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Abstract This study examined the potential for electrical
conductivity (EC) to serve as an indicator of groundwater-
driven wetland-stream connectivity in the Prairie Pothole
Region. Focus was on the Broughton’s Creek Watershed
(Manitoba, Canada) where thirteen wetlands and a creek were
monitored in 2013–2014. A connectivity index (CI), comput-
ed by incorporating EC data in a hyperbolic solute export
model, identified a potential for both shallow and deep
groundwater-driven wetland-stream connectivity to occur, al-
though shallower connections were rarer. Both raw EC and CI
values were strongly correlated to wetland volume capacity,
indicating the importance of storage and flow generation
processes for wetland-stream connectivity potential. The
proposed CI was instrumental in reaching that conclusion,
making it a simple yet physically-based metric of wetland

behavior that should be tested in multiple environments to
confirm or infirm its validity.
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Introduction

Glaciated Prairie landscapes across the north-central United
States and the central plains of Canada are densely populated
with depressional wetlands (Winter 1989; Tiner 2003) ranging
in size from 1 m2 to 100 km2 (Hayashi et al. 2003; Van der
Kamp and Hayashi 2009). Reducing the frequency and mag-
nitude of flood waves (e.g., Brunet and Westbrook 2012) and
retaining nutrients are some of the ecosystem services provid-
ed by those sloughs or Prairie potholes (LaBaugh et al. 1998)
that drive efforts for their conservation and restoration (e.g.,
Yang et al. 2008, 2010). Wetland drainage has significantly
reduced the density of pothole wetlands (PWs) in the
Canadian portion of the Prairie Pothole Region (PPR)
(National Wetlands Working Group 1988), and concern about
the impacts of drainage on regional hydrology has led the
Canadian provinces of Alberta and Manitoba to develop
policies aimed at restoring and retaining wetland func-
tion. Successful policy implementation however requires
an understanding of how wetland characteristics influ-
ence their connectivity (or lack thereof) to downstream
waters, which remains a significant knowledge gap
(Cohen et al. 2016).

PWs are critically important for watershed hydrologic, sed-
imentological, chemical and biological connectivity.
Hydrologic connectivity, in particular, is often defined as the
degree to which water can move, unimpeded, from source
areas to a watershed outlet (e.g., Pringle 2003). PWs
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frequently act as disconnective features due to their
Bgeographically isolated^ character – i.e., the fact that they
lack visible surface inlets or outlets, are completely
surrounded by uplands (Tiner 2003), and are part of drainage
systems with only intermittent connection (LaBaugh et al.
1998). The prevailing paradigm is that under normal condi-
tions, i.e., in response to the 1-in-2 flood, most PWs do not
contribute surface water to streams (Stichling and Blackwell
1957). Maps of non-contributing areas have been created for
the PPR to identify landscape areas that act as closed basins
and are isolated from main hydrographic networks (Godwin
and Martin 1975; PFRA-Hydrology-Division 1983; Martin
2001). However, under wet conditions, the water storage ca-
pacity of PWs can be exceeded, creating temporary surface
connections towards downgradient streams when spilling oc-
curs (Leibowitz and Vining 2003; Winter and LaBaugh 2003;
Spence and Woo 2006; Shaw et al. 2012). Such temporary
surface connections are rare outside of the spring freshet pe-
riod, notably because of the high infiltration capacity of soils
outside of PWs, and high evapotranspiration rates that prevent
overland flow from travelling over long distances (Hayashi
et al. 2016). Narrow ditches, which were used historically to
drain PWs, have also modified the configuration of some for-
merly closed basins which can now contribute surface runoff
downstream under normal conditions (Leibowitz and Vining
2003). Several authors (e.g., Rains et al. 2016) have called for
better quantification of the frequency, magnitude, timing, du-
ration, and rate of water fluxes from PWs to downgradient
waters, and several recent studies have focused on high-mag-
nitude, low-frequency surface-water driven connectivity be-
tween wetlands and streams (e.g., Bfill and spill^ events;
Phillips et al. 2011; Shaw et al. 2012; Pomeroy et al. 2014).
However, less attention has been directed to lower magnitude
but potentially higher frequency groundwater-driven connec-
tivity, likely due to the difficulties associated with quantifying
groundwater movement. Like most depressional wetlands,
PWs can have groundwater recharge, discharge or flow-
through functions, with the prevalence of one function over
the others depending on landscape position and geologic set-
ting (LaBaugh et al. 1998; Van der Kamp and Hayashi 1998;
Hayashi et al. 2016). Groundwater is therefore a critical path-
way via which soluble materials are transported between PWs
and other waterbodies along local, intermediate and regional
groundwater flowpaths (Toth 1999). In the case of intermedi-
ate and regional groundwater flowpaths, the establishment of
connectivity between a given PW and a stream is determined
by the comparison between flowpath distance and hydraulic
conductivity, and hence it is timescale-dependent (Winter and
LaBaugh 2003). Although it is difficult to say how often
groundwater connections are activated, the fact that they are
space and time-dependent makes it clear that PW dynamics
should be characterized within a connectivity gradient
(Leibowitz and Vining 2003). To that end, groundwater fluxes

in and out of depressional wetlands have been estimated as a
residual term in the water budget (e.g., Labaugh 1986;
McLaughlin and Cohen 2013); although that method is
sometimes inaccurate given the errors associated with
the measurement of precipitation, streamflow, and
evapotranspiration (LaBaugh et al. 1998). This raises
the question of whether basic water chemistry data, in-
cluding pH, conductivity or oxidation-reduction poten-
tial, could be used to infer water fluxes between PWs
and streams.

Among the variables listed above, electrical conduc-
tivity (EC)1 can potentially provide strong insights into
groundwater-driven wetland-stream connectivity due to
known salinity patterns across glaciated Prairie regions and
their documented shift in response to climate cycles (Mushet
et al. 2015; LaBaugh et al. 2016). Using water chemistry to
infer the degree of groundwater influence on wetland dynam-
ics was suggested decades ago (e.g., Boelter and Verry 1977;
Ingram 1983; Siegel 1988), based on the assumption that the
concentration of dissolved solids in groundwater is much
higher than that in precipitation. Salinity concentrations for
groundwater flowing through clayey-silty tills usually in-
crease from recharge areas to discharge areas, a consistent
pattern due to the weathering of carbonate and sulfide min-
erals in the till and the dissolution of these minerals in Prairie
soils (Rózkowski 1969; Cherry et al. 1971; Grisak et al. 1976;
Hendry et al. 1986; Arndt and Richardson 1989; Keller et al.
1991; Arndt and Richardson 1992, 1993). PWs located in
groundwater recharge areas are therefore less saline than
those located in groundwater discharge areas (Sloan 1972;
LaBaugh et al. 1987). Salinity is also affected by seasonality
and extreme weather events, with concentrations that can de-
crease significantly in wet periods or spike in dry periods due
to deflation (wind erosion) or evapoconcentration
(Rózkowska and Rózkowski 1969; Winter and Rosenberry
1995; LaBaugh et al. 1996). However, no standard EC-
based index exists to infer wetland-stream connectivity. The
overall goal of the current study was therefore to examine the
potential for EC to serve as an indicator of wetland-stream
groundwater-driven connectivity in a landscape where intact
and human-altered PWs co-exist. Three specific research ob-
jectives were pursued, namely: (i) characterize the spatiotem-
poral variability of EC in surface and subsurface water in a
typical PPR landscape; (ii) propose an EC-based connectivity
index to evaluate groundwater-driven wetland-stream interac-
tion; and (iii) examine whether wetland EC concentrations
and inferred wetland-stream interactions relate predictably to
landscape characteristics.

1 Specific conductance, electrical conductance and electrical conductivity are
terms that are functionally synonymous and often used interchangeably. Here
we decided to use the term electrical conductivity for measures that were
corrected to constant temperature of 20°C for comparison across seasons.
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Study Site and Data Collection

The 260 km2 Broughton’s Creek Watershed (BCW) is
located in south-western Manitoba, Canada (Fig. 1a) on
a hummocky till plain with numerous potholes and
small lakes. Soils throughout the watershed are mainly
Orthic Black Chernozems (Udic Borolls in the U.S. soil

classification), and land uses consist of agriculture (72%),
rangeland (11%), wetland (10%), forest (4%) and others
(3%). Between 1968 and 2005, nearly 6000 wetland basins,
or 70% of the total number of PWs in the watershed, have
been either degraded or totally lost due to drainage for agri-
cultural expansion (Yang et al. 2008, 2010). Yang et al. (2010)
and Dumanski et al. (2015) suggest that climate change and

Study reach

Instrumented intact wetlands

Instrumented consolidated wetlands

Instrumented ditches with historically drained wetlands highlighted

(a)

(b)
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Fig. 1 a Location of the Broughton’s Creek Watershed. b Aerial view of study area (image courtesy of Ducks Unlimited Canada) with wetland, ditch
and creek (BAutosampler^) sampling locations. On panel (b), north is up and the width of each section of land is a quarter mile



drainage activities have contributed to increases in peak dis-
charge, water yield, and phosphorus export in the region.

For the current study, a 5 km-long creek reach was selected
within the BCW. At the south (downstream) end of the reach,
a battery-powered autosampler was used in 2013 and 2014 to
collect composite streamwater samples every one (2014) or
two days (2013). A capacitance-based water level logger was
installed at the downstream end of the reach to record creek
water level fluctuations every 15 min. An empirical relation
with data collected at a downstream gauged location was used
to convert water level measurements to discharge. On the
lands adjacent to the reach, ten intact wetlands, three consol-
idated wetlands, and seven drainage ditches were monitored
(Fig. 1b). While historical aerial photos reveal that the mor-
phology of ‘intact’ wetlands was not modified by humans
over the past 60 years, ‘consolidated’ wetlands result from
two or more small wetlands that were re-routed to form a
single, larger waterbody. Both intact and consolidated wet-
lands lack surface inlets and outlets. The seven ditch locations
were selected based on current and historical maps showing
that their role is to move runoff away from past wetland loca-
tions (that have since been drained) towards the creek reach
under study. All monitored wetlands are (or were, before their
modification) geographically isolated and thought not to con-
tribute water to the creek in a 1-in-2-year flood (Martin 2001).
Stilling wells (i.e., above-ground wells) equipped with
capacitance-based water level loggers were deployed in the
intact and consolidated wetlands to monitor stage fluctuations.
Stage values were divided by each wetland average depth to
obtain wetland fullness values (ranging from 0: dry wetland to
1: full wetland). Grab water samples were taken in all wet-
lands during 15 and 13 site visits in the 2013 and 2014 open
water seasons (April–October), respectively, while subsurface
water was collected below drainage ditches from nested pie-
zometers installed at depths of 15, 45 and 60 cm. Here ditches
were sampled because although their surface dynamics are
ephemeral, they often appear to be wetter than their surround-
ings during field visits and were therefore assumed to be ad-
equate sites for monitoring subsurface water flow paths. In
total, 400 wetland water and ditch (subsurface water) samples
and 338 creek water samples were collected over the
study period. Upon collection, all samples were tested
for electrical conductivity (EC) using a handheld water-
quality pocket tester (Eutech Instruments Multi-Parameter
PCSTestr™ 35). Daily climate data were obtained through
nearby weather stations to assess the differences in antecedent
conditions between sampling dates. The availability of
1 m–LiDAR data also allowed for the computation of a
range of landscape characteristics, including wetland ar-
ea and perimeter, storage volume capacity, area and pe-
rimeter of wetland catchment, catchment area to wetland
area ratio, and wetland-to-stream flowpath distance
(Table 1).

Data Analysis

To characterize the spatiotemporal variability of EC, maps
showing wetland and subsurface water EC across a range of
wetness conditions were built. Boxplots comparing EC con-
centrations in intact versus consolidated wetlands, at different
depths below the drainage ditches and in the creek were also
used, as well as scatter plots showing the co-evolution (or lack
thereof) of wetland EC and creek EC for different months
of the year. A log-log plot of creek EC versus creek
discharge was produced to infer chemostatic, enrichment
or dilution effects. Chemostatic refers to temporally in-
variant concentrations despite variable flow, while enrich-
ment and dilution refer to concentrations that increase and
decrease with flow, respectively (Godsey et al. 2009;
Basu et al. 2010; Musolff et al. 2015).

To evaluate groundwater-driven wetland-stream interac-
tion, an EC-based index of wetland-stream connectivity was
developed based on the modification of the hyperbolic (or
Hubbard brook) model often used for solute export
(Johnson et al. 1969). Mathematical details can be
found in electronic supplements (ES1). The connectivity
index (CI) was formulated as:

Connectivity index ¼ CI ¼ CWetland

CStream
−1

where C is the EC value in stream or wetland water. The EC-
based CI has a strong physical basis: indeed, high EC in
streams can occur either when one of the source waters has
high EC, or if mineral dissolution takes place while source
water travels along slow-moving hydrological pathways, thus
leading to higher EC as contact time of the water with the
porous media increases. It must be noted that the concentra-
tion ratio (CWetland/CStream) does not measure actual wetland-
stream connectivity but rather expresses a potential for it to
occur if PWs intersect the groundwater contributing area to
the stream; hence groundwater is the only end-member under
consideration (see ES1). When CWetland > CStream (or CI > 0),
there is a potential for the wetland and the stream to be con-
nected via shallow groundwater, provided that EC-rich wet-
land water is diluted while travelling along a shallow flowpath
to the stream (Fig. 2, ES2). Such dilution could be the result of
a rising water table (new soil water) and lead stream EC to be
much lower than wetland EC. Regarding conditions when
CWetland < CStream, twomain processes can be invoked, namely
streamwater evapoconcentration and mineral dissolution as
wetland Bsource^ water travels to the stream along deep
groundwater flow paths. Given the strong dependence of
evaporation on high air temperatures, stream and wetland wa-
ter evapoconcentration (and the associated CWetland < CStream

conditions) should be highly seasonal in order to be deemed
plausible. In the case of mineral dissolution, even though
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wetland water would initially have low EC (Fig. 2), its travel
via slow-moving deep groundwater pathways could lead to
the solubilisation of minerals (and hence, EC increase) on
the way to the stream. Deep groundwater connectivity can
therefore be associated with CWetland < CStream (CI ≤ 0) as it
is not the source (wetland) water that has high EC but rather
the mineral dissolution process associated with long water
travel times that results in high EC in streams. These hypoth-
eses are examined in the current paper, with the recognition
that the concentration ratio (CWetland/CStream) indicates a po-
tential for shallow (CI > 0) or deeper (CI ≤ 0) wetland-stream
connectivity depending on the depth at which PWs intersect
the groundwater contributing area to the stream. To interpret
the variability of the CI, descriptive statistics were computed
and histograms produced. Kruskal-Wallis tests were also per-
formed to assess the differences in timing (day of the year or
DOY), wetland fullness and creek discharge between periods
with shallow (positive CI) versus deep (negative CI) ground-
water connectivity. The Kruskal-Wallis test was used here as it
is non-parametric and does not rely on an assumption of nor-
mality for the data distribution (Sokal and Rohlf 1997). The
null hypothesis was that the median values of DOY, wetland

fullness and creek discharge are the same regardless of wheth-
er the potential for groundwater-driven wetland connectivity
is via shallow versus deeper pathways. This null hypothesis
was rejected when the probabilities associated with the
Kruskal-Wallis test were smaller than 0.05.

Lastly, to examine the predictability of wetland EC concen-
trations and wetland-stream interaction as a function of land-
scape characteristics, Spearman’s rank correlation coefficients
(rho) were computed between EC concentration statistics, CI
statistics and landscape characteristics. The Spearman’s rank
correlation coefficient was used as it does not assume normal
distribution of the data nor the existence of linear relations
between pairs of variables (Sokal and Rohlf 1997).

Results

Weather data showed that 2013 was a normal year while 2014
was wetter than normal – with larger amounts of snow water
equivalent and rainfall (Fig. 3). In order for the EC-based CI to
be used, wetland and streamwater samples needed to be col-
lected in periods with no surface runoff. The two major peaks

Fig. 2 Interpretation key
regarding to use of stream and
wetland EC data to assess
wetland-stream connectivity
potential

Table 1 Landscape characteristics for the instrumented PWs

Site # Wetland
area (ha)

Wetland
perimeter (m)

Wetland storage
volume (m3)

Catchment
area (ha)

Catchment
perimeter (m)

Catchment area to
wetland area ratio (−)

Mean flowpath distance
to stream (km)

1 1.78 556.68 7287.62 4.52 1210.00 2.54 13.62

2 0.69 301.52 2807.82 3.21 970.00 4.64 13.29

3 0.80 395.57 5025.33 4.92 1230.00 6.12 13.55

4 0.15 149.22 517.58 0.60 410.00 3.92 13.01

5 0.63 449.95 519.07 1.18 700.00 1.87 14.67

6 0.56 430.36 1646.34 2.57 950.00 4.60 14.71

7 0.07 105.26 74.64 1.26 630.00 16.82 13.76

8 0.74 508.41 2217.56 3.37 1180.00 4.55 14.18

9 1.67 483.80 2275.70 8.58 1770.00 5.14 16.24

10 0.10 130.45 77.96 4.36 1620.00 42.55 15.16

14 1.39 669.24 2447.65 5.90 1620.00 4.25 13.99

15 5.23 1223.11 27,588.98 26.14 3520.00 5.00 14.65

19 15.12 2823.39 43,926.51 31.27 4840.00 2.07 14.93
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seen on Fig. 3c and f were associated with surface runoff and
hence, samples collected during this period were discarded
from the current analysis.

Spatiotemporal variability in water EC was present across
the two monitoring years (Figs. 4 and 5). Subsurface water
below the ditches draining a wetland complex (southeast por-
tion of the study region) notably had EC ranging from a few
hundred to more than 3000 μS/cm depending on antecedent
wetness conditions (e.g., Fig. 4a, d). Temporal changes in
wetland water EC seemed stronger in small wetlands
(e.g., see three wetlands to the west of the creek in
Fig. 4a through h). In general, subsurface water EC
was more temporally variable than wetland water EC – as
indicated by larger box and whisker extents in Fig. 5b,
compared to Fig. 5a. Occasional surface runoff (or ditch
ponded water) was the water source with lowest EC (Fig. 5b).
A clear, nonlinear relation existed between streamwater EC
and wetland water EC (Fig. 6). Seasonal differences were also
clear (Fig. 6): both streamwater and wetland EC values were
lowest in spring (below 1000 μS/cm in April at the onset of
the spring melt), highest in dry summer conditions (e.g.,
August), and variable for the rest of the open water season.
Month-to-month variability in streamwater EC dynamics was
significant: the slope of the creek EC versus creek discharge
relation in log-log space was sometimes close to zero (e.g.,
rightmost April points and July points on Fig. 7), which sug-
gests chemostatic effects. The slope of that relation was

however negative for the remainder of the time, indicating
dilution effects.

CI values varied widely in time (DOY) and in space (across
wetlands) (Fig. 8, Table 2). Some wetlands never had the
potential to be connected to the stream via shallow groundwa-
ter, i.e., there was no sampling date with positive CI values for
wetlands #4, 6, 7, 15. Wetlands #1, #2 and #3 – which are
geographically close to one another (Fig. 1) but have very
different wetland areas and storage volumes – had positive
CI values for at least 58% of the sampling dates. The statistical
distributions of the CI were moderately right-skewed for all
wetlands (Fig. 8). All p-values associated with the Kruskal-
Wallis tests were larger than 0.05, meaning that median values
of DOY (or wetland fullness or creek discharge) were
not significantly different when comparing periods with
shallow (positive CI) and deeper (negative CI) groundwater
connectivity potential.

Wetland size/storage was the most dominant control on
wetland water EC. For instance, mean, median and maximum
wetland water EC were correlated to wetland storage volume
(0.62 ≤ rho ≤ 0.7) (Table 3). Both the storage volume and the
catchment area to wetland area ratio were positively correlated
with the variability (i.e., coefficient of variation, standard de-
viation) of EC in individual wetlands (Table 3). The minimum
EC value recorded in individual wetlands over the two mon-
itoring years was negatively correlated to the flowpath dis-
tance to the stream (Table 3), while mean and median CI

Fig. 3 Weather conditions and stream water levels during the 2013 and 2014 open water seasons. Cyan dots on panels (c) and (f) show water sampling
dates considered for the current study
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values were positively correlated with wetland storage volume
(Table 3). No landscape characteristic correlated with the

percent time during which the potential for wetland-stream
connectivity via shallow groundwater (CI > 0) was present.

(a () b)

Subsurface water - 15 cm below ditch

Subsurface water - 45 cm below ditch

Subsurface water - 60 cm below ditch

Ditch ponding water (during melt only)Water in intact wetlands

Water in consolidated wetlands

Stream (creek) water

Fig. 5 Seasonal variability of
electrical conductivity (EC) in
surface and subsurface water.
Each box has lines at the lower
quartile, median, and upper
quartile values, while the
whiskers show the extent of the
remaining data (minimum and
maximum). Outliers are not
shown, but notches are drawn to
provide a robust estimate of the
uncertainty about the medians for
box-to-box comparison

(uS/cm)

0

10
00

22
50

40
00

Fig. 4 Electrical conductivity (EC) in open water wetlands and below
ditches (values averaged across the 15, 45 and 60 cm depths) for selected
survey dates. a and b: spring melt; c and d: summer wet conditions; e and
f: post-rainfall event; g and h: dry summer conditions. Note that the color-

scale is nonlinear for better readability; the creek is shown in black while
drained wetlands are in grey. For spatial scale and other spatial
benchmarks, refer to Fig. 1b
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Fig. 6 Monthly variability in the relation between wetland and creek EC. On all plots, the solid black line is the 1:1 line

Fig. 7 Monthly variability in the
relation between creek EC and
creek discharge, in log-log scale.
The black solid and dashed lines
have slopes of zero and −1,
respectively
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Discussion

Spatiotemporal Variability of Water EC in a Typical PPR
Landscape

EC values observed across the study region (Fig. 4) are
aligned with those reported by Barica (1975) and LaBaugh
et al. (1998) – which ranged from a few hundred to
10,000 μS/cm for PWs in Manitoba. In this province, the

EC guideline for water flowing through or adjacent to agricul-
tural fields is 1500 μS/cm (Williamson 2011): it was frequent-
ly exceeded by the collected samples (i.e., in all seasons for
subsurface water below drainage ditches; in summer and fall
for surface water in intact and consolidated wetlands, see
Fig. 5). Spatial patterns of EC were relatively consistent be-
tween 2013 and 2014, with the highest and lowest values
almost always found in the same geographic areas (e.g.,
Fig. 3). Based on work by Sloan (1972) and LaBaugh et al.
(1987), this suggests that major groundwater discharge (high
EC) and recharge (low EC) areas do not vary much, inter-
annually. Figure 6 shows a relation between creek EC and
wetland EC, although the slope of that relation changes slight-
ly not only between wetlands but also between months for
individual wetlands, a clear indication of temporally variable
flow generation mechanisms. Streamwater EC was generally
higher than wetland EC, except in spring, indicating possible
mineral dissolution in fall and winter and dilution in spring.
The creek EC versus creek discharge relation (Fig. 7)
also showcased changes between near-chemostatic be-
haviour – when similar concentrations are recorded de-
spite highly variable discharge – and episodic behaviour –
when both concentrations and discharge vary (Godsey et al.
2009; Basu et al. 2010), providing additional evidence of
temporally variable water and salt export dynamics. The
existence of dilution effects was confirmed by a pattern
of decreasing stream EC with increasing stream dis-
charge in April and May (Fig. 7), thus supporting some
process assumptions highlighted in Fig. 2.

Wetland #1

Wetland #2

Wetland #3

Wetland #4

Wetland #5

Wetland #6

Wetland #7

Wetland #8

Wetland #9

Wetland #10

Wetland #14

Wetland #15

Wetland #19

Fr
eq

ue
nc

y 
(-)

Temporal variability of CI
(2013)

Statistical 
distribution

Temporal variability of CI
(2014)

Fig. 8 Shallow versus deep
groundwater-driven wetland-
stream connectivity potential. For
each row (or wetland), diagrams
show, from left to right, the
temporal variability of the CI in
2013 and 2014 and its overall
statistical distribution across the
study period. Negative and
positive CI values are shown in
red and blue, respectively

Table 2 Statistical summary of CI values for all PWs. CV: coefficient
of variation

Site # Mean CI Median CI CVof CI % time with CI > 0

1 0.26 0.28 0.85 79.17

2 0.06 0.06 0.20 60.87

3 0.00 0.04 0.01 58.33

4 −0.56 −0.63 −3.18 0.00

5 −0.54 −0.64 −1.26 4.17

6 −0.63 −0.66 −6.51 0.00

7 −0.78 −0.87 −4.63 0.00

8 −0.26 −0.43 −0.42 8.33

9 −0.63 −0.66 −3.44 4.17

10 −0.45 −0.52 −1.78 11.11

14 −0.31 −0.30 −1.24 4.17

15 −0.47 −0.48 −3.53 0.00

19 −0.34 −0.38 −1.12 8.33
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Suitability of an EC-Based Index for Wetland-Stream
Connectivity Assessment

Using EC as an indicator of active groundwater flow path-
ways is not new. Focusing on vernal pools, Leibowitz and
Brooks (2008) suggested that specific conductance values ex-
ceeding precipitation values indicate groundwater contribu-
tions. While working on closed basin depressions in Alaska,
Rains (2011) used several criteria to classify the inter-relation
between wetlands and groundwater as Bperched^ or Bflow-
through^, including a 20 μS/cm threshold. Hayashi et al.
(1998) and Van der Kamp and Hayashi (2009) highlighted
the role of groundwater flow direction in determining whether
salts accumulate in a wetland or rather leach out of it.
LaBaugh and Swanson (2004) also argued that EC can effec-
tively be used to assess the relative position of wetlands on
local groundwater flowpaths. Although the EC-based index of
groundwater-driven wetland-stream connectivity suggested in
this study cannot be used when surface runoff is present, it is
robust given its derivation from a solute export equation – the
hyperbolic model – and its reliance on parameters – the mean
water residence time and end-member concentrations – that
are physically based. Easiness of computationmakes the CI an
attractive metric that could be applied across wetland
landscapes where the contrast in salinity between surface
and subsurface water is important. The wetland-specific CI
statistical distributions presented are also plausible: shallow
groundwater-driven connectivity was never established for
some wetlands and established only in wet conditions for
others (Table 2). The absence of seasonal patterns in the oc-
currence of CWetland < CStream (CI ≤ 0) (Fig. 8) makes it less
likely for those occurrences to result from seasonally-driven
streamwater evapoconcentration. As the hypothesis of mineral
dissolution along deep groundwater pathways seems most
plausible for CI ≤ 0, future studies should examine whether

the absolute value of negative CI can be predicted based on
the composition and heterogeneity of geologic layers, and can
be used as a proxy for deep groundwater travel times between
wetlands and streams.

One drawback of the proposed CI is that it does not con-
sider temporal lags in the establishment of groundwater-
driven wetland-stream connectivity nor its duration. Indeed,
the concentration ratio in the CI formula is based on EC values
measured on the same day from both a wetland and a stream; it
therefore illustrates the presence of a Bcurrent^ wetland-
stream connectivity potential. The ratio of same-day concen-
trations also assumes that the establishment of groundwater-
dr iven wet land-s t ream connect iv i ty leads to an
Binstantaneous^ change in stream chemistry (i.e., change oc-
curred in less than 24 h), which is an unrealistic assumption
for some PWs located at great distances from the creek. The
applicability of the proposed CI to stormflow conditions
would be possible if data were available for EC concentrations
in surface runoff: this could be achieved either via additional
sampling in the field or by estimating EC in surface runoff via
nonlinear regression, i.e., by fitting the hyperbolic solute ex-
port equation (see ES1) to creek EC and creek discharge data.
Quantifying surface runoff EC would be especially important
in dry periods when Bsalt rings^ can form at the periphery of
ponds (Nachshon et al. 2013): subsequent wet periods might
lead wetlands to expand and flush these salts (LaBaugh et al.
2016), thus creating an increase in EC in wetlands during wet
periods and making it possible for salt-rich surface water flow
paths to exist. An additional weakness of the suggested CI is
its reliance on EC concentration changes that are not process-
specific. EC changes can indeed be seen as a response to
several confounding factors, including precipitation timing,
magnitude and intensity, evapotranspiration, the balance be-
tween surface runoff and infiltration, and potentially even bi-
ological activity. For instance, alkalinity generation through

Table 3 Spearman’s rank correlation coefficients between statistical
summary parameters of EC concentrations and the CI and
landscape characteristics. Min: minimum; Max: maximum; Std:

standard deviation; CV: coefficient of variation. Bn/s^ signals
pairs of variables for which the correlation coefficient was not
significant at the 95% level

Wetland
area (ha)

Wetland
perimeter (m)

Wetland storage
volume (m3)

Catchment
area (ha)

Catchment
perimeter (m)

Catchment area to
wetland area ratio (−)

Mean flowpath distance
to stream (km)

Min EC in wetland n/s n/s n/s n/s n/s n/s −0.59
Max EC in wetland n/s n/s 0.67 n/s n/s n/s n/s

Mean EC in wetland n/s n/s 0.70 n/s n/s n/s n/s

Median EC in wetland n/s n/s 0.66 n/s n/s n/s n/s

Std of EC in wetland n/s n/s 0.62 n/s n/s n/s n/s

CVof EC in wetland n/s n/s n/s n/s n/s 0.64 n/s

Mean CI n/s n/s 0.59 n/s n/s n/s n/s

Median CI n/s n/s 0.70 n/s n/s n/s n/s

CVof CI n/s n/s n/s n/s n/s n/s n/s

% time with CI ≥ 1 n/s n/s n/s n/s n/s n/s n/s
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sulfate reduction in both wetlands and streams –when they act
as storage zones – has the potential to influence EC (Heagle
et al. 2007). This is especially true in the Prairies where the
sub-humid climate gives rise to important hydrologic abstrac-
tions (e.g., evaporation, depression storage) and the relative
importance soil frost and vegetation at wetland margins can
impede or enhance depression-focused recharge (LaBaugh
et al. 1998). During non-stormflow periods, the extent to
which changes in wetland water EC are due to their position
in groundwater flowpaths and not to biogeochemical transfor-
mations could be assessed by interpreting the CI in light of a
wetland water mass balance and as well as a wetland solute
(salt) mass balance – to investigate whether increases in salt
masses are linked to increases or decreases in water volumes.
Data collected weekly or biweekly for the current study were
not sufficient to calculate such mass balances. The lack of
statistical difference between CI values as a function
of DOY, wetland fullness or nearby creek discharge
may also be attributed to the fact that the sampling
frequency used in this study was not fine enough to
capture the timescales over which those variables influ-
ence groundwater-driven connectivity. High-frequency
(sub-daily) timeseries of EC from other PPR sites would
be critical to confirm or reject the validity of the CI
proposed here, especially for moderately brackish and
highly transient systems where salinity is likely affected
by confounding processes. Alternatively, using a known
conservative tracer such as chloride might help avoid
confounding biological influences.

Predictability of EC and CI Values from Landscape
Characteristics

Wetland storage volume and the catchment area to wet-
land area ratio were the only two landscape characteris-
tics seemingly influencing wetland water EC (Table 3).
This finding is aligned with conclusions from past stud-
ies which stated the relation between wetland water sa-
linity and topographic position not to be statistically
significant (e.g., Swanson et al. 1988; LaBaugh et al. 1998).
Others have suggested that wetland water salinity might be
related to wetland position within a fill and spill sequence,
while acknowledging at the same time that surrounding land
use might be more influential on wetland water EC than to-
pography (Brunet andWestbrook 2012). Mean and median CI
values were positively correlated to wetland storage volume,
suggesting that large-capacity PWs tend to be associated with
larger CI values than small-capacity PWs (Table 3). The neg-
ative correlation between minimum wetland water EC and the
flowpath distance to the stream also supports the mineral dis-
solution hypothesis, whereby hydrologically distant PWs
have lower EC and can only connect to the stream if they
intersect deep groundwater pathways which will solubilize

minerals and increase water EC while en route to the stream.
The lack of statistically significant correlation between land-
scape characteristics and the percent time during which the
potential for wetland-stream connectivity via shallow ground-
water (CI > 0) was present is likely due to the fact that the
current analysis did not allow the actual timing of physical
transport to be quantified, but only hypotheses about it to be
examined.

Despite the many confounding factors mentioned above,
the CI offers an interesting alternative to practitioners interest-
ed in making structural connectivity assessments in land-
scapes with geographically isolated wetlands (GIW). Indeed,
both the ecological and hydrological literature make a distinc-
tion between structural and functional connectivity assess-
ments: the former focus on the physical adjacency of land-
scape elements that is thought to influence material (e.g., wa-
ter, solutes) transfer, while the later focus on how spatial ad-
jacency characteristics interact with temporally varying fac-
tors to lead to the connected flow of material (Bracken et al.
2013). Structural hydrologic connectivity therefore indicates
potential water movement based, mostly, on physiography
while functional hydrologic connectivity quantifies actual wa-
ter movement. Based on these definitions, structural connec-
tivity describes the necessary – though not sufficient condi-
tions – for connectivity to occur based on landscape configu-
ration. Hydrologic research to date has been successful at
deriving measures of structural connectivity, for instance in
the form of topographic indices, but much less so at dealing
with data-hungry and effort-intensive methods to quantify
functional connectivity (Bracken et al. 2013). Two issues arise
in the context of groundwater-driven connectivity in GIW
landscapes, namely the fact that: (1) functional elements such
as water fluxes and travel times (Knudby and Carrera 2005)
are difficult to quantify, and (2) topographic indices are
not good predictors of subsurface water movement in
flat or complex terrain. An index based on elements
other than topography is therefore needed for structural
connectivity assessments, and the EC-based CI could
endorse that role. In addition to being neither data-
hungry nor effort-intensive, the CI is an indicator of
geological conditions since its values can be interpreted
in terms of soil-water or rock-water contact time.
Hence, while the CI does not allow the quantification
of actual (functional) connectivity, it helps identify land-
scape regions where geological conditions suggest the
existence of a porous medium-water contact that is nec-
essary (though not sufficient) for connectivity to occur.
Such a structural connectivity assessment would be crit-
ical in a management context to identify areas where
the potential for groundwater-driven connectivity exists,
thus helping to rationalize efforts and target critical
areas where more detailed monitoring might be needed
toward jurisdictional assessment.
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Conclusion

This study aimed to quantify the potential for wetland-stream
connectivity to occur, not via surface pathways as has been the
focus of many previously published studies but rather via
groundwater pathways. To that end, electrical conductivity
(EC) was measured in wetlands and in a creek within a typical
PPR landscape. A connectivity index (CI) computed from EC
data identified a potential for shallow groundwater-driven
wetland-stream connectivity to occur intermittently, while
deep groundwater-driven connectivity was more common.
And while the influence of several landscape characteristics
on wetland dynamics was considered – including that of wet-
land size, catchment area and distance to the stream – only the
wetland storage volume capacity was consistently correlated
with wetland EC and CI values, highlighting the difficulty in
identifying dominant physical controls on PW hydrological
dynamics. Groundwater movement, in addition to surface
spilling events, is therefore an important mechanism via
which PWs can potentially connect to downgradient waters.
The CI was instrumental in reaching that conclusion, and it is
suggested it be tested in other environments and with tracers
other than EC to confirm or reject its validity.
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