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Abstract
In 1998, a 6.1-ha wetland restoration project along the Rock River, IL, USAwas designed to test five afforestation methods on
former agricultural land, including planting bareroot trees, balled-and-burlapped trees, seedlings, acorns, or allowing natural
regeneration. Fifteen years later, we assessed vegetation at the site to determine the effectiveness of alternative strategies and
compare treatments to an adjacent floodplain forest. We also compared the cost of treatments to determine whether long-term
restoration outcomes justified initial costs. After 15 years, lower cost treatments (acorn plantings and passive restoration) were
dominated by dense reed canarygrass (Phalaris arundinacea) with sparse trees, whereas higher cost treatments (bareroot and
balled-and-burlapped tree plantings) had developed closed tree canopies, and tended to have greater plant species richness, tree
basal area, and density of stems >7.5-cm diameter. For every additional $10,000 per ha spent on restoration, predicted richness
increased by 1 species per 250-m2 plot, predicted P. arundinacea biomass decreased by 61 g m−2, and predicted tree basal area
increased by 3 m2 ha−1. Although some studies have indicated that passive regeneration alone is effective for afforestation,
restoration of floodplains in the presence of P. arundinacea will require a more intensive approach.

Keywords Invasive plants . Passive restoration . Reforestation . Spontaneous succession . Wetland mitigation . Wetland
restoration

Introduction

Restoration practitioners are challenged to achieve desired
ecological goals with minimal input of time and resources.
In some situations, those goals can be achieved with little
intervention, leading several authors to advocate spontaneous
succession, sometimes referred to as “passive restoration,” as
an efficient restoration strategy on disused lands (Mitsch et al.

1998; Halle 2007; Clewell andMcDonald 2009; Rey Benayas
et al. 2008; Birch et al. 2010). However, there are situations in
which spontaneous succession is ineffective, for example,
where limited propagule supply or non-native species inva-
sion constrain recovery (Streever and Zedler 2000; Zahawi
et al. 2014). In this study, we compare the effectiveness of
alternative methods for restoring floodplain forest on former
agricultural land in the presence of an invasive wetland grass.
We contrast spontaneous succession with increasingly more
expensive tree planting treatments.

An obvious advantage of spontaneous succession is low
cost. Active intervention is not always necessary for ecosys-
tem recovery. Costly hands-on intervention, such as planting
late successional species, is inefficient if it is unnecessary for
achieving restoration objectives; and efficiency is desirable
because it liberates resources for land acquisition and restora-
tion elsewhere (Higgs 1997; Holl and Aide 2011). Evidence
from impaired ecosystems suggests that many recover just as
quickly without direct intervention (Jírová et al. 2012; Jones
et al. 2018). For example, spontaneous succession can lead to
target vegetation in abandoned quarries (Řehounková and
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Prach 2008), and planting is not always necessary for restor-
ing biotic structure and biogeochemical function in wetlands
(Mitsch et al. 1998; Kamali and Hashim 2011; Moreno-
Mateos et al. 2015). Thus, passive restoration strategies can
enable otherwise cost-prohibitive regional- and landscape-
scale restoration (Birch et al. 2010; Linhares de Rezende
et al. 2015). In certain situations, active restoration can even
be counter-productive. For example, planting may impose a
community composition that is ill-suited to the local abiotic
conditions (Mitsch et al. 1998). At worst, if planted species are
inappropriately selected, they might inhibit natural coloniza-
tion by more desirable species (Tropek et al. 2013; Bauman
et al. 2015).

It is clear from the above examples that spontaneous suc-
cession can be both efficient and effective, but there are situ-
ations which preclude the use of spontaneous succession as
the sole restoration tool. For example, active approaches to
restoration, such as herbicide control and pre-emptive plant-
ing, may also be necessary where dominant undesirable spe-
cies are likely to invade or reinvade a restoration site (Reinartz
and Warne 1993; Boers et al. 2006; Reinecke et al. 2008;
Middleton et al. 2010; Skinner et al. 2012). In addition, inten-
sive planting may be necessary where desirable species are
absent from the surroundings and cannot readily colonize
(Castillo and Figueroa 2009; Gómez-Aparicio et al. 2009;
De Steven et al. 2010; Klimkowska et al. 2010; Coiffait-
Gombault et al. 2012; O'Connell et al. 2013). Prach and
Hobbs (2008) proposed a conceptual model to describe the
relative effectiveness of passive restoration vs. more expen-
sive, hands-on technical approaches to restoration. At physi-
cally degraded sites, for example, toxic or extremely dry sites,
hands-on technical approaches may be necessary to amelio-
rate stressful conditions (Prach and Pyšek 1994). At the other
extreme, at productive, eutrophic sites, such as sites with high
residual soil fertility from a history of intensive agriculture, it
is probable that a few competitive, often non-native, plant
species will dominate, and diversity will be low
(Klimkowska et al. 2007; Cramer et al. 2008; Pywell et al.
2011; Jessop et al. 2015). At either extreme, Prach and Hobbs
(2008) predict that the likelihood of attaining a targeted resto-
ration outcome via spontaneous succession alone should de-
crease, and as a consequence, the monetary cost of attaining
that targeted outcome should increase.

Afforestation of previously farmed floodplains has been
studied extensively, particularly in the southeastern United
States, and much of this research suggests that active tree
planting may be necessary to reach restoration objectives.
Several authors have noted a lack of natural regeneration of
desired species, particularly heavy-seeded oaks [Quercus
spp.] and hickories [Carya spp.], due to site or seed limitation
(Kruse and Groninger 2003; Middleton 2003; Haynes 2004;
Battaglia et al. 2008). Tree planting may be especially impor-
tant when the restoration site is distant from potential seed

sources (Allen 1997; Twedt 2004; De Steven et al. 2015). In
addition, floodplains are stressful settings for tree seedlings
(Battaglia et al. 1995; Middleton 2000; Kozlowski 2002),
and it may be beneficial to plant more expensive, more mature
trees, which are more flood-tolerant, rather than planting small
seedlings or direct seeding (Dey et al. 2010). Larger individ-
uals may also be more competitive with tall herbaceous plants
that establish rapidly on the fertile soils of formerly agricul-
tural floodplains (Stanturf et al. 2009).

Recently restored habitats, particularly in floodplain set-
tings, may be especially vulnerable to invasion by non-
native plant species due to low plant biomass, recently dis-
turbed soils, and propagule delivery via hydrochory (Zedler
and Kercher 2004; D’Antonio and Chambers 2006; Matthews
et al. 2009). Once established, invasive species such as
Phalaris arundinacea often persist in restored wetlands, or
even increase in abundance through time, precluding the at-
tainment of restoration goals for many years (Aronson and
Galatowitsch 2008; Garbutt and Wolters 2008; Toth 2010;
Matthews 2015).

Our objective in this study was to compare the relative
effectiveness of passive restoration with the effectiveness of
increasingly costly strategies for restoring floodplain forest on
former agricultural land.We assessed vegetation in a reference
forest and a restored forest 15 years after the imposition of five
alternative tree planting treatments. Restoration goals were to
establish a floodplain forest dominated by native plant spe-
cies. We hypothesized that spontaneous succession would not
achieve restoration goals in this situation for three reasons: (1)
Previous authors have suggested that trees must be actively
planted in floodplain afforestation projects to achieve desired
stocking rates, especially when hard-mast species like oaks
(Quercus spp.) are desired (Allen 1997; Kruse and
Groninger 2003), (2) Floodplain wetlands are productive sites
that are subject to non-native species invasion and dominance
(Zedler and Kercher 2004), and (3) Our study site occurred
within an agriculturally dominated, nutrient-enriched water-
shed (David et al. 2014).

Methods

Study Site Location and History

Our study site is a compensatory mitigation wetland restored
by the Illinois Department of Transportation on 6.1 ha of for-
mer row crop agricultural field in the Rock River floodplain in
northwest Illinois, USA (41.5542 N, −90.1835 W). The site
was farmed for several years prior to restoration in 1997.
Topography and hydrologic conditions are similar across the
site. Between 1999 and 2003, the site was flooded by the Rock
River an average of four times per year at an average maxi-
mum depth of 2.0 m (G.E. Pociask and J.W. Matthews,
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unpublished data). The site is underlain by Sawmill silty clay
loam, a poorly drained, hydric soil (Elmer 2004). The resto-
ration site is directly adjacent to a mature floodplain forest
dominated by Acer saccharinum and Fraxinus pennsylvanica.

Restoration performance standards were established for the
restored forest. Specifically, the site was required to establish
jurisdictional wetland as defined by the U.S. Army Corps of
Engineers (USACE 1987), 50% of the plant species present
were required to be native, hydrophytic tree species were ex-
pected to establish naturally, and there were specific require-
ments (see below) for planted tree survival (Plocher et al.
2003). No hydrologic manipulation or earth-moving was per-
formed prior to restoration. In 1997 the site was divided into
15 approximately 0.4-ha strips, each randomly assigned to one
of 5 restoration treatments (Fig. 1, Fig. 2a-e). Four treatments
involved introducing tree species on bare soil at various nurs-
ery stages: (1) 1.5–1.8 m tall bareroot trees at a density of
1,203 trees per ha; (2) larger, 5.0-cm stem diameter (~2.4–
3.0 m tall) balled-and-burlapped trees at 272 trees per ha; (3)
approximately 38 cm tall, 2-year-old seedlings planted at
2,474 per ha; and (4) acorns planted at 3,707 per ha. Acorns
were collected from within 80 km of the project site. Required
tree survival rates at the end of five years were 75% for
bareroot trees, 90% for balled-and-burlapped trees, 33% for
seedlings, and 20% for acorns. A fifth treatment with no tree
planting was included to test the effectiveness of passive re-
generation from the seedbank and adjacent natural forest.
Number of replicates differed among treatment types
(bareroot = 3, balled-and-burlapped = 2, seedlings = 5,
acorns = 2, passive regeneration = 3; Fig. 1). We compared
measures of vegetation structure, 15 years after planning,
among six treatments: the five restoration treatments plus the
adjacent reference forest.

Bareroot tree plantings included 1,460 Acer saccharinum,
Betula nigra, Fraxinus pennsylvanica, Populus deltoides,
Quercus bicolor, and Quercus palustris. Balled-and-burlapped
plantings (220 trees) included these six species plus Platanus
occidentalis, and seedling plantings (5,004 trees) included these
six species plus P. occidentalis and Carya illinoiensis. Acorns
(9,000) were Q. bicolor and Q. palustris. Trees were planted in
rows to facilitate management, which included seeding of a
temporary cover mix (Lolium perenne [55 kg ha−1] and Avena
sativa [70 kg ha−1]), a one-time application of straw mulch, bi-
annual mowing between rows, bi-annual application of glyph-
osate herbicide around the trees, and replanting in response to
mortality (between 1999 and 2002, replanting included 26
balled-and-burlapped trees, 497 bareroot trees, and 6,500 seed-
lings). Control plots were not mowed or treated with herbicide,
and acorn plots were mowed only. Vegetation monitoring and
site management continued for 5 years.

We determined establishment costs for each treatment
based on original contract documents. Costs are reported in
$US as of 1997 – the start of restoration at the site. Site

preparation was similar across all restoration treatments, in-
cluding the passive treatment (approximately $2,613 per ha),
and the costs reported here represent only the costs associated
with the initial tree plantings and any replantings in response
to mortality. We excluded costs of land acquisition, planning,
permitting, and monitoring. Per tree costs varied, depending
on species, from $210 to $260 for balled-and-burlapped trees,
$55 to $65 for bareroot trees, and $11 to $12 for seedlings. Per
hectare costs of tree planting were estimated at $95,679 for
bareroot trees, $72,527 for balled-and-burlapped trees (which,
although larger than bareroot trees, were planted at lower den-
sity), $65,848 for seedlings, $24,216 for acorns, and $0 for
passive restoration. Adjusted for inflation, per hectare costs in
2019 would equate to $151,374 for bareroot trees, $114,745
balled-and-burlapped trees, $104,178 for seedlings, and
$38,312 for acorns. We recognize that monetary cost is an
imperfect proxy for restoration effort. For example, costs will
vary depending on prices of source materials and labor.
However, other proxies for restoration effort, such as total
hours invested per treatment, were not recorded during
restoration.

At the end of the 5-year monitoring period, three treatments
were deemed to have acceptable tree survival relative to the
number initially planted: balled-and-burlapped (97% surviv-
al), bareroot (100% survival), and seedlings (50% survival)
(Plocher et al. 2003). However, germinating tree seedlings in
acorn and passive restoration treatments had been overtopped
by an invasive grass, reed canarygrass (Phalaris arundinacea)
(Plocher et al. 2003), and so an additional 168 balled-and-
burlapped oaks were planted on the acorn plots to meet regu-
latory requirements for compensatory mitigation credit.

Field Data Collection and Numerical Analyses

In 2013, 15 years after planting, we conducted vegetation
surveys at the site to evaluate the long-term success of the site
in the absence of active management. We compared charac-
teristics of the planted forest plots to each other and to the
adjacent mature floodplain forest community. We established
three 50-m × 5-m vegetation plots per treatment type, plus
three plots in the adjacent mature floodplain forest (18 plots
total; Fig. 1). The long axis of the plots was arranged a direc-
tion perpendicular to the adjacent Rock River. Plot locations
were selected randomly within each treatment strip. However,
because two treatment types (balled-and-burlapped and acorn)
were only replicated twice in the original experimental design,
for these two treatments, we placed two plots in one treatment
strip (Fig. 1).

In each 250-m2 plot, we measured the diameter-at-breast-
height (DBH) of all woody stems larger than 5-cm DBH and
calculated total basal area (m2 ha−1) for each plot. Stems of all
woody species taller than 1 m, including stems <5-cm DBH,
were tallied within each plot. We inventoried all vascular plant
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species within the plot to determine species richness and esti-
mated the floristic quality of each plot by assigning each spe-
cies a “Coefficient of Conservatism” (C) based on Taft et al.
(1997) and averaging across all species in the plot to calculate
the mean C. C-values range from zero to ten and provide a
subjective rating of species fidelity to undegraded natural
communities. Non-native species were assigned a C-value of
zero. At 10-m intervals along a 50-m transect through the
center of each plot, we measured herbaceous-layer species
percent cover in a 0.25-m2 quadrat. All vascular plant species
observed in each quadrat, as well as bare ground, were
assigned a cover class (<1%, 1–5%, 6–25%, 26–50%, 51–

75%, 76–95%, or 96–100%) to assess plant community com-
position at the plot-level. In addition, within each quadrat, we
measured aboveground biomass of P. arundinacea in 30-cm ×
30-cm subplots. Within each subplot, all live P. arundinacea
was clipped to the soil surface, dried at 60 °C overnight, and
dried biomass weighed. Biomass within the 5 subplots was
averaged within each plot. We previously reported
P. arundinacea biomass in Peralta et al. (2017).

We used Analyses of Variance (ANOVAs) to determine
whether there were differences in each of six response vari-
ables (tree basal area, density of large woody stems [>7.5-cm
DBH], density of small woody stems [<7.5-cm DBH, but

Fig. 1 Aerial photograph of study
site along the Rock River, IL.
Shaded overlays indicate
restoration treatment strips, and
rectangles indicate locations of
the 50-m × 5-m sampling plots
(n = 3 per treatment type). The
reference floodplain forest, with
three sampling plots, is northeast
of the restoration site
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taller than 1 m], plant species richness, mean C, or
P. arundinacea biomass) among the six treatments (five res-
toration treatments plus the reference forest), with treatment as
a fixed effect. Plots of residuals versus predicted values were
inspected for normality, and Levene’s Test was used to deter-
mine if variances were homogenous. Residuals for density of
small woody stems were not normally distributed, so a non-
parametric Kruskal-Wallis test was used. Significant
ANOVAs were followed by Tukey’s Honestly Significant

Difference (HSD) test for post hoc comparisons among the
six treatment types.

Results

Vegetation structure differed among some treatments after
15 years, and these differences were consistent with the 5-
year results (Fig. 2). Strips that had been planted with bareroot

a f

b g

c h

d i

e j

Fig. 2 Representative
photographs of each restoration
treatment type in 2003 and 2013
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or balled-and-burlapped trees had developed closed tree can-
opies with only sparse herbaceous plant cover, whereas acorn
plantings and passive restoration plots had become dense
stands of P. arundinacea. Average (±standard error) summed
plant cover in the herbaceous layer was least (3.3 ± 2.1%) and
bare soil cover greatest (95 ± 2.5%) in the bareroot plantings,
and plant cover was greatest (86.5 ± 5.5%) and bare soil cover
least (9.8 ± 5.1%) in the acorn plantings. Seedling plantings
were spatially variable, with patches of trees and scattered
open areas dominated by P. arundinacea. Herbaceous plant
cover averaged 48.3 ± 17.5% in balled-and-burlapped plots,
34.5 ± 26.8% in seedling plots, and 82.3 ± 13.9% in passive
regeneration plots. The reference forest plots were primarily
composed of medium- to large-diameter (average DBH =
34 cm) Acer saccharinum (35%) and Fraxinus pennsylvanica
(41%). Other woody species in the reference forests were
Celtis occidentalis, Crataegus mollis, Gleditsia triacanthos,
Morus alba, Ulmus americana, and the shrub Cephalanthus
occidentalis. Herbaceous vegetation was sparse in reference
plots (average cover 9.5 ± 3.2%); Symphyotrichum
lanceolatum was the most abundant herbaceous species, and
P. arundinacea comprised less than 1% of the herbaceous
cover.

Tree basal area was small in acorn and passive restoration
treatments, especially when compared to the densely planted
bareroot plots and the reference plots (F5,12 = 4.26, p = 0.018;
Fig. 3a). However, the only significant pairwise difference
was between bareroot and acorn plantings. Overall stem den-
sity was similar among treatments (F5,12 = 2.60, p = 0.081).
However, the balled-and-burlapped treatments and the refer-
ence plots contained fewer, but larger stems, whereas two of
the passive restoration plots contained dense patches of small-
diameter willows (Salix interior). When stem density was cal-
culated separately for shrub- and sapling-layer stems, taller
than 1 m, but smaller than 7.5-cm DBH, stem density did
not differ significantly among treatments (Kruskal-Wallis Χ2,
= 2.64, df = 5, p = 0.75; Fig. 3b). In contrast, density of larger
(>7.5-cm DBH) stems differed among treatments (F5,12 =
10.95, p = 0.0004; Fig. 3c), and was greatest in the densely
planted bareroot and seedling treatments. Relative to the more
expensive, high density bareroot planting, the seedling and
balled-and-burlapped treatments more closely matched refer-
ence forest plots in terms of total basal area and density of
small and large stems. However, stem density in the seedling
treatment varied within and among plots, with some large
patches (up to approximately 25 m2) of P. arundinacea con-
taining few or no trees. In addition to S. interior and the
planted species listed in the Methods, woody species in the
restored forest plots included Acer negundo, Celtis
occidentalis, Gleditsia triacanthos, Juglans nigra, Morus
alba, Salix nigra, and Ulmus americana.

As previously reported by Peralta et al. (2017), biomass of
P. arundinacea differed significantly among treatments

(F5,12 = 7.80, p = 0.002; Fig. 3d). P. arundinacea biomass
was much greater in the acorn and passive restoration treat-
ments than in the bareroot or reference treatments. Plant spe-
cies richness also varied among treatment types (F5,12 = 4.77,
p = 0.013; Fig. 3e) and was inversely related toP. arundinacea
biomass (linear regression: r2 = 0.54, F1,16 = 18.95, p =
0.0004). Species richness was lower in the passive restoration
plots than in the balled-and-burlapped or reference plots.
Nevertheless, P. arundinacea was the most abundant herba-
ceous species in every restoration treatment type (followed by
Leersia virginica and Symphyotrichum lanceolatum). Mean C
values were similar among treatment types (F5,12 = 1.77, p =
0.194; Fig. 3f).

Assuming a linear relationship between cost and restora-
tion outcomes—which may be unrealistic (Miller and Hobbs
2007), but is a close approximation over the range of our
data—for each additional $10,000 ha−1 spent on restoration
($15,821 in 2019 dollars), P. arundinacea biomass decreased
by 61 g m−2 (r2 = 0.64), tree basal area increased by 3 m2 ha−1

(r2 = 0.28), and plant species richness increased by one spe-
cies per plot (r2 = 0.49).

Discussion

In a restored floodplain forest, alternative planting treatments
that were imposed on the site at the outset of restoration have
resulted in differences in vegetation structure after 15 years.
Intensive and costly planting resulted in closed canopy forests,
whereas more hands-off approaches to restoration resulted in
species-poor wet meadows dominated by an invasive grass.
Whether these differences are worth the additional investment
in tree planting depends on the particular restoration goals. Our
study site was restored as compensation for the destruction of
naturally occurring wetlands. Spontaneous succession and low-
cost acorn plantings resulted in failure to achieve legally re-
quired performance standards due to invasion by
P. arundinacea and poor tree establishment. Thus, the cheapest
approaches fell outside the realm of acceptability; the goal was
to replace floodplain forest, and neither passive restoration nor
acorn plantings achieved that goal. Our estimate of the cost of
the acorn planting treatment did not include the costs associated
with delayed balled-and-burlapped oak plantings into the acorn
plots at the end of the five-year monitoring period to meet
compliance requirements, which we estimated to be approxi-
mately $61,000 per ha. Direct seeding is initially cheaper than
planting seedlings, and can be effective in some situations
(Stanturf et al. 2009). Even with this delayed planting of
balled-and-burlapped trees, however, the direct seeding treat-
ment was ineffective and, ultimately, expensive.

A recent meta-analysis found that although revegetation
accounts for a significant portion of the cost of wetland resto-
ration, revegetation does not lead to improved biotic and
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functional outcomes (Moreno-Mateos et al. 2015). Our study
is a reminder, however, that this finding is not universal.
Similarly, other studies that have shown that increased invest-
ment in restoration plantings leads to improved restoration
outcomes relative to plantations or spontaneous succession
(Kanowski et al. 2003; Klimkowska et al. 2007; Munro
et al. 2009; Middleton et al. 2010; Pywell et al. 2011). The
important question is therefore not whether additional invest-
ment in active revegetation is worthwhile—in some situations
it is not—but under which conditions is it worthwhile (Prach
and Hobbs 2008; Holl and Aide 2011; Jones et al. 2018).

Intensive planting was necessary for ecosystem recovery in
our study site, but we suspect that the observed lack of recov-
ery in unplanted treatments was not due solely to slow colo-
nization by woody species, but due to slow colonization rela-
tive to very high invasive grass productivity. A potential tree
seed source was directly adjacent to our study site, and there is
abundant evidence that proximity to remnant patches of target
vegetation facilitates successful restoration (e.g., Hutchings

and Booth 1996; Öster et al. 2009; Alsfeld et al. 2010;
Helsen et al. 2013). Furthermore, the site was regularly
flooded by the nearby river, and likely received propagules
via hydrochory, which is known to be an important pathway
for seed delivery to floodplain sites (e.g., Leyer 2006;
Moggridge et al. 2009). Nevertheless, active and intensive tree
planting was necessary. Soils at this site are particularly rich in
ammonium, nitrate, and phosphate, even compared to other
restored floodplains on former agricultural land in the region
(Cohen 2018), and nutrient enrichment in wetlands is known
to favor P. arundinacea dominance (Green and Galatowitsch
2002; Kercher and Zedler 2004; Perry et al. 2004). Thus, our
study supports one end of the general model of Prach and
Hobbs (2008), which suggests that more costly, active inter-
vention is necessary for restoring eutrophic sites.

Unlike other studies which have shown a convergence of
plant communities among experimentally imposed restoration
treatments through time (e.g. Warren et al. 2002; Holl et al.
2014), the differences among initial treatments were long-

Fig. 3 Mean (±SE) tree basal area (a), density of small stems (b), density
of large stems (c), Phalaris arundinacea biomass (d), plant species
richness per plot (e), and mean Coefficient of Conservatism (f) by
restoration treatment. Treatments are arranged, from left to right, in

order of increasing initial cost. Different letters (a, b, c) above bars
represent significant differences (Tukey’s HSD, p < 0.05) between
treatments
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lasting in our study site. Phalaris arundinacea, once
established, was able to form a stable wet meadow community
state for at least 15 years in the otherwise forested river flood-
plain. Zedler (2009) suggested that P. arundinacea is able to
form an alternative stable state, driven by the production of a
dense layer of thatch, which prevents germination of other
species. Volunteer and planted tree seedlings do not establish
well in existing stands of P. arundinacea (Hovick and
Reinartz 2007; Adams et al. 2011; Thomsen et al. 2012).
Thus, like some other invasive plants (e.g., Fike and Niering
1999; Rudgers et al. 2007), P. arundinacea seems to inhibit
succession to forested communities. However, P. arundinacea
is shade-intolerant and does not establish well under an
existing plant canopy (Lindig-Cisneros and Zedler 2002;
Adams et al. 2011). In our study site, treatment plots which
were treated with glyphosate during the initial five years, and
which rapidly developed closed tree canopies, effectively pre-
cluded P. arundinacea invasion. This led to persistent and
abrupt ecological boundaries at the site, characteristic of alter-
native stable states (Wilson and Agnew 1992), and a rein-
forcement of initial differences in woody plant cover among
restoration treatments. After 15 years, dense stands of willows
had developed in two of the passive restoration plots, and
although this may eventually result in a decrease in
P. arundinacea abundance, it suggests a long temporal lag in
the establishment of a woody canopy and a temporal loss of
biodiversity support as a result of compensatory wetland mit-
igation (see Spyreas et al. 2010; Jessop et al. 2015).

Slow development of a closed canopy in low-cost planting
treatments was exacerbated by seedling mortality. Tree mor-
tality in response to flooding is a major constraint on flood-
plain forest restoration, and tree seedlings are particularly sus-
ceptible (King and Keeland 1999; Stanturf et al. 2004;
Krzywicka et al. 2017; Matthews et al. in press). Restoration
monitoring reports from our study site indicated poor survival
of the smaller acorn and seedling plantings, and dominance by
P. arundinacea by 2001, three years after restoration (Plocher
et al. 2001). Tree seedlings in these treatments, especially in
competition with invading P. arundinacea, may have been
unable to grow large enough to escape flood risk.
Furthermore, during our vegetation surveys, we noticed sev-
eral planted trees that had been damaged or felled by beavers
(Castor canadensis). In the openings created by beavers,
P. arundinacea had established dense colonies.

Dominance by P. arundinacea has additional consequences
for ecosystem structure and function. Invasion by
P. arundinacea has been demonstrated to decrease biodiversity
(Spyreas et al. 2010; Rojas and Zedler 2015) and lead to bio-
logical homogenization at a regional scale (Price et al. 2018).
The high shoot density of P. arundinacea stands may promote
sedimentation (Werner and Zedler 2002), which could have
consequences for biogeochemical cycling. Indeed, Phalaris-
dominated plots at our study sites had greater concentrations

of soil nitrate and soil organic matter relative to forested plots,
and initial restoration treatments influenced soil bacterial com-
munity composition after 15 years (Peralta et al. 2017).

Application of herbicide, when combined with other con-
trol strategies, and followed by planting of native vegetation,
is recommended for eradicating P. arundinacea (Lavergne
and Molofsky 2006). Initial control of P. arundinacea is im-
portant for establishingwoody seedlings. Hovick and Reinartz
(2007) and Thomsen et al. (2012) reported higher two-year
survival rates for planted tree and shrub seedlings when
planted into P. arundinacea stands after herbicide treatment
relative to untreated controls. However, once established,
P. arundinacea is difficult to control even with follow-up
planting by native species, because it rapidly reinvades
(Foster and Wetzel 2005; Adams and Galatowitsch 2006).
Thus, rapid establishment of perennial vegetation cover is
considered to be critical for preventing P. arundinacea rein-
vasion (Lindig-Cisneros and Zedler 2002; Iannone and
Galatowitsch 2008). For example, Kim et al. (2006) found
that after an initial herbicide application, dense planting of live
willow stakes significantly decreased P. arundinacea biomass
over two seasons. Our study indicates that a pre-emptive ap-
proach can be successful for controlling P. arundinacea in
restorations where it is likely to invade – planting fast-
growing trees which quickly form a closed canopy and
shaded understory can prevent initial invasion. Similar to
this study, Adams et al. (2011) found that acorn plantings grew
too slowly to suppress P. arundinacea, and the authors recom-
mend planting a mix of oaks and faster-growing trees which
will create a shaded canopy. Added benefits of rapid canopy
closure include facilitating the colonization and establishment
of other forest species (McLeod et al. 2001; Stanturf et al.
2009; McClain et al. 2011; Reid et al. 2015; Wallace et al.
2017) and provision of vertical structure for wildlife habitat
(Twedt et al. 2002; Dey et al. 2010).

Finally, this study illustrates the value of restoration as
experimentation. Formal experimentation, a key component
of adaptive restoration, is important for determining which
restoration approaches are most successful in which contexts
(Zedler et al. 2012). Conducting restoration as an experiment
could help identify situations where passive restoration is and
is not an effective strategy (Jones et al. 2018). As this study
demonstrates, however, experimental learning often requires
designing for uncertainty and accepting suboptimal outcomes
as a part of the learning process (see Holling 1978). Such
openness to enlightening failure may be particularly conten-
tious in the case of compensatory wetlandmitigation and other
offset programs, for which success is legally mandated, and
uncertainty is often unacknowledged.
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