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Abstract
Sphagnum wetlands in subtropical high-mountain regions have been severely destroyed by human activities, necessitating
restoration efforts. We studied the effects of substrate and planting method on Sphagnum palustre L. growth and the underlying
mechanisms to determine the optimal conditions for S. palustre restoration. S. palustre collected from natural wetlands was
grown on nine substrates and with four plantingmethods in a greenhouse. The results show that S. palustre grew best in mountain
yellow-brown soil without added peat or river sand and when planted as intact plants. Substrate pH and P content and capitula P
content negatively correlated with S. palustre productivity, while initial biomass of S. palustre at planting positively correlated
with productivity. S. palustre restoration on local mountain soil in subtropical high-mountain regions is practical, which may
provide a new perspective for restoring peatlands. Traditional restoration method using the 10 cm upper parts of S. palustre as
transplanted materials does not destroy the source S. palustre populations in habitats where plants are collected. However, we
argue that a planting method using only capitula (top 1–2 cm) may be a better choice for S. palustre restoration, due to the similar
productivity but less impact to source S. palustre populations.
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Introduction

Sphagnum wetlands are the most important components of
Northern Hemisphere peatlands (Limpens et al. 2017;

Bengtsson et al. 2018). Because Sphagnum wetlands are lo-
cated in areas with nutrient-poor (ombrotrophic), waterlogged
(anoxic), cold and acidic conditions (Hajek et al. 2011; Rydin
and Jeglum 2013; Manninen et al. 2016; Binet et al. 2017),
their rate of decomposition is usually lower than their rate of
production, which contributes to the significant accumulation
of organic matter (OM) that serves as an important carbon
pool (Gorham 1991; Clymo et al. 1998; Granath et al. 2014;
Hommeltenberg et al. 2014). The genus Sphagnum comprises
approximately 250–400 species (Shaw et al. 2016), among
which Sphagnum palustre is a common species with a wide
distribution (Daniels and Eddy 1990). In the subtropical re-
gions of southern China, patches of S. palustre-dominated
wetlands are found in the high-altitude areas of the
Huangshan Mountains, Yunnan-Kweichow Plateau and west-
ern Hubei Mountains (Ma et al. 2008), which are the sources
of the headstreams of a number of rivers and play an important
role in water storage. However, large areas of subtropical
high-mountain Sphagnumwetlands have been diminished be-
cause of habitat destruction and overcollection for horticultur-
al purposes, leading to reduced performance of ecological
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functions (Wang et al. 2013), which emphasizes the urgent
need for restoring these wetlands.

The growth of Sphagnum is determined by a wide variety
of environmental factors (Price et al. 2003; Chapin et al. 2004;
Thompson and Waddington 2008; Medvedeff et al. 2015).
Nutrient availability (especially of nitrogen [N] and phospho-
rus [P]) is an important factor for Sphagnum growth when
water availability is sufficient (Weltzin et al. 2001;
Hoosbeek et al. 2002; Kim et al. 2014). In natural bogs,
Sphagnum keeps growing upward from the apical part (capit-
ulum), while the lower part gradually dies, isolating the
Sphagnum from the underlying mineral soil or minerotrophic
groundwater (Clymo 1973; van Breemen 1995). Therefore, it
is generally thought that the nutrient supply for Sphagnum
mainly depends on atmospheric deposition (Bridgham et al.
1996; Malmer et al. 2003; Bragazza and Freeman 2007;
Limpens and Heijmans 2008; Granath et al. 2009;
Nishimura and Tsuyuzaki 2014). However, during the resto-
ration of destroyed peatlands with bare peat surfaces,
transplanted Sphagnum plants are in full contact with the
substrate, raising the question of whether the substrate will
affect Sphagnum growth via its background nutrient con-
tents. Until now, research and restoration work have been
mostly performed on original peatlands or abandoned cut-
over peatlands (Rochefort and Price 2003; Vasander et al.
2003; Graf et al. 2008; Andersen et al. 2010; Karofeld et al.
2016) where local peat was the only substrate used.
However, whether peat is the only substrate that can be
used or if it is the optimal substrate for Sphagnum restora-
tion remains uncertain. In addition, Sphagnum mires in
subtropical high-mountain regions are intermittently dis-
tributed in small patches, and peat use is thus limited by
the complicated topographic conditions and the distribu-
tion of mires. In contrast, mountain yellow-brown soil
(Bmountain soil^ hereafter, which is classified in the
Alfisol order, Moist Warm Alfisol suborder, in accordance
with the classification system of Chinese soil; Zhu et al.
2010) is widely distributed, and high levels of precipitation
commonly create rivulets in these subtropical high-
mountain regions. This effect of water flow results in
mixed substrates with a wide range of proportions of
mountain soil and river sand. Considering these situations
in subtropical high-mountain regions in China, we used
local mountain soil as an alternative base substrate for
S. palustre. Moreover, different proportions of peat (to im-
prove the texture and nutritional environment of the sub-
strate) or river sand (to simulate the mixture of mountain
soil and river sand caused by rivulets) were mixed into the
mountain soil to explore the suitability of different sub-
strates for S. palustre as well as understand the possible
mechanisms underlying the substrate effects.

In addition to the substrate effects, the effects of water
and nutrient transport and supply inside Sphagnum

mosses are also of key importance (Aldous 2002; Kim
et al. 2014). Sphagnum mosses grows apically from the
capitula (Clymo 1970) and has a well-developed system
for water conduction in the capillary spaces among pen-
dent branches around the stem, which provides an effec-
tive vertical transport path for water and soluble ions from
the basal part to the capitulum (Rydin and Clymo 1989;
van Breemen 1995; Thompson and Waddington 2008;
Chiwa et al. 2016). Consequently, nutrient transport de-
pends largely on water availability. In addition to the
groundwater level, the distance water is transported from
the basal part to the capitulum is determined by stem
length and may affect water and nutrient supply efficien-
cy, further affecting S. palustre growth (Aldous 2002;
Kim et al. 2014). This implies that different collection
depths and different planting methods for S. palustre
(i.e., whether S. palustre is collected and transplanted
with the stem and the length of the stem) could result in
differences in final productivity. Additionally, the com-
monly used transplant materials in previous Sphagnum
restoration practices have been the upper parts of plants
of a certain length (usually within 10 cm) (Clymo and
Duckett 1986; Campeau and Rochefort 1996; Bugnon
et al. 1997; Rochefort et al. 2003; Waddington et al.
2003; Pouliot et al. 2015). Therefore, most of the atten-
tion was focused on the performance of the transplanted
upper part of Sphagnum diaspores, while the growth sta-
tus of the damaged Sphagnum plants in the source popu-
lations was overlooked. As the vitality of Sphagnum plant
parts decreases sharply with increasing distance from the
capitula (Rochefort et al. 2003), the regenerative potential
of damaged plants after collection deserves more
attention.

We studied the substrate composition and length of
shoot fragment as factors influencing the growth of
S. palustre in subtropical high-mountain regions and the
poss ib le mechanisms under ly ing these effec t s .
Specifically, we tested the following hypotheses: (1)
Background nutrient contents in different substrate com-
positions will affect the N and P contents in the capitula,
further affecting S. palustre growth; therefore, the growth
of S. palustre in substrates mixed with peat will be differ-
ent from that in substrates mixed with river sand. (2)
Water and nutrient supply, which will depend on the
length of the shoot fragment, will affect the water and
NP contents in the capitula, further affecting S. palustre
growth; therefore, S. palustre growth will be different
when transplanted with different lengths of shoot frag-
ments. (3) The regenerative ability of S. palustre is func-
tional below 10 cm of the capitula, therefore, collecting
approximately 10 cm of the upper part of S. palustre
plants will not have destructive effects on the regenerative
potential of the damaged plants.

880 Wetlands (2019) 39:879–893



Materials and Methods

Study Site and Species

The Qizimei Mountain National Nature Reserve (29° 39′ 30″
~30° 05′ 15″ N, 109° 38′ 30″~109° 47′ 00″ E) is located in
southwestern Hubei, China, and encompasses an area of
34,550 ha (Liu et al. 2006). The region lies in the subtropical
zone and is characterized by a subtropical humid monsoon
climate with definitive vertical differentiation (i.e., the temper-
ature lapse rate is −0.6 °C 100 m−1). The study site was set in
the reserve of a high-mountain area: altitude of 1800 m, an-
nual average temperature of 8.9 °C, annual precipitation of
1876 mm, and annual sunshine duration of 1520 h.

A total of approximately 940 ha of Sphagnumwetlands are
distributed from an altitude of 1650 to 1950 m in patches of
various sizes. The soil profiles in these Sphagnum wetlands
have thicknesses ranging from 48 to 100 cm and are divided
into three layers: a sod layer (pH 6.7 ± 1.2), deposited peat
layer (pH 5.7 ± 1.2) and gleying layer (pH 5.3 ± 1.1) (Mao
et al. 2009). The results of the most recent survey indicate that
a total of 197 species of embryophytes, including 3 bryo-
phytes, 8 ferns, 4 gymnosperms and 182 angiosperms, exist
in the area (Wang et al. 2013; Zhao et al. 2013). Sphagnum
palustre L. is the only Sphagnum species at the study location
and is the dominant species in wetland areas with developed
hummocks. The other common species have been described
in detail in Li et al. (2018).

Experimental Design

A 20-m × 15-m experimental greenhouse was constructed on
a wasteland in the core zone of the reserve. The wasteland had
been over-grown with weeds dominated by Erigeron annuus
(L.) Pers. and Inula japonica Thunb. before our greenhouse
was constructed. To keep the greenhouse ventilated, transpar-
ent plastic film and shade nets were placed overhead, while
only shade nets were placed around the sides. All experiments
were conducted in the greenhouse (data of temperature and
humidity are given in Online Resource 1). A two-factor design
consisting of nine substrates and four planting methods (see
below) was applied to transplanted S. palustre plants. Each
combination of treatments was replicated five times, and there
were 180 samples in total.

In February 2016, large quantities of substrate material
[mountain soil, peat, and river sand] were excavated from
natural Sphagnum wetlands, a nearby wasteland and a rivulet,
after which the materials were air-dried for 72 h in the sun and
then sifted through a 3-mm mesh screen. Afterward, peat or
river sand was mixed evenly into the mountain soil in propor-
tions (on the basis of mass) of 20%, 40%, 60% and 80%
(20%M + 80%P, 40%M + 60%P, 60%M + 40%P, 80%M +
20%P, 20%M+ 80%R, 40%M+ 60%R, 60%M+ 40%R and

80%M+ 20%R; M, mountain soil; P, peat; and R, river sand),
and equal amounts of the mixtures were placed in plastic pots.
A substrate that included only mountain soil, without peat or
river sand (M, 0%), was used as a control group. Each sub-
strate was used in 20 pots as replicates. In March 2016,
S. palustre plants were collected from a local natural
Sphagnumwetland and assigned to four treatments randomly:
P1, intact plant (capitulum with long stem, 20 cm in total); P2,
the upper 8 cm of the intact plant (capitulum with short stem);
P3, 1 cm of the apical part of the intact plant (capitulum); and
P4, the remaining part of the intact plant after the upper 8 cm
was removed (long stem). Shoot bundles within the same
treatment composed of 5 shoots (or capitula) of similar sizes
without side shoots or multiple capitula were weighed to en-
sure that they were as close as possible to being equal in mass
and then were transplanted into plastic pots. The lower part of
every shoot bundle in P1, P2 and P4 was inserted into the
substrate, leaving an initial aboveground length of 5 cm, while
the capitula in P3 were pressed gently to place them in full
contact with the substrate surface. Local spring water (pH was
approximately 6.0, conductivity was approximately 500 μS
cm−1) was sprayed evenly above the S. palustre plants 3–5
times per week to ensure sufficient soil and air humidity.

Measurements of Growth Indicators and Elements

Each substrate used in the experiment was subsampled and
subjected to physical and chemical analyses in accordance
with the methods of Lao (1988). For the physical analyses,
we used oven drying (105 °C) to determine the water content
(WC), a cutting ring was used to determine the volume-weight
(VW), a pycnometer was used to determine the specific grav-
ity (SG), and the formula Porosity (%) = (1- VW

SG ) × 100 was
used to calculate the porosity. The solid phase ratio (SR),
liquid phase ratio (LR) and gas phase ratio (GR) were calcu-
lated by the formulae SR(%) = (1-Porosity) × 100,
LR(%)=WW−DW

ρV ×100 (WW, sample wet weight; DW, sample

dry weight; ρ, the density of water; V, cutting ring volume),
andGR(%) = (Porosity-LR) × 100, respectively. For the chem-
ical analyses, a potentiometer was used to determine the pH of
each substrate; H2SO4–HClO4 was used to digest substrates,
and the indophenol blue method and molybdenum-antimony
anti-spectrophotometric method were used to analyze the total
N (TN) and total P (TP) contents, respectively. Additionally,
alkaline hydrolysis diffusion was used to determine soil hy-
drolysable N (HN) contents, the Olsen method was used to
determine available P (AP) content, and the oil-melt method
was used to determine the OM content (data are given in
Online Resource 2).

From March until November 2016, the number of capit-
ula and average shoot length of S. palustre plants in each
pot were measured monthly on fixed dates. In addition, a
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digital photograph with a reference frame included in it
was taken at the same time, and coverage was analyzed
using ArcMap (version 10.2, ESRI, USA) (data are given
in Online Resources 3, 4).

In November 2016, all tissues of the S. palustre plants were
harvested, and the fresh weight (biomass) per pot was mea-
sured immediately. After which, all tissues were first dried at
ambient temperature and then at 70 °C for 48 h. Afterward, all
dried Sphagnum capitula were removed and ground to a fine
powder to measure the TN and TP contents (on a dry-mass
basis). The methodology was identical to that used for the
substrate (data are given in Online Resource 5).

Statistical Analysis

We divided the eight mixed substrates into two groups: one
group consisted of the four mixtures with peat, and the other
group consisted of the four mixtures with river sand (mixture
proportions of 20%, 40%, 60% and 80%). One-way ANOVA
was used to test the differences in the physical and chemical
properties between the two groups (mixture types) and the
differences among the five substrate mixture proportions (in-
cluding 0% mountain soil) within each group. Two-way
ANOVAwas used to analyze the effects of the substrate mix-
ture type and planting method, as well as their interactive
effects, on S. palustre growth (the response variables included
length growth, number of capitulum increments, coverage
change and biomass accumulation). Moreover, a MANOVA
approach was used to evaluate the effects of substrate mixture
type and planting method, as well as their interactive effects,
on overall S. palustre growth (four indicators combined).
Within each type of substrate mixture, one-way ANOVA
was used to analyze the effects of the substrate mixture pro-
portions on S. palustre growth under different planting
methods. Analyses were also performed to determine the
mechanisms underlying the effects of the substrate composi-
tion and planting method on S. palustre growth. We used
multiple linear regression to test the relationship between
S. palustre biomass accumulation and all thirteen measured
physical and chemical properties of the substrate. One-way
ANOVAs were used to test the differences in initial
S. palustre biomass under different substrate mixture types,
different substrate mixture proportions and different planting
methods. Two-way ANOVA was performed to analyze the
effects of substrate mixture type and planting method, as well
as their interactive effects, on N and P contents and the N:P
ratio in capitula. Within each type of substrate mixture, one-
way ANOVAwas used to analyze the effects of the substrate
mixture proportion on N and P contents and the N:P ratio in
capitula. Finally, multiple linear regression was used to ana-
lyze the relationships between S. palustre biomass accumula-
tion and initial biomass, capitula N and P contents and the N:P
ratio. Pearson’s correlation coefficients (r values) were

calculated to test the relationships between the N and P con-
tents in substrates and those in capitula.

The analyses described above included only data from P1,
P2 and P3. For P4, we focused on the regenerative potential of
damaged S. palustre plants. Considering the particular factors
in P4 (the capitula were initially removed, and minimal lon-
gitudinal growth occurred), we used number of capitulum
increments as the growth indicator representing regenerative
potential. The growth of P4 plants was compared with that of
the plants subjected to the other three planting methods by
one-way ANOVAs.

Prior to analysis, the data were checked for normality and
homogeneity of variance. Any variables generating unequal
variance were log or square root transformed. All statistical
analyses were performed using IBM SPSS Statistics (version
19.0).

Results

Effects of Substrate Mixture Type on S. palustre
Growth

Among the physical indicators of the substrates, the WC, po-
rosity, LR and GR were higher in substrates mixed with peat
than in substrates mixed with river sand, while the VW, SG
and SR were lower in substrates mixed with peat than in
substrates mixed with river sand. Among the chemical indica-
tors of the substrate, TN, HN, AP and OM contents were
higher in substrates mixed with peat than in substrates mixed
with river sand, while the pH and TP content were not signif-
icantly different between the two types of substrate mixtures
(Table 1).

There were no interactive effects between substrate mixture
type and planting method on S. palustre growth (Table 2). For
each of the four S. palustre growth indicators, no significant
differences were found between the effects of substrates
mixed with peat and the substrates mixed with river sand
[length growth: 4.1 ± 1.6 cm (peat), 4.3 ± 1.8 cm (river sand);
number of capitulum increments: 4.4 ± 4.3 (peat), 5.3 ± 5.4
(river sand); coverage change: 28.91 ± 16.02 cm2 (peat),
27.61 ± 16.24 cm2 (river sand); biomass accumulation: 5.56
± 3.62 g (peat), 5.33 ± 3.29 g (river sand)]. Therefore, the type
of substrate mixture did not significantly affect S. palustre
growth.

Effects of Substrate Mixture Proportion on S. palustre
Growth

Among the physical indicators, with increasing proportion
of peat, the WC, porosity and GR increased, the VW, SG,
SR decreased, and the LR did not show significant differ-
ences. All chemical indicators (pH, TN, TP, HN, AP and
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OM) increased with the increasing proportion of peat.
Among the physical indicators, with increasing proportion
of river sand, the VW, SG, SR and GR increased, and the
WC, porosity and LR decreased. Among the chemical in-
dicators, with increasing proportion of river sand, the pH
and TP content increased, and the TN, HN, AP and OM
contents decreased (Table 3).

S. palustre biomass accumulation tended to decrease as the
proportion of peat increased, irrespective of the planting meth-
od (P1: F(4, 20) = 31.02, P < 0.001; P2: F(4, 20) = 11.08,
P < 0.001; P3: F(4, 20) = 7.00, P = 0.001) (Fig. 1a). The same
trend was also observed in plants growing in substrates mixed
with river sand (P1: F(4, 20) = 4.18, P = 0.01; P2: F(4, 20) =
3.00, P = 0.04; P3: F(4, 19) = 7.41, P = 0.001) (Fig. 1b).

Effects of the Planting Method on S. palustre Growth

Each of the four growth indicators showed significant differ-
ences among the three planting methods (Table 2, Fig. 2).
Length growth was highest in P1, intermediate in P2, and
lowest in P3, while the other three growth indicators (number
of capitulum increments, coverage change and biomass accu-
mulation) responded similarly to the plantingmethod, with the
highest values in P1 and no remarkable differences in values
between P2 and P3.Ta
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Table 2 Effects of substrate (S), planting method (P) and their interac-
tion (S*P) on the growth of Sphagnum palustre by two-way ANOVA
(upper table) and two-way MANOVA (lower table)

Source df F P

(a) Length growth

S 1113 0.06 0.81

P 2113 44.96 <0.001

S*P 2113 0.96 0.39

(b) Number of capitulum increments

S 1113 0.06 0.80

P 2113 22.80 <0.001

S*P 2113 1.11 0.34

(c) Coverage change

S 1113 0.55 0.46

P 2113 61.11 <0.001

S*P 2113 2.09 0.13

(d) Biomass accumulation

S 1113 1.14 0.29

P 2113 105.96 <0.001

S*P 2113 0.52 0.60

Source df Wilks’ Lambda F P

S 4110 0.98 0.53 0.72

P 8220 0.19 35.07 <0.001

S*P 8220 0.95 0.70 0.69
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S. palustre Growth in Planting Method 4

Ninety-eight percent of the transplanted S. palustre plants in
P4 were able to grow new capitula from their stems though the
upper 8 cm, and all initial capitula were removed; moreover,
new capitula were able to grow from any part of the plant
stem. The number of capitulum increments in P4 (5.2 ± 3.6)
was significantly lower than that in P1 (10.9 ± 5.0) (F(1,88) =
38.51, P < 0.001) but significantly higher than that in P2 (2.6
± 3.1, F(1,88) = 19.15, P < 0.001) and P3 (3.1 ± 2.7, F(1,88) =
12.47, P < 0.001).

Similar to S. palustre growth under the other three planting
methods, the number of capitulum increments in P4 was not
affected by the type of substrate mixture (peat: 4.4 ± 2.4, river
sand: 4.8 ± 3.8, F(1,37)=0.11, P = 0.74), but tended to decrease

as the proportions of peat or river sand increased (peat: F(4,

20) = 9.69, P < 0.001; river sand: F(4, 20) = 5.09, P = 0.005)
(Fig. 3).

Effects of Physical and Chemical Properties on S.
palustre Growth

According to the multiple linear regression analysis, among
the thirteen indicators of the physical and chemical properties
of the substrate, only TP and pH showed significant correla-
tions with biomass accumulation (biomass accumulation =
−7.53 TP-1.81 pH + 24.53; F(2,78) = 4.70, P = 0.01), and both
indicators were negatively correlated with biomass
accumulation.

Fig. 1 Effects of the proportion
(0%, 20%, 40%, 60%, 80%) of (a)
peat (P) or (b) river sand (R) in the
mixture on the biomass
accumulations (means ± SDs,
during eight months) of
Sphagnum palustre under three
planting methods (P1, P2 and P3).
[n = 25 for each planting method
in the two substrate mixtures,
except for P3 in mixtures with
river sand (n = 24). Different
letters above the bars indicate
significant differences (P < 0.05)
by one-way ANOVA; Tukey tests
were used for multiple
comparisons. Each part (a, b) of
the figure was created by
Microsoft Excel 2013, and the
whole figure was created by
Photoshop]
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Fig. 2 Effects of planting method (P1, P2 and P3) on a length growth, b
number of capitulum increments, c coverage change and d biomass
accumulation (means ± SDs, during 8 months) (n = 119 for each growth
indicator) in Sphagnum palustre. [Different letters above the bars indicate

significant differences (P < 0.05) by two-way ANOVA; Tukey tests were
used for multiple comparisons. Each part (a, b, c and d) of the figure was
created by Microsoft Excel 2013, and the whole figure was created by
Photoshop]

Fig. 3 Effects of the proportion
(0%, 20%, 40%, 60%, 80%) of
peat or river sand in the mixture
on the number of capitulum
increments (means ± SDs, during
8 months) of Sphagnum palustre
under planting method 4. [n = 25
for each substrate mixture.
Different letters above the bars
indicate significant differences
(P < 0.05) by one-way ANOVA;
Tukey tests were used for
multiple comparisons. The figure
was created by Microsoft Excel
2013]
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Effects of Initial Biomass and Capitula N and P
Contents on S. palustre Growth

No significant differences in the initial biomass of S. palustre
were found between the two types of substrate mixture
(F(1,117) = 0.06, P = 0.80) or among the different substrate
mixture proportions (peat: F(4,70) = 0.11, P = 0.98; river sand:
F(4,69) = 0.08, P = 0.99). However, pronounced differences in
the initial biomass of S. palustre existed among the three
planting methods (F(2,116) = 899.44, P < 0.001), with the
highest values in P1 (7.24 ± 1.00 g), intermediate values in
P2 (3.28 ± 0.34 g) and lowest values in P3 (1.53 ± 0.03 g).

There were no interactive effects between the substrate
mixture type and the planting method on N and P contents
and N:P ratios in the capitula of S. palustre (ANOVA results
are given in Online Resource 6); however, each affected the N
and P contents and N:P ratios in the capitula of S. palustre
(Fig. 4). The N contents and N:P ratios were significantly
higher in substrates mixed with peat than in substrates mixed
with river sand (Fig. 4a and c), but the P contents were not
obviously different (Fig. 4b). The N content remained un-
changed under all three planting methods (Fig. 4d). P content
was highest in P2, while no obvious difference existed be-
tween P contents in P1 and P3 (Fig. 4e). N:P ratios were the

lowest in P2, while no obvious difference existed between
ratios in P1 and P3 (Fig. 4f).

The substrate mixture proportion also affected the N and P
contents andN:P ratios in the capitula of S. palustre (Fig. 5). For
plants grown in substratesmixedwith peat, as the proportions of
peat increased, the N contents increased, N:P ratios remained
unchanged, and P contents showed a slight but not significant
increase. For plants grown in substrates mixed with river sand,
as the proportions of sand increased, the N contents remained
unchanged, P contents increased, and N:P ratios decreased.

According to themultiple linear regression analysis, among
the four factors, only the initial biomass and P content in
capitula showed significant correlations with biomass accu-
mulation (biomass accumulation = 1.16 initial biomass-7.14
P + 6.19; F(2,78) = 135.84, P < 0.001). Initial biomass was pos-
itively correlated with biomass accumulation, while the P con-
tent in capitula was negatively correlated with biomass
accumulation.

Correlations Between the N and P Contents
in Capitula and those in the Substrate

Both the N and P contents in the capitula of S. palustre
were positively correlated with those in the substrate in

Fig. 4 Effects of the a, b, c substrate mixture type (peat and river sand)
(n = 72 for each indicator) and d, e, f planting method (P1, P2, P3) (n = 72
for each indicator) on N and P contents and the N:P ratios (means ± SDs)
in capitula of Sphagnum palustre. [Different letters above the bars

indicate significant differences P < 0.05 by two-way ANOVA; Tukey
tests were used for multiple comparisons. Each part (a, b, c, d, e and f)
of the figure was created by Microsoft Excel 2013, and the whole figure
was created by Photoshop]
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which S. palustre was cultivated [the r values for the cor-
relations between N contents in the substrate and that in the
capitula of S. palustre in P1, P2 and P3 were 0.54 (P =
0.003), 0.58 (P = 0.002) and 0.52 (P = 0.005), respectively;

the r values for the correlations between the P contents in
the substrate and that in the capitula of S. palustre in P2
and P3 were 0.62 (P = 0.001) and 0.68 (P < 0.001), respec-
tively]. However, there was no significant correlation

Fig. 5 Effects of the proportion
(0%, 20%, 40%, 60%, 80%) of
peat (n = 45 for each indicator) or
river sand (n = 45 for each
indicator) in the mixture on a N
and b P contents and c the N:P
ratios (means ± SDs) in capitula
of Sphagnum palustre. [Different
letters above the bars indicate
significant differences P < 0.05
by one-way ANOVA; Tukey tests
were used for multiple
comparisons. Each part (a, b and
c) of the figure was created by
Microsoft Excel 2013, and the
whole figure was created by
Photoshop]
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between the P content in capitula and that in the substrate
for P1 (r = 0.09, P = 0.66).

Discussion

Composition and Proportion of the Mixed Substrate

The effects of substrate mixture type on S. palustre growth
differed from what we predicted. We initially expected signif-
icant differences in S. palustre growth between plants grown
in substrate mixed with peat and those grown in substrate
mixed with river sand as a result of differences in the physical
and chemical properties of the substrates. However, the results
show that S. palustre growth in the two substrate mixture
groups was not obviously different even though the physical
and chemical properties showed obvious and expected differ-
ences (Table 1). On the other hand, within each substrate mix-
ture group, as the proportion of peat or river sand increased
and the physical and chemical properties changed (Table 3),
S. palustre growth decreased (Figs. 1 and 3).

This seems to be a contradictory result. We speculated that,
although the growth of S. palustre can be affected by various
biotic and abiotic factors (Gunnarsson 2005; Pouliot et al.
2015), in this particular situation, growth would be primarily
limited by only one or few factors. In our results, the negative
correlation between S. palustre productivity (biomass accu-
mulation) and P contents in capitula suggested that the growth
of S. palustre depends on this P content. Furthermore, the
negative correlation between S. palustre productivity and P
content in the substrate and the highly positive correlation
between the N and P contents in the substrate and those in
the capitula of S. palustre confirmed our speculation: the nu-
trient contents in the substrate affected the amount of nutrients
taken up and assimilated in capitula and further affected
S. palustre growth. This may be the main mechanism under-
lying the effects of substrate on S. palustre growth. Therefore,
we speculated that the lack of an obvious difference in the
background P contents between the two substrate mixture
groups (Table 1) led to no obvious difference in the P contents
of capitula (Fig. 4b). This resulted in no detectable differences
in S. palustre growth when transplanted into two different
substrates mixtures (Table 2). Similarly, the continuous in-
crease in the substrate P content with increasing proportion
of peat or river sand (Table 3) caused a corresponding increase
(or a slight increase) in the P content in capitula (peat: from
0.63 ± 0.13 mg g−1 to 0.79 ± 0.11 mg g−1; river sand: from
0.63 ± 0.13 mg g−1 to 0.84 ± 0.12 mg g−1) (Fig. 5b), which
further resulted in a continuous decrease in S. palustre growth
(Figs. 1 and 3). On the other hand, the multiple regression
analysis suggested that in addition to the P content, the in-
creased pH of the substrate also negatively affected
S. palustre growth. Therefore, another possibility was that

no significant difference in the pH between the two substrate
mixture groups (Table 1) resulted in no differences in
S. palustre growth. In contrast, the continuous increase in
pH in substrates with increasing proportions of peat or river
sand (Table 3) resulted in a continuous decrease in S. palustre
growth (Figs. 1 and 3).

The effects of P on S. palustre growth are usually influ-
enced by other nutrients, especially N (Gusewell and
Koerselman 2002; Bubier et al. 2007; Wendel et al. 2011).
Koerselman and Meuleman (1996) posited that the N:P ratio
reflects relative nutrient availability and can be used as an
indicator to evaluate the limiting nutrient. For species in the
genus Sphagnum, some studies (Bragazza et al. 2004; Hajek
and Adamec 2009; Chiwa et al. 2016) proposed that growth
would be limited byN availability at N:P ratios less than 30, in
which case P would have a negative effect on Sphagnum
growth. In our experiment, the N:P ratio (9.22 ± 2.51) in
S. palustre capitula was much lower than 30. In addition,
Bragazza et al. (2005) suggested that N would play a limiting
role when its concentration in Sphagnum capitula was approx-
imately 6 mg g−1; this value is similar to ours (6.46 ±
1.19 mg g−1). Also, other studies reported higher concentra-
tions of N with lower (or similar) concentrations of P in
Sphagnum capitula from unpolluted areas (Brock and
Bregman 1989; Heijmans et al. 2002; Limpens et al. 2003;
Fritz et al. 2012). Therefore, one possibility for the negative
effects of P on Sphagnum are related to imbalances in nutrient
stoichiometry triggered by the low N concentration. However,
this speculation requires additional experimental verification.

Species of the genus Sphagnum are generally acidophilic
calcifuges and are highly sensitive to acidity and alkalinity
(Quinty and Rochefort 2003; Vicherova et al. 2017).
Previous studies showed that the optimal pH range for
S. palustre is 4.5–6.0 (Andrus 1986; Chen et al. 2009; Ye
et al. 2012; Tahvanainen and Haraguchi 2013; Harpenslager
et al. 2015; Riegel andWilde 2016) and that above pH 6.0, the
growth of S. palustre decreases as pH increases (Wang 2010),
which was in accordance with our results. There are two pos-
sible reasons for the negative effects of increased pH on
S. palustre productivity in our study. On the one hand, pH
was strongly and positively related to the P content in the
substrate (Pearson coefficient r = 0.79, P < 0.001), and in-
creased P content with increased substrate pH likely caused
the decrease in S. palustre productivity. On the other hand,
the increased substrate pH is usually associated with in-
creased concentrations of Ca2+, Mg2+ and HCO3

− (Clymo
1973; Gorham and Janssens 1992; Lamers et al. 1999),
which may cause toxicity symptoms in S. palustre by
interfering with cellular uptake of monovalent cations
(such as K+ and NH4

+) (Hajek and Adamec 2009), or by
interfering with cellular metabolism (Vicherova et al.
2015, 2017), negatively affecting S. palustre growth
(Hajek et al. 2006; Bengtsson et al. 2018).
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Our results demonstrate that the yellow-brown soil, which
is distributed widely in subtropical regions, is an optimal sub-
strate for S. palustre growth, probably due to its favorable pH
and P content. This finding has important implications as it
indicates that S. palustre restoration does not dependent on the
use of peat, allowing for S. palustre restoration on large, less
restrictive scales.

Planting Method

As expected, different planting methods resulted in differ-
ences in S. palustre growth, with the best performance in P1
and no pronounced differences in growth between P2 and P3
(Fig. 2). The multiple regression analysis suggested that
S. palustre productivity was positively correlated with initial
biomass and negatively correlated with P content in capitula.
Therefore, compared to values for the other two planting
methods, the higher initial biomass and the lower P contents
in capitula (Fig. 4e) in P1 contributed to the greatest amount of
growth. For the remaining two planting methods, both the
initial biomass and capitula P contents were higher in P2 than
in P3 (Fig. 4e). Therefore, it is likely that the positive effects
related to initial biomass together with the negative effects
related to P content cancelled each other out, resulting in non-
significant growth differences between P2 and P3.

The negative correlation between S. palustre productivity
and the P contents in capitula has been discussed previously.
The positive effects of initial biomass (or initial fragment size)
on Sphagnum growth have been reported by earlier studies.
Gunnarsson and Soderstron (2007) compared Sphagnum
angermanicum growth under four planting methods and
found that a larger diaspore size resulted in better growth;
moreover, S. angermanicum showed the greatest growth
when transplanting whole shoots. Robroek et al. (2007,
2009) reported similar results. These authors explained that
the ability of Sphagnum species to supply its capitula with
water increased with increasing fragment size, suggesting that
Sphagnum diaspores of a larger size are better at creating and
maintaining microhydrological conditions that are favorable
for growth. In contrast, Sphagnum diaspores of a smaller size
are more sensitive to the environment and to seasonal
variations in temperature and moisture conditions, leading to
less growth. In addition, Robroek et al. (2009) found that at
the early stage of Sphagnum plant transplantation, the differ-
ences between the microenvironment in the new locality and
that in the original habitat led to decreased competitive ability
and further reduced coverage. In our experiment, compared to
the growth environment in P2 and P3, that of the upper viable
parts of Sphagnum plants in P1 was closer to the original
environment in natural Sphagnum wetlands, as they grow on
the same basal material, i.e., senescent but undecomposed
parts of Sphagnum plants (also called ‘white peat’). This

may also contribute to the better performance of S. palustre
in P1.

In terms of planting method 4, 98 % of the damaged
S. palustre plants were able to grow new capitula from any
part of the plant stem, suggesting that damaged plants can still
regenerate and were no longer affected by apical dominance
after their capitula were removed (Rydin and Clymo 1989;
Daniels and Eddy 1990). The number of capitulum increments
in P4 was lower than that in P1, but higher than that in P2 and
P3, suggesting that the regenerative potential of the damaged
S. palustre plants was decreased when the upper parts were
removed, but was stronger than that of S. palustre plants with
only several centimeters of the upper part of the plant.
Therefore, our study demonstrated that the common peatland
restoration method using the upper parts of S. palustre as
transplanted materials is practical and has no destructive ef-
fects on the source S. palustre populations in the areas where
they are collected. However, because Sphagnum vitality de-
creases continuously with increasing distance from the capit-
ula, and the depth at which fragments of Sphagnum plants can
regenerate new capitula varies greatly between species
(Rochefort et al. 2003), the collection depth needs to be deter-
mined carefully. From this perspective, we can expect that
planting intact plants would cause greatest effects on the
source Sphagnum populations, while planting only the capit-
ula would cause minimal effects. Therefore, compared with
the traditional transplanting method (P2), the method involv-
ing transplanting only capitula has the similar productivity but
does less damage to the source S. palustre populations, mak-
ing it more suitable for S. palustre restoration.

Conclusion and Implications

The results of this study show that the substrate composition
and length of shoot fragment significantly affect the growth of
S. palustre, which is the dominant peat-forming species in the
subtropical high-mountain peatland regions of China. The
substrate can affect S. palustre growth via its background nu-
trient contents. Although close correlations between the nutri-
ent contents in soils and those in vascular plants have been
reported by other studies, our results still have important im-
plications for the transplantation and restoration of Sphagnum
mosses considering their absence of roots and vascular tissues.
In addition to the nutrient contents in the substrate, the pH of
the substrate also plays an important role in S. palustre
growth. Compared with peat, which is used as the only sub-
strate in traditional peatlands restoration technique, the local
yellow-brown soil, which is widely distributed in subtropical
mountain regions, seemed to be a better substrate for
S. palustre growth. The results show that S. palustre restora-
tion practices can be independent of the distribution and range
of peatlands, which may provide a new approach for restoring
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peatland ecosystems in these regions. Furthermore, our study
demonstrated that the common restoration technique of
collecting the upper parts of S. palustre plants for transplanta-
tion does not destroy the source populations in natural
Sphagnum wetlands. However, considering the similar pro-
ductivity and less impact to the source S. palustre populations,
a planting method using only capitula may be a better choice
for S. palustre restoration.
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