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Abstract
The driver of plant community assembly in riparian marshes is vital but still unclear. In this study, we report the results of sixty
plots located along the downstream Yellow River to identify the driver of plant community assemblages. Seven functional traits
were measured and compiled to calculate functional beta diversity, and phylogenetic tree was constructed to assess phylogenetic
dissimilarity. The analyses show that all of traits had weak phylogenetic signals using the Blomberg’s K statistic. The phyloge-
netic and functional beta diversity present clustering patterns, with the exception of leaf nitrogen concentration and leaf phos-
phorus concentration; and the standardized effect sizes based on multi-traits, maximum height, leaf dry matter content are well
correlated with the environmental gradient. The findings imply that environment filtering was responsible for the variation of beta
diversity, and drove community assembly in the riparian marsh. Of all environmental factors, soil salinity is the most crucial
indicator to dominate the pattern of beta diversity.

Keywords Communityassembly .Environmental filtering .Variancepartitioning .Environmentalgradient .Riparianmarshofthe
YellowRiver

Introduction

Community assembly studies are imperative in explaining the
formation and maintenance of biodiversity, which have been
continually pursued in the field of ecology (Rosindell et al.
2011). Two major theories have been proposed to elucidate
the mechanism of species assemblages, the niche theory based
on deterministic processes (Diamond 1975) and the neutral
theory based on stochastic processes (Hubbell 2001). As the
relative importance of ecological processes varies largely with
different plant communities, however, the quantification and
assessment of individual assembly processes are of vital
importance.

The original explication of assembly mechanisms is
often based on taxonomic identity. But it has proven to
be poorly responsive to the process of species assemblage
though it was a reasonable starting point (Siefert et al.
2013; Jiang et al. 2018). An alternative approach, using
phylogenetic and functional diversity to test which deter-
ministic or stochastic processes drive the assembly of spe-
cies, is widely applied and offers another justification of
testing ecological processes in different communities
(Cornwell and Ackerly 2009; Purschke et al. 2013). For
instance, the lower functional beta diversity occurred in a
scale of less than 600 km and the higher functional beta
diversity was shown in a scale of more than 1800 km in
the eastern North American forest community (Siefert
et al. 2013). In the grassland regions of China, community
assembly processes are remarkably driven by environ-
mental filtering using phylogenetic relatedness among
species (Chi et al. 2014). Such observations highlight that
beta diversity, reflecting the dissimilarity of phylogenetic
and functional components between communities, is an
effective tool for ecologists to analyze and interpret the
mechanisms of community formation and maintenance
(Anderson et al. 2011).
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Nonetheless, the mechanisms of community assembly are
still a hotly debatable topic. Under niche-based processes,
environmental filtering and the species interactions are con-
sidered as the most fundamental drivers of community assem-
bly (Cornwell and Ackerly 2009; López-Angulo et al. 2018).
Environmental filtering processes are shown to sort the poten-
tial species from a regional species pool to a suitable habitat
(Diamond 1975). A common view is shared that there is a
potential relationship between phylogenetic or functional di-
versity and environmental gradients (Spasojevic and Suding
2012; Satdichanh et al. 2015; Cadotte and Tucker 2017). In
particular, environmental filtering is frequently determined as
the driving force of community assemblage processes along
an extensive environmental gradient (Swenson et al. 2012a;
Cadotte and Tucker 2017; López-Angulo et al. 2018).
Conversely, the definition and inappropriate use of environ-
mental filtering have been questioned in recent researches
(Cavender-Bares et al. 2009; Maire et al. 2012; Kraft et al.
2015). Phylogeny and trait convergence are no longer merely
the result of environmental filtering processes, as biotic inter-
actions and dispersal processes may lead to the same out-
comes (Mayfield and Levine 2010; Kraft et al. 2015).

It is well recognized that environmental filtering as a deter-
ministic pattern of community assemblages, inevitably leads
to a decreasing range of traits value and increasing niche over-
lapping (Weiher and Keddy 1995; Cornwell and Ackerly
2009). From the perspective of phylogeny and traits, environ-
mental filtering leads to a tighter correlation of coexisting
species or more similarity of specific traits, i.e., phylogenetic
clustering or trait convergence. Determining a clustered pat-
tern of community dispersion, therefore, is the first step in
detecting environmental filtering processes. But such determi-
nation alone is not comprehensive, since certain species with
higher intrinsic growth rate having a fitness advantage over
those with lower intrinsic growth rate shall bring about a com-
petitive exclusion which is similar with the consequence drove
by environmental filtering. Moreover, the modern coexistence
theory argues that the differences between population growth
rate and niche overlap are vital indicators inferring species
coexistence and persistence pattern (Chesson 2000; Cadotte
and Tucker 2017). It is understood that species may have
different growth rates in the optimal and suboptimal habitats
as there is variation of fitness along environmental gradient.
So it is observable a pattern that the population growth rate is
continuously varying along the environmental gradient
(Cadotte and Tucker 2017). It is thus crucial to ensure that
the observed relationships between the growth rates and phy-
logenetic and functional similarity are revealed by the envi-
ronment and is not the result of other processes, such as plastic
traits. In consequence, confirming the existence of such non-
independence in traits requires to quantify the phylogenetic
signals to acquire a powerful piece of evidence in the trait data
to combine phylogeny, traits, and environment.

In this work, we conduct studies concerning the high envi-
ronmental pressures in the riparian marsh along the down-
stream of Yellow River (high salinity and low nutrients in
soil). We postulate that environmental filtering is the driver
of community assemblages in the study area, and adopt the
guidelines proposed by Cadotte and Tucker (2017) to confirm
the leading role of environmental filtering with community
phylogenetic and functional beta diversity. Based on the hy-
pothesis, a variation partitioning approach is applied to distin-
guish edaphic, climatic, and spatial variables to explicate the
variation of beta diversity. From previous studies, the varia-
tion partitioning approach of trait-based response variables
proves to advance our understanding of deterministic ecolog-
ical processes (Legendre et al. 2009; Siefert et al. 2013; Jiang
et al. 2018). Furthermore, we endeavor to find out key envi-
ronmental factors that drive the variation of phylogenetic and
functional beta diversity separately in the riparian marsh of
Yellow River. We focus on three issues: (1) Are there any
significant phylogenetic signals in functional trait data? (2)
Does environmental filtering drive the community assembly
processes along the environmental gradient? (3)What factor is
the most crucial in phylogenetic and functional beta diversity
in the riparian marsh of Yellow River?

Materials and Methods

Study Site

The study area is located in the central and eastern China
(34°56'–37°45'N; 113°29'–119°09'E). The mean annual tem-
perature is 16.3 °C throughout the study area, with January
and July being the coldest (−1.6 °C) and warmest (28.2 °C)
months, respectively. The mean annual precipitation is about
650 mm, with a peak during the summer and a dip between
December and February. A large amount of sediment is de-
posited and formed sandbars resulting from the decrease of
river’s velocity, providing habitats for wetland species within
the channel downstream Yellow River.

Field Sampling

60 plots (10 m × 10 m) were established along 786 km of the
Yellow River channel (Fig. 1), from the Peach Valley to the
estuary, fromAugust to September 2016.Within each plot, we
set up five 1 m2 quadrats to investigate plant communities
using random sampling methods. We recorded the species
name and coverage of the species occurring in each quadrat.
The plant communities were mainly composed of herbs and
immature shrubs. We sorted out the species covered at least
80% of the plant community per plot and included a sufficient
range of traits (Pakeman and Quested 2007; Raevel et al.
2012). Finally, 48 species were selected for measurement of
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functional traits representing a regional species pool. Seven
functional traits, quantitatively describing certain inde-
pendent axes of a species niche, were measured and
compiled: maximum height (Hmax, cm), leaf thickness
(LT, mm), leaf dry matter content (LDMC, g/g), specific
leaf area (SLA, cm2/g), seed mass (SM, g), leaf nitro-
gen concentration (LNC, %), and leaf phosphorus con-
centration (LPC, %) (Table 1). We measured plant traits
on 10–20 individuals of each species per plot following
a standard protocol (Cornelissen et al. 2003) with the

exception of LT for which another method (Seelig et al.
2012) was followed (See supplementary material S1).
Subsequently, we created a species × traits matrix with
mean trait value and generated trait dendrograms by the
R software performing a hierarchical clustering to im-
plement the same structure as phylogeny (Swenson
et al. 2012b; Yang et al. 2014) with multi-traits and
univariate trait, respectively. The trait data were log1p-
transformed prior to the construction of the trait
dendrograms.

Table 1 Measured functional
traits and their importance and/or
functioning for ecological
strategy

Plant functional traits Importance(s) and/or function(s)

Hmax Tolerance to environmental stress and completive vigor

LT Water retention

LDMC Potential relative growth rate and light-saturated photosynthetic rate

SLA Potential relative growth rate and light-saturated photosynthetic rate

SM Reproduction niche and dispersal approach

LNC Nutrient acquisition and maximum photosynthetic rate

LPC Nutrient acquisition and maximum photosynthetic rate

Abbreviations: Hmax, maximum height; LT, leaf thickness; LDMC, leaf dry matter content; SLA, specific leaf
area; SM, seed mass; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration

Fig. 1 Distribution of the sampling sites in the riparian marsh of downstream Yellow River, China (2016)
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Environmental Data

To characterize the spatial distribution of the plots in the study
area, we obtained the geo-location information in the form of
latitude and longitude by GPS. It was not found that there is
significant spatial autocorrelation in species distributional data
analyzed by the SAM software (Dormann et al. 2007; Qin
et al. 2017). One soil sample taken at a depth of 0–20 cm
was collected in each quadrat using a 5 cm diameter soil auger,
stored and sealed in a plastic bag, and taken back to the lab-
oratory to determine its physical and chemical properties. Five
soil samples in total from a plot were composited to measure
nine different soil properties: soil moisture content (SMC,
g/g), pH, soil salinity (SS, mg/L), total nitrogen (TN, %), total
phosphorus (TP, %), total carbon (TC, %), available nitrogen
(AN, %), extractable phosphorus (EP, %), and effective cation
exchange capacity (CEC, cmol/kg) with three replicates. The
parameters were obtained in the following way, SMC as the
oven-dry mass of a soil sample divided by its fresh mass, pH
measured using a pH meter (FE28, Mettler-Toledo Company,
Switzerland), and SS calculated by the conductivity in soil
measured by a conductivity meter (FE38, Mettler-Toledo
Company, Switzerland). While the Kiadhal digestion method
and the ammonium acetate method were used to measure TN
and CEC in soil via automatic azotometer (9860, Hanon
Company, China), respectively, TP was assessed by the Mo-
Sb colorimetric method using a spectrophotometer (UV-9100,
Unico Company, China) and TC by a carbon sulfur analyzer
(CS2800, NCS Testing Technology Company, China). AN
and EP were determined, separately, by a diffuser and ‘Avio
200 ICP-OES’ (PerkinElmer Avio Company, USA). In addi-
tion, the climate data of study area with 1 km spatial resolution
was obtained from the WorldClim2 database (Fick and
Hijmans 2017). We extracted climatic variables to character-
ize the climate conditions for each plot from the WorldClim2
database: annual mean temperature (AMT, °C), mean temper-
ature of coldest quarter (MTC, °C), mean temperature of
warmest quarter (MTW, °C), annual precipitation (AP, mm),
precipitation of warmest quarter (PW, mm), precipitation of
coldest quarter (PC, mm), temperature seasonality (TS), and
precipitation seasonality (PS). Besides, we calculated annual
biotemperature (AB, °C), warmth index (WI, °C), and cold-
ness index (CI, °C) using monthly mean temperature data at
the same spatial resolution (Fang et al. 2011) (refer to
supplementary material S2 for detailed information).

Phylogenetic Tree

In order to infer the pattern of community assemblages in the
riparian marsh of the Yellow River, we explicated the causes
for species coexistence through species evolution. The

classification information of all 48 species was retrieved and
input into the Phylomatic software (ht tp: / /www.
phylodiversity.net/phylomatic), generating the megatrees
according to Zanne et al. (2014) to identify the distribution
of species on an existing phylogenetic framework. Followed
was the construction of a species-level phylogenetic tree based
on the APG III system.

Data Analysis

Following the guidelines of Cadotte and Tucker (2017), an
appropriate approach is to quantify the phylogenetic and func-
tional structures of the community via the standardized effect
size.We first calculated the beta diversity (Dnn′) and standard-
ized effect size (S.E.S. Dnn′) on the basis of phylogeny, multi-
traits and all univariate traits. Then, we implemented an ap-
propriate null model and randomized shuffled taxa names
across the tips of the phylogenetic tree and trait dendrograms
999 times, while maintaining species occurrence frequency
and abundance. This approach has been proven to have the
best ability to discover filtering based on multivariate func-
tional traits (Spasojevic and Suding 2012). Next, we used the
Student’s t test to check whether the phylogenetic clustering/
overdispersion or trait convergence/divergence is significant
with the standardized effect size. The calculation was based on
the equation below,

S:E:S: Dnn0 ¼
Dnn0 obsð Þ−Dnn0

ðnullÞ
sd nullð Þ

;

where Dnn′(obs) is the observed value of the weighted nearest
neighbor distance between communities, Dnn0 nullð Þ is the

mean of the weighted nearest neighbor distance by the null
model, and sd(null) is the standard deviation of the weighted
nearest neighbor distance by the null model.

As the influence of the environment on species coexistence
is both relevant in extraction of a species from the species pool
to the habitat and in the competition process by covariation
with the population growth rate and environment, we focused
on the variation of population growth rate along environmen-
tal gradients, which is associated to community structure
(Cadotte and Tucker 2017). Simultaneously, the principal
component analysis was utilized to reduce redundant variables
of edaphic and climatic variables.We defined the scores of the
first principal component (37.4% of variance) as the environ-
mental gradient of the study area (supplementary material S3),
and observed the correlation of S.E.S. Dnn′ and the environ-
mental gradient by linear regressions. Since it is necessary to
explore whether the evolution of traits conform to the princi-
ple of phylogenetic conservatism, we searched the
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phylogenetic signals in every univariate trait using the K sta-
tistic (Blomberg et al. 2003). The three cases of the K value is
distinguished, (1) K = 0 suggests that there are no phylogenet-
ic signals in trait evolution; (2) K < 1 indicates that weaker
similarities exist in closely related species than expected based
on the Brownian motion model; and (3) K > 1 indicates more
phylogenetic signals than expected (Blomberg et al. 2003).
All of the calculations and tests were carried out with R pack-
age vegan, phytools, and picante (R Core Team 2017). Should
the values of S.E.S. Dnn′ be negative and correlated signifi-
cantly with the environmental gradient simultaneously, signif-
icant phylogenetic signals appeared in the univariate trait data.
If it is the case, we may conclude that environmental filtering
drives the community assembly processes.

In order to explore the relationship of beta diversity
with environmental and spatial variables in depth, we
used the method of variation partitioning over edaphic,
climatic, and spatial variables as explanatory variables
to dissect the beta diversity as the response variables
(Siefert et al. 2013; Spasojevic et al. 2016; Jiang et al.
2018). For the spatial variables, we applied the principal
coordinates of neighbor matrices eigenvectors, which are
recurrently implemented as a tool for quantifying sto-
chastic processes (Borcard and Legendre 2002) in terms
of centralized geographic information data. In the pres-
ent study, we extracted 20 positive eigenvalue variables
as a proxy for total spatial variables. For the environ-
mental variables, we used 9 edaphic variables and 11
climatic variables to represent the environmental condi-
tions of the study area. Prior to variation partitioning,
the redundancy analysis (Borcard et al. 1992) and the
forward selection (Blanchet et al. 2008) were executed
to reduce redundant components and retain variables
which were significantly associated with beta diversity
in edaphic, climatic, and spatial variables, respectively.
All the calculations and analyses were accomplished by
the software R (R Core Team 2017).

Results

Dispersions of Phylogenetic and Functional Beta
Diversity

The standardized effect sizes of phylogeny and multi-traits
were significantly lower than zero (P < 0.05) (Table 2). For
univariate traits, all traits passed a significant test except for
LPC, which had no significant difference from zero. Of inter-
est, we found that LNC had a particular pattern in contrast to
other traits, which was significantly greater than zero.

Standardized Effect Sizes of Beta Diversity (S.E.S.
Dnn′) and Environmental Gradient

The functional beta diversity of multi-traits (Fig. 2b) showed a
significant negative relationship with a continuous environ-
mental gradient (P < 0.001, R2 = 0.209). In comparison, the
relationship between phylogeny and the environment gradient
was nonlinear (Fig. 2b). For individual traits, only the maxi-
mum height (P < 0.05, R2 = 0.086) (Fig. 2c) and leaf dry mat-
ter content (P < 0.001, R2 = 0.337) (Fig. 2e) showed a signif-
icant correlation. Remarkably, the maximum height increased
with the environmental gradient, whereas the opposite trend
was apparent for the multi-traits and leaf dry matter content.

Phylogenetic Signals

The K values of seven functional traits were less than one
(Table 3), ranging from 0.129 (LPC) to 0.295 (SM), in which
a mean weaker phylogenetic signal than expected was obtain-
ed during the process of trait evolution. The P values of the
permutation test for univariate traits were all less than 0.05,
indicating that all of the selected traits had significant phylo-
genetic signals.

Table 2 Student’s t test for
standardized effect sizes of beta
diversity (S.E.S. Dnn′) in plant
community of riparian marsh of
downstream Yellow River

Standardized effect sizes of beta diversity (S.E.S. Dnn′) 95% confidence interval t-value P

Phylogeny (−0.575, −0.430) −13.877 0.000**

Multi-traits (−0.671, −0.466) −11.079 0.000**

Hmax (−0.262, −0.001) −2.014 0.049*

LT (−0.350, −0.096) −3.523 0.001**

LDMC (−0.442, −0.064) −2.678 0.009**

SLA (−0.505, −0.333) −9.733 0.000**

SM (−0.194, −0.002) −2.043 0.046*

LNC (0.224, 0.542) 4.829 0.000**

LPC (−0.044, 0.225) 1.349 0.183

For abbreviations of traits, see Table 1. Signs: * for P < 0.05; ** for P < 0.01
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Variance Partitioning of Phylogenetic and Functional
Beta Diversity

We applied the forward selection and redundancy analysis
preceding variance partitioning for explanatory variables (cli-
matic, spatial and edaphic variables), which effectively

reduces the collinearity between variables. We found that all
the facets of beta diversity were associated with SS in edaphic
variables (Table 4). The correlations were ubiquitous in the
forward selection results, and even the most critical, shed light
on most of the variance in each facet of beta diversity. The
variables sets of phylogenetic beta diversity were consistent
with that of multi-trait based beta diversity (Table 4). For
individual traits, SS was a widespread and robust factor for
all traits in the selected sets, accounting for the overall vari-
ance of the edaphic variables. In the sets of LT (R2 = 0.040)
and LDMC (R2 = 0.034) and LPC (R2 = 0.028), CEC could be
responsible for a little fraction of variance (Table 4). AN (R2 =
0.014) explained tiny fraction of LT and TN (R2 = 0.032) had
little contribution to LPC (Table 4). Regarding the climatic
variables, we found that TS represented the climatic variables
in SLA (R2 = 0.324) and LNC (R2 = 0.352), whereas WI is an
important climatic factor in LDMC (R2 = 0.413) and LPC
(R2 = 0.534), CI (R2 = 0.354) is highly associated with LT.
Because the spatial variables did not pass the test, all of them
were utilized in variance partitioning.

Fig. 2 Relationships between standardized effect size of beta diversity (SES Dnn′) and environmental gradient in the riparian marsh of downstream
Yellow River

Table 3 Phylogenetic
signal tests for seven
functional traits among
species in riparian marsh
of downstream Yellow
River

Univariate trait K P

Hmax 0.206 0.002**

LT 0.278 0.011*

LDMC 0.144 0.013*

SLA 0.187 0.006**

SM 0.295 0.024*

LNC 0.139 0.002**

LPC 0.129 0.018*

For abbreviations of traits, see Table 1.
Signs: * for P < 0.05; ** for P < 0.01

Wetlands (2020) 40:287–298292



We employed the approach of variance partitioning
using selected variable sets. The results of phylogenetic
beta diversity were similar to that of multi-traits func-
tional beta diversity (Fig. 3). The sole edaphic variable
fraction could explain most of the variance in phyloge-
netic (0.575) and multi-traits functional (0.488) beta di-
versity. But it had no significant correlation with

phylogenetic and multi-traits functional beta diversity.
For single traits (Fig. 3), the sole edaphic variables indi-
cated the best explanatory power for all facets of func-
tional diversity. The climatic variables had minute con-
tribution to the justification of the univariate functional
diversity. Moreover, the sole spatial variables were not
associated to each functional diversity.

Table 4 Results for forward
selection of edaphic, climatic, and
spatial variables with
phylogenetic and functional beta
diversity

Beta diversity Selected variables R2 Cumulative adjusted R2 F P

Phylogeny Edaphic

SS 0.733 0.728 158.886 0.000**

Climatic

TS 0.333 0.322 28.965 0.001**

Multi-traits Edaphic

SS 0.702 0.696 136.395 0.000**

Climatic

TS 0.371 0.360 34.222 0.000**

Hmax Edaphic

SS 0.288 0.275 23.433 0.003**

LT Edaphic

SS 0.811 0.807 248.112 0.000**

CEC 0.040 0.845 15.290 0.000**

AN 0.014 0.857 5.809 0.022*

Climatic

CI 0.354 0.343 31.768 0.005**

LDMC Edaphic

SS 0.881 0.879 429.288 0.000**

CEC 0.034 0.912 23.169 0.001**

Climatic

WI 0.413 0.403 40.854 0.002**

SLA Edaphic

SS 0.505 0.497 59.247 0.001**

Climatic

TS 0.324 0.312 27.757 0.001**

SM Edaphic

SS 0.291 0.279 23.798 0.005**

LNC Edaphic

SS 0.683 0.678 125.041 0.000**

Climatic

TS 0.352 0.341 34.551 0.000**

LPC Edaphic

SS 0.661 0.655 113.004 0.000**

CEC 0.028 0.678 5.159 0.031*

TN 0.032 0.706 6.354 0.016*

Climatic

WI 0.534 0.525 66.340 0.001*

Abbreviations: Hmax, maximum height; LT, leaf thickness; LDMC, leaf dry matter content; SLA, specific leaf
area; SM, seed mass; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; SS, soil salinity; TS,
temperature seasonality; CEC, effective cation exchange capacity; AN, available nitrogen; CI, coldness index;
WI, warmth index; TN, total nitrogen. Signs: * for P < 0.05; ** for P < 0.01
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Discussion

In the present study we observed three lines of evidences that
could be in the support of a community assembly process
driven by environmental filtering, and then expounded key
factors affecting the phylogenetic and functional turnover in
the riparian marsh of the Yellow River. First, we found that the
general phylogenetic and functional clustering patterns, apart
from LNC and LPC, pointed to the fact that deterministic
assembly processes played a core role of structuring a com-
munity. Second, a pertinent mechanism between the growth
rate and environmental gradient was set up when the deter-
ministic assembly process was taken into account. Third, we
observed the presence of significant phylogenetic signals in
the trait data. In consequence, we could come to the conclu-
sion that the environment filtering drove the community

assembly processes in the study area. Of the environmental
factors, we found that the soil salinity in the edaphic variables
was the most crucial factor in environmental filtering, leading
to form the pattern of phylogenetic and functional dissimilar-
ity between communities.

Assembly Processes Drove by Environmental Filtering

As shown in the negative S.E.S. Dnn′ values of phylogeny
(Table 2) and multi-traits, the general phylogenetic and func-
tional clustering were observed in the riparian marsh of the
Yellow River, signifying that phylogenetic and multivariate
functional turnover were driven by deterministic assembly
processes. Still, the pattern of phylogenetic turnover was in
accordance, though not perfectly aligned, with that of multi-
traits functional turnover. The findings could be reasonably

Fig. 3 Results of variance partitioning in beta diversity in the riparian
marsh of the Yellow River. The values shown in Venn diagrams are

adjusted R2, indicating the variance explained of each fraction. R2

values less than zero were not displayed
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interpreted as a result of evolutionary lability of functional
traits due to the phylogenetic signals in the trait data, as similar
results reported in other studies (Swenson 2011; Yang et al.
2014). Compared to whole-plant traits and leaf morphological
traits, our results of leaf nutrient concentrations showed incon-
sistent patterns, while LNC and LPC had divergence and ran-
dom patterns, respectively. The underlying reason could be
the relative high intraspecific trait variation in leaf nu-
trient traits responding to available resources in habitat
(Siefert et al. 2015).

Along with the guidelines, we identified the relationships
between phylogenetic and functional S.E.S. Dnn′ and environ-
mental gradient to provide additional evidence of environ-
mental filtering (Fig. 2). The result of the S.E.S. Dnn′ based
on multi-traits was correlated with the environmental gradient
(Fig. 2b), yet it is interesting to notice that phylogeny did not
show a correlation with the environmental gradient (Fig. 2a).
Since significant phylogenetic signals had been discovered in
the trait data, a consistent pattern should be expected in the
phylogenetic turnover and functional turnover (Webb et al.
2002; Swenson 2011), but the actual results were in contrary,
instead. As a matter of fact, it has been argued that although
phylogeny is habitually used as a tool to deduce the key eco-
logical processes, it is not as perfect as traits (Cadotte et al.
2017; Xu et al. 2017) and even biased to apply the phyloge-
netic pattern to infer the community assemblages (Gerhold
et al. 2015). Moreover, sympatric species might reflect the
accordance of phylogenetic similarity and functional similar-
ity, which not only contains conserved traits but also plastic
traits (Pavoine and Bonsall 2011; Xu et al. 2017). In previous
works on different ecosystems, some cases in reality showed
inconsistent ecological processes for phylogenetic and func-
tional inference. In the Panama and Puerto Rico tropical rain
forests at different succession stages, phylogeny displayed a
stochastic pattern and traits a deterministic one (Swenson et al.
2012b). For the grassland in Algeria, similar life form to our
study area, researchers described phylogeny as a poor surro-
gate for traits (Pavoine et al. 2013). Manifestly, the relation-
ship between phylogeny and the assemblage mechanism is
complex. Contrariwise, we recognized that the environmental
filtering process was essentially the screening of species with
appropriate niche from the species pool into habitats (Kraft
et al. 2008; Cornwell and Ackerly 2009), and plant functional
traits were the appropriate proxies for species niches (McGill
et al. 2006; Violle et al. 2007). Accordingly, we were con-
vinced that the functional turnover revealed the essence of
the assembly mechanism more than the phylogenetic turnover
in the riparian marsh of the Yellow River. For the univariate
traits, only Hmax (Fig. 2c) and LDMC (Fig. 2e) had significant
correlations with the environmental gradient. The results
proved that these two traits were the key ones in determining
the community dispersion and population growth rates along
the environmental gradient. Hmax is associated with the

capability of tolerating environmental stress, and LDMC is
related to the potential relative growth rate (Cornelissen
et al. 2003). But SLA (Fig. 2f), though showing strongly cor-
relation with potential relative growth rate and proven inmany
other ecosystems (Westoby et al. 2002; Iida et al. 2014; Gibert
et al. 2016), did not give the same result as LDMC. We attri-
bute the discordance to that the difficulty in measuring the leaf
area of certain species reduced the accuracy of SLA
(Cornelissen et al. 2003). For example, Suaeda glauca and
Suaeda salsa in Suaeda genus, Typha angustata and Typha
laxmannii in Typha genus are all have high leaf thicknesses
depending on the fleshy leaves, which may affect the mea-
surement of SLA (Wilson et al. 1999). In such a case, LDMC
may yield a more meaning result.

All of the phylogenetic and functional analyses were based
on the evolutionary conservatism assumption as proposed.
Actually, we did find a significant phylogenetic signal in the
univariate trait data (Table 3). In contrast, the phylogenetic
signals were weak (K < 1), which is usually interpreted as
evolutionary lability (Blomberg et al. 2003; Yang et al.
2014), and might lead to an ambiguous relationship between
phylogeny and functional traits (Swenson 2011).

So far we have exposed, following the guidelines for mul-
tivariate functional beta diversity and part univariate function-
al beta diversity, all three aspects of evidences, (1) a clustered
pattern of community dispersion, (2) a covariant relationship
between the population growth rate and the environmental
gradient, and (3) significant phylogenetic signals in trait data.
Thus, the environmental filtering was determined to be dom-
inating in the community assembly processes in the riparian
marsh of the Yellow River.

Variance Partitioning of Phylogenetic and Functional
Beta Diversity

In light of the result of variance partitioning, we found that the
environment, especially edaphic variables, affected phyloge-
netic and functional beta diversity in the riparian marsh of the
Yellow River. The sole edaphic variables could always be
accountable for the most variances (Fig. 3). Such observation
was in consistence with reports that edaphic variables were
generally crucial at a local scale (John et al. 2007; Chi et al.
2014; Yang et al. 2014; López-Angulo et al. 2018), in the
support of our inference. From the results of forward selection
(Table 4), we revealed that SS was the most critical indicator
in edaphic variables. As a result, soil salinization steered a
most direct and intense environmental pressure for coexisting
species. Besides, we found that climatic variables had a weak-
er explanatory power on phylogenetic and functional beta di-
versity (Fig. 3). Although the species were generally influ-
enced by edaphic conditions at the fine scale and by climate
at the broad spatial scale (Díaz et al. 1998), a harsh edaphic
environment, which had strong environmental pressure of
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high soil salinity and low nutrient content, might perform a
more rigorous filtering of species than climate for wetland
species. With respect to the spatial variables, the sole spatial
variable in variance partitioning analyses might represent the
dispersal limitation or the spatial structure of unmeasured en-
vironment variables (Legendre et al. 2009; Siefert et al. 2013;
Spasojevic et al. 2016; Jiang et al. 2018). Different from pre-
vious findings, our study showed that the spatial variables
could not explain the phylogenetic and functional turnover
(Fig. 3), which might result in the neglect of dispersal limita-
tion in the neutral theory. We still could not rule out the effect
of dispersal, however, because most of species are spread
seeds through the wind depending on small and light seeds.

As given in Fig. 3a, b, we observed a similar pattern to
multivariate functional and phylogenetic beta diversity in var-
iance partitioning, that is, approximately half of the variance
was explainable by edaphic variables and around 30% of var-
iance by edaphic, climatic, and spatial variables together. The
results revealed that the environment, particularly edaphic
conditions, controlled the phylogenetic and multivariate func-
tional turnover between the communities. In spite of the report
that herbaceous species showed to be more responsive to
edaphic variables than climatic variables (Murphy et al.
2016), we realized that about 30% of the variance had no
reasonable explanation still, which might be prompted by un-
measured environmental factors and spatial structure or eco-
logical drift (Myers et al. 2013; Chi et al. 2014). Also, we
ascertained the relative importance of edaphic variables in
univariate functional beta diversity. Clearly, these functional
traits disclosed distinct dimensions representing different eco-
logical strategies for sympatric species (Spasojevic and
Suding 2012; Gross et al. 2013; Wellstein et al. 2014).
Henceforth, we deliberated that edaphic conditions played a
decisive role in diverse ecological strategies of plants in the
riparian marsh of the Yellow River, comprising resource ac-
quisition, environmental tolerance, competitive exclusion and
reproduction. It is amazing to find that, the whole univariate
functional beta diversity was well explicated by SS in the
edaphic variables, or the soil salinity was a pivotal environ-
mental factor in influencing diverse ecological strategies.

In conclusion, our results and analyses suggest that envi-
ronmental filtering plays an indispensable role in the commu-
nity assembly processes in the riparian marsh of the Yellow
River. The phylogenetic clustering and trait convergence
alone are insufficient to infer the driver of ecological process-
es. As a result, we have tested the relationships between S.E.S.
Dnn′ and the environmental gradient, and phylogenetic sig-
nals in the trait data to determine the dominance of environ-
mental filtering in the assembly processes. We have observed
the soil salinity in edaphic variables as a core filter influences
the community composition and species coexistence.
Concurrently, some inconsistent patterns or non-significant
relationships between community dispersions and

environmental gradient, likely to be affected by other ecolog-
ical processes, have been identified, which request further
work to gauge their effects.
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