) and red bay in the canopy and sweet
pepperbush (Clethra alnifolia L.), fetterbush (Lyonia lucida
C. Koch), and red bay the subcanopy (Shacochis et al. 2003).
The soil is a deep histosol (2 m deep) that formed since the
most recent glacial retreat (Whitehead and Oaks 1979), is
classified as a Typic Medisaprist (Reber et al. 1981), and over-
laying a clay layer (USDA 1974). The clay layer slows water
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Fig. 1 Location of study sites in
the Great Dismal Swamp
National Wildlife Refuge in
Virginia and North Carolina, and
Alligator River National Wildlife
Refuge in North Carolina. With
permission from DeBerry and
Atkinson (2014)
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penetration which increases water retention within the peat.
Organic matter content, bulk density, and stand pore water pH
in Dismal Swamp was 93%, 0.16 SE 0.03 g/cc, and 3.3 to 3.6,
respectively (Thompson et al. 2003). Although the growing
season can be characterized as continuous in Dismal Swamp
(Burdt et al. 2006), the growing season in Suffolk, VA, set
forth by USDA NRCS (March 29 to November 7) was used
in this study (Reber et al. 1981).

Methods

In each site, nine study plots were established, and shallow
groundwater monitoring wells were installed within swales
(aka pools) since thick roots beneath mounds prohibited well
establishment. In 1998, one well at each site was fitted with a
continuous recorder (Remote Data Systems™ WL-Series)
and monitored for 14 months which included the 1999 calen-
dar year, a year in which normal precipitation was recorded
near both sites. Six AWC were cored at each study plot at both
sites (n =54 trees per site) during fall and winter, 2003 and
2004. Trees were cored at least twice through the entire diam-
eter using a 4.33-mm-diameter bit with a 41-cm-long barrel.
Cores were mounted on grooved pieces of wood and were
sanded with progressively finer sandpaper (100 to 2500 grit)
following Fritts (1976) and Stokes and Smiley (1996) until the
tree rings were visible and clear (Merry 2005). Series were
measured using a stereo boom microscope (Stokes and Smiley

1996) and a sliding stage connected to a computer with the
software MeasureJ2X (VoorTech Consulting, Holderness,
NH), which recorded the width of each ring with a precision
0f 0.001 mm. The series were visually cross-dated and statis-
tically verified using the dpIR package in R Studio version
3.2.2 (R Studio Team, Boston, MA 2018, Bunn 2010, Bunn
et al. 2018). Phipps et al. (1978) suggested that for investiga-
tions of tree growth, tree ring widths should be converted to
basal area increments for individual trees (BAI,), which when
quantified annually, provides a measure of cumulative growth
(i.e., throughout the life of a tree). Similarly, Babst et al.
(2014) distinguished between basal area increment of stands
which those authors used for predicting forest carbon accu-
mulation, versus BAI; which they used as a measure of indi-
vidual tree growth as employed in the current study.
Basal area increment of each tree (BAI,) was calculated in
Excel (2016) using the formula:

BAI = iR>-7R,2

where R =radius of tree bole at a certain year (t). When pith
was not reached during coring, the arc of the innermost ring of
the tree was measured using a digital caliper to determine the
missing area and ultimately obtain the radius of the initial year
at 1.4 m above ground.

For the shorter, annual time scale, climatic response was
accomplished using standardized tree-ring chronologies fol-
lowing Johnson and Abrams (2009) and Dennelar et al.
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(2010). The tree-ring series were visually cross-dated, then
cross-dated and checked for errors using the COFECHA pro-
gram, Version 6.06p (Holmes 1983). The series were
detrended to remove age related growth trends using a
smoothing spline equal to 67% of stand age and were stan-
dardized to remove individual tree anomalies in favor of
stand-wide trends (Cook 1985) using the dplR package.
Signal-noise-ratio (SNR) values, a measure of series quality
based on mean correlation of each ring width series compared
to the master series, were quantified. Monthly Palmer Drought
Severity Index (PDSI) and temperature data were obtained
from the State Climate Office of North Carolina (2018).
PDSI quantifies monthly precipitation incorporating previous
monthly precipitation and temperature (Heddinghause and
Sabol 1991) and was found to provide optimal predic-
tion of AWC climatic response in Dismal Swamp by
Patterson (2011). PDSI and mean monthly temperature
were used to create a 20-month model consisting of
8 months in the previous year and 12 months in the current
year to predict standardized tree-ring index values via Pearson
Correlation tests.

Results

Hydrographs generated from continuously-recorded water
levels within shallow groundwater monitoring wells detected
a 60-cm difference in water tables at Alligator River and
Dismal Swamp during a major portion of the growing season
(Fig. 2). Based on climate station data, the total annual precip-
itation at Alligator River (146.8 cm; Cape Hatteras
Climatological Station, 69 km distant) and Dismal Swamp
study sites (140.6 cm; Wallaceton-Drummond Climatological
Station, 8 km distant) was similar; however, median depth to
water table during the 1999 growing season was considerably
different among the study sites when hurricane-influenced
events were excluded. Depth to water tables for Alligator
River Median — 0.41 cm, SD 5.76 cm) were closer to the sur-
face than in Dismal Swamp (Median — 50.13 cm, SD 15.53 cm,
n =155 days, P<0.001, Fig. 2, Table 1). Depth to water table

Depth to Water Table (cm)

Fig. 2 Hydrograph representing depth to water table (cm) during 1999 in
the Alligator River NWR (blue) and Great Dismal Swamp NWR (red)
study sites
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as a percentage of the growing season was calculated and was
>20 cm below the soil surface for 0% at Alligator River and
68.8% at Dismal Swamp (Table 1, Atkinson et al. 2003).

Cumulative growth (Fig. 3) for individual trees over the 54
to 60-year period, expressed as BAI; was smaller at Alligator
River (239.78 mm?, CI=18.78 mm?, n = 54) than at Dismal
Swamp (1092.72 mm?, CI =74.38 mm?, n=54) (P<0.001).
For annual time scale assessment (Table 2), expressed popu-
lation signals (EPS) at Alligator River (0.987) and at Dismal
Swamp (0.984) were above the standard significance value of
0.85 suggesting that individual trees did not exert a divergent
effect on the series (Wigley et al. 1984; Speer 2010);
and SNR at Alligator River (0.530) and at Dismal Swamp
(0.470) were above the threshold value of 0.328 suggested
by Holmes (1983).

Monthly PDSI correlation values during the current year
were not significant but tended to be negative at Alligator
River (Fig. 4a), and at Dismal Swamp were mostly positive
and were significantly positive for 4 months (September
through December, Fig. 4b). Both sites tended to exhibit sig-
nificant negative correlations with previous year monthly
PDSI values.

Monthly temperature correlation values during the current
and previous year were less often significant for both sites
than were the correlations with PDSI. At Alligator River, cur-
rent year temperature tended to be negatively correlated, es-
pecially in the months just prior to or at the start of the growing
season (January, February, March, and April) which exhibited
significant negative correlations (Fig. 5a). The tendency at
Dismal Swamp was less pronounced but was significantly
negative in June and December of the current year (Fig. 5b).
Previous year temperature correlations at both sites tended to
be negative but no monthly temperatures were significantly
correlated with growth.

Discussion
Tree Rings at Annual Time Scale

Tree rings in the two study sites exhibited a somewhat diver-
gent response to current-year monthly precipitation. The most
statistically significant correlations were positive associations
between precipitation (higher PDSI) and growth at the Dismal
Swamp site where water tables were ~60 cm lower and were
below the soil surface for a few months during the growing
season (i.e., a temporarily flooded hydrologic regime). Similar
growth responses have been reported for sugarberry (Celtis
laevigata Willd.) and overcup oak (Quercus lyrata Walter)
(Allen 2016) and for black walnut (Juglans nigra L.)
(Dudek et al. 1998) in floodplain forested wetlands, indicating
that trees are more sensitive to climatic variables when occur-
ring on drier sites.
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Table 1 Water Table (WT) characteristics during the 1999 growing
season (GS, March 29—November 7) for Alligator River NWR (AR)
and Great Dismal Swamp NWR (DS) AWC swamps based on
continuous-recording wells. Hurricanes raised water tables above well

recording range beginning on August 31 (at AR) and September 16 (at
DS); depth to water table calculations exclude readings (*) that were
obtained after August 30

Site Inundation WT >10 cm below surface WT >20 cm below surface Median WT (cm)* WT variability
as % of GS as % of GS

Standard Deviation*

AR 62.1% 3.9% 0.0% —0.41 cm 5.76 cm

DS 24.6% 72.8% 68.8% =50.13 cm 15.53 cm

The positive response to PDSI at Dismal Swamp may re-
sult from drought sensitivity at this drier site. AWC typically
exhibit shallow rooting (Pinchot 1899; Korstian and Brush
1931) which increases sensitivity to drought (Pallardy et al.
1995), and working in these same two sites, Rodgers et al.
(2003) reported increased rate of AWC root mortality during
periods of low water tables in Dismal Swamp, which these
authors did not observe in the seasonally flooded, satu-
rated site. The low water tables may have been further
exacerbated by the condition of the peat as described
above and may have resulted in frequent water limitations to
growth that were not substantially reversed by high rates of
precipitation (Verdonck 1983).

In the seasonally flooded, saturated site in Alligator River,
growth and current year PDSI correlations were mostly nega-
tive though were not statistically significant. High water tables
and the water holding capacity of the peat may have
prevented draw down and resulted in persistent anoxic
soil conditions which are commonly associated with reduced
growth (Keeland and Sharitz 1997; Megonigal et al. 1997,
Trettin et al. 1997).

Trees in both study sites exhibited lower response to tem-
perature than to PDSI. Climate response is typically more
complex at the center of a species’ range relative to range
margins (Hughes 2002). Pearl et al. (2017) studied AWC in
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New England, near the northern range limit of the species, and
found that temperature effects on tree growth were greater
than PDSI, opposite the findings of this study.

Significant negative correlations of growth and tempera-
ture were detected at both sites, including Alligator River
(current year months of January, February and March) and at
Dismal Swamp (current year months of June and December)
(Figs. 5a, b). Higher temperatures may be associated with
increased microbial and plant physiological processes at
Alligator River, simultaneously increasing plant oxygen de-
mand while reducing soil oxygen concentrations, particularly
in winter months. At Dismal Swamp, cooler temperatures in
June could delay early growing season growth that precedes
summer water deficit stresses there.

Previous growing season conditions can influence growth
rates in the current growing season (Fritts 1976). Trees in both
sites in the current study exhibited negative associations be-
tween current year growth and previous growing season cli-
mate variables, particularly PDSI. Conifers use stored carbo-
hydrates primarily for early-season growth (Gower et al.
1995; Kozlowski and Pallardy 1997) whereas diameter
growth later in the growing season develops from current-
year carbohydrates (Luxmoore et al. 1995). In addition,
drought and cold temperatures may limit decomposition and
nutrient availability in peatlands, further reducing growth the

Fig. 3 Yearly average BAI, for
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Table 2 Final chronology description including sample size, time interval, age structure, total rings, averaged residual EPS, SNR, and averaged

detrended ring indices r-bar for Alligator River (AR) and Dismal Swamp (DS)

Site Trees sampled Tree cores Chronology interval Mean age (min/max) Rings in series EPS SNR Mean rbar
(count) (count)

AR 54 227 1938-2002 60 (49/65) 13,620 0.987 0.530 0.315

DS 54 231 1939-2002 54 (38/64) 12,474 0.984 0.470 0.267

following year. However, Day et al. (1988) reported that peat
in one site in the Dismal Swamp retained sufficient root-zone
moisture during drought conditions such that microbial activ-
ity was not limited.

Hydrologic Regimes

In Alligator River, long hydroperiods similar to that recorded
for 1999 (Fig. 2) may be common. The Federal Geographic
Data Committee (FGDC 2013) classifies such a hydrologic
regime as “seasonally flooded, saturated” and Brinson
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(1993) described such sites as biogenic because persistent
anoxia supports functions that form and maintain peat.
However, the presence of ditches, such as are present at the
Dismal Swamp, can lower the water table and establish a
“temporarily flooded” hydrologic regime as classified by
FGDC (2013).

Soil saturation differences between the study sites may be
greater than that predicted by continuous-recording wells and
could contribute to observed differences in AWC growth. The
low topographic position of AWC stands in Alligator River
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(<1 m above sea level) precludes drainage and protects peat
hydrologic functions such as high water holding capacity
(Verdonck 1983), quick rise of water table following precipi-
tation (Gillham 1984), and extensive capillary fringe which
can saturate a soil profile by more than 60 cm above the water
table in undrained peatlands (Verry 1997). In contrast, Dismal
Swamp is ~5 m above sea level and ditches date to earlier than
1960 (some were first installed in the eighteenth century) and
have effectively drained peats beneath AWC stands there.
When drained for such long periods of time, normally hydro-
philic peat surfaces have been shown to become strongly hy-
drophobic (Michel et al. 2001), particularly woody peats
(Valet et al. 1991) which predominate in Virginia and North
Carolina (Lilly 1981). As a result, capillary fringe may be-
come severely restricted after drainage (Dolman and Buol
1967; Lilly 1981). Furthermore, shrinkage of drained peats
can form cracks that allow rapid dewatering after rain events
which was detected in December by continuously-recording
wells (Fig. 2) and confirmed by manually-read wells follow-
ing heavy rains in September through November (Atkinson
et al. 2003).

Tree Rings at Cumulative Time Scale

Throughout the 60-year chronology, mean annual growth rate
remained lower at Alligator River than at Dismal Swamp (Fig.
3). Anoxic soil conditions may be persistent and more stress-
ful for AWC in Alligator River, but Dismal Swamp periods of
anoxia may be of shorter duration and allow for greater growth
over cumulative time scales. Anoxia has been found to limit
growth in studies of myriad tree species in various settings
including conifers in boreal peatlands (Trettin et al. 1997);
bald cypress, an obligate wetland tree in floodplains (Conner
and Day 1982; Megonigal and Day Jr 1992; Messina and
Conner 1998); and several species planted in restored flood-
plain sites (Roquemore et al. 2014). AWC trees possess mech-
anisms to tolerate anoxic soils such as ethanol production
(Kelsey et al. 2011) and exhibit elevated rates of root respira-
tion when soil is saturated (Kalnins 2000). Under these con-
ditions, AWC can out-compete other species, but the metabol-
ic energy demands may slow growth of individual trees and
reduce intra specific competition, resulting in dense stands
that characterize the ecosystem as described by Laderman
(1989) and DeBerry and Atkinson (2014).

Kozlowski and Pallardy (1997) suggested that, in addition
to these stresses, nutrient availability may also be lower where
soil saturation persists. Furthermore, tree growth in hydrolog-
ically isolated peatland forests may be constrained by the lack
of connectivity to nutrient sources such as rivers that may
strongly influence ecological functions of floodplain forests
(Conner and Day Jr 1976; Conner et al. 2011). Nutrient lim-
itations to growth may be less severe where temporarily
flooded hydrologic regimes allow for peat mineralization.

Hydrologic regime effect on growth reported here are sim-
ilar to those reported for <5-year-old planted AWC and other
species and settings. Several studies of recently-planted AWC
report that while inundation is often a major source of mortal-
ity, soil saturation is tolerated but inhibits growth of AWC
among planted (Harrison et al. 2003; Cook et al. 2015;
Foster et al. 2015) and naturally-regenerated stands (Wurst
etal. 2015), i.e., young AWC trees in temporarily flooded sites
grow faster than those grown in seasonally flooded, saturated
hydrologic regimes.

Implications for Ecosystem Services

Carbon Sequestration Carbon sequestration results when pri-
mary production (carbon gain) exceeds peat oxidation (carbon
loss); and tree rings have been used to help quantify these
functions (Babst et al. 2014). Results of the current study
add to the evidence that seasonally flooded, saturated hydro-
logic regimes are considerably more effective in carbon se-
questration than are temporarily flooded AWC stands. In
Alligator River, slower growth of individual trees reported in
this study was offset by higher stem density such that standing
biomass was equivalent (Alligator River=199,844 kg/ha;
Dismal Swamp =207,649 kg/ha) at these same-aged stands
(DeBerry and Atkinson 2014), and annual litter production
at Alligator River was 125% of that at Dismal Swamp.
These primary production patterns further illustrate the diver-
gent response of this obligate hydrophyte to hydrologic re-
gimes, but do not distinguish carbon sequestration rates.
Rather, this key ecosystem service may be profoundly influ-
enced by altered peat oxidation patterns that also can be pre-
dicted using AWC tree rings.

Peat oxidation can be chronic in the form of microbial
decomposition, and acute as during peat-burning fires, and
both processes are facilitated in temporarily flooded hydrolog-
ic regimes. Higher microbial decomposition rates in tempo-
rarily flooded peatlands have been reported globally (Moore
and Dalva 1997; Holden 2005), in mixed hardwood forests
within Dismal Swamp (Weiser 2014), and from soils within
AWC swamps including the current study sites that were con-
ducted in situ (Kalnins 2000) and in laboratory microcosms
(Duttry et al. 2003). Dramatic, acute carbon loss during fire
was reported in temporarily flooded AWC stands in the
Dismal Swamp (Hutchins 2011). These functional differences
point towards a need for natural resource managers to restore a
seasonally flooded, saturated hydrologic regime.

Water Quality and Biodiversity Low water tables at Dismal
Swamp may have facilitated decomposition (Bridgham and
Richardson 1992; Hogg et al. 1992) and contributed to higher
soil and water nutrient concentrations (Thompson et al. 2003)
which can over-enrich receiving estuaries as described for
peatlands by Macrae et al. (2013). Many peatlands also

@ Springer



88

Wetlands (2020) 40:81-91

accumulate mercury, primarily from atmospheric deposition
(Lodenius et al. 1987; Lavagnino et al. 2015), which can be
released from temporarily flooded sites during peat oxidation
(Turetsky et al. 2006).

AWC swamps contain a unique assemblage of species
(Loomis et al. 2003) that includes endangered species
(Laderman 1989) and enhances gamma diversity (Whittaker
1960); and, the ecosystem has been classified as a globally
threatened (Noss et al. 1995). Saturated peat is essential for
self-maintenance in AWC swamps which may live more than
600 years (Zimmermann and Mylecraine 2003). Stands regen-
erate when fire reaches the canopy and clears a stand, allowing
sunlight to reach surficial peat layers which serve as a seed
refugium. However, fire in a temporarily flooded hydrologic
regime may allow a deep peat burn, e.g., recent fires is Dismal
Swamp burned to a depth of more than 1 m, which eliminates
the seedbank and results in an alternate successional direction.
Longer periods of inundation may also threaten coastal
swamps (Fernandes et al. 2018), and considerable acreage of
AWC swamps is subject to loss via sea level rise, particularly
in Alligator River National Wildlife Refuge.

Hydrologic Regime Classification and Management
Recommendations

Characterizing Hydrologic Regime Using Tree Ring Growth
Trends Cumulative growth at Alligator River was slow, such
that average yearly increase in BAI, (239.78 mm?) was well
below that at Dismal Swamp (1092.72 mm?), and these
growth rates may have been caused by hydrologic regime as
described above. However, high stem density can also be as-
sociated with competition and slower growth rates (Ford
1975) which could confound interpretation of tree ring growth
patterns unless annual growth is considered. Growth re-
sponses at the annual time scale were strongly correlated with
monthly PDSI in models that diverged among the two stands,
and serve to confirm characterization of hydrologic regimes at
the two sites. In addition, variability in stem density and other
disturbances associated with non-climatic events, e.g., blow
downs, can weaken climate models; but in this study, both
expressed population signal and signal-to-noise ratio were
high (Table 2). Categorizing hydrologic regimes may be more
difficult for stands in which cumulative time scales are
interrupted by events such as selective logging, damming ef-
fects of road construction, or hydrologic modifications
resulting from changes to ditches, as reported by Kowalski
(2016) working in two AWC stands in Dismal Swamp.

Management Recommendations Globally, peatland forestry
practices on privately held lands have favored soil drainage
in order to increase tree growth (Trettin et al. 1997) and nearly
all peatlands in the mid-Atlantic have been drained, either to
increase tree growth or for conversion to agriculture.

@ Springer

However, some wood products exhibit more valuable traits
when growth is slower, which woodworking professionals
term “tight grain” (Garland Wood personal communication).
On publicly held peatlands, natural resource managers may
value the array of ecosystem services described above.
Fortunately, all are enhanced by restoration of a seasonally
flooded, saturated hydrologic regime, and financial consider-
ations also favor restoration given the high cost of
extinguishing peat fires (USFWS 2019). Reestablishment of
AWC would likely require water level control such that soils
be saturated but would avoid inundation which is often lethal
to young AWC.
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