
ORIGINAL RESEARCH

Monitoring Mangrove Forest Changes
fromMulti-temporal Landsat Data in Can Gio Biosphere
Reserve, Vietnam

Nguyen Thanh Son1,2
& Bui Xuan Thanh3

& Chau Thi Da1,2

Received: 28 September 2015 /Accepted: 24 March 2016 /Published online: 7 April 2016
# Society of Wetland Scientists 2016

Abstract Coastal development that converts mangrove forests
to other uses has constantly ignored ecological services of man-
grove forests. Monitoring spatiotemporal changes of mangrove
forests is thus important to provide economists, ecologists, and
forest managers with valuable information to improve manage-
ment strategies for mangrove ecosystems. This study developed
an approach to investigate spatiotemporal changes of mangrove
forests in Can Gio Biosphere Reserve, South Vietnam using
Landsat data during periods 1989–1996, 1996–2003, 2003–
2009, and 2009–2014. The data were processed through three
main steps: (1) data pre-processing to perform geometric cor-
rections and reflectance normalization, (2) mangrove extraction
using the tasselled cap transformation (TCT) and unmixing
model, and (3) accuracy assessment of the mapping results.
The comparisons between the mapping results and the ground
reference data indicated that the overall accuracies and Kappa
coefficients were generally higher than 90 % and 0.8, respec-
tively. From 1989 to 2014, approximately 24 % of mangrove
forests had been transformed to other land uses, especially
aquaculture farms, while 41%was reforested or newly planted.
New insights of multi-temporal changes of mangrove forests

achieved from the methods used in this study could be useful
for forest mangers to evaluate successful plans for mangrove
conservation and coastal development simultaneously.

Keywords Landsat .Mangrove forests . Tasselled cap
transformation . Unmixingmodel . Can Gio Biosphere
Reserve

Introduction

Mangroves are woody and specialized types of trees that grow
in brackish wetlands between land and sea. They are among the
most productive and complex ecosystems on earth, especially
found in tropical and subtropical regions near the equator fre-
quently inundated with saltwater.Mangrove forests stabilize the
coastline by collecting sediment from rivers and streams and
slowing down the flow of water, provide protection and shelter
against extreme weather events such as storm winds, floods,
tsunamis, and protect human communities farther inland from
natural disasters (Costanza 2001; Brown 2006; Nagelkerken
et al. 2008; Giri et al. 2011). They are also able to filter out
pollutants in the sea and sequester carbon dioxide (CO2) emit-
ted to the atmosphere due to anthropogenetic activities
(Jennerjahn and Ittekkot 2002; Dittmar et al. 2006; Duke et
al. 2007). The intricate root system of mangrove forests is one
of the most biologically diverse characteristics that provide the
habitat for wide varieties of animal and plant species, including
shrimp, prawns, crabs, shellfish, and snails, and other organ-
isms seeking food and shelter from predators.

Mangrove forests globally covered more than 200,000 km2

(Duke et al. 2007; Spalding et al. 2010). Half of all mangrove
forests have been lost since the mid-twentieth century, with
one-fifth since 1980 (Spalding et al. 2010). Today, mangrove
forests are one of the most threatened habitats. They are
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annually disappearing worldwide by 1–2 % (Alongi 2002;
FAO 2003), mainly due to aquaculture development and ur-
banization (Valiela et al. 2001; FAO 2007b; Giri et al. 2008;
Rahman et al. 2013), especially in Southeast Asia and Latin
America (Keller 2014). Deforestation of mangrove forests re-
duces their capacity to stabilize the shorelines and mitigate
impacts of natural disasters such as tsunamis and hurricanes,
and atmospheric CO2 sequestration, leading to environmental
issues, such as loss of habitats of flora and fauna species, land
degradation, decline in biodiversity, and increase in coastal
erosion and storm impacts (Sulong et al. 2002; Long and
Skewes 1996; Kirui et al. 2013; Tateishi et al. 2014).
Moreover, human communities living in or near mangrove
forests would lose access to sources of essential food, fibbers,
timber, chemicals, and medicines (Ewel et al. 1998). Thus,
conservation of mangrove forests is important ecologically
and economically.

This phenomenon can be extrapolated for Vietnam, where
the area ofmangrove forests has been significantly reduced from
408,500 ha in 1943 to 290,000 ha in 1962, 252,000 ha in 1982,
155,290 ha in 2000, and slightly increased to 157,500 ha in
2005 (UNEP 2004; FAO 2007a; McNally et al. 2011). The
deforestation of mangrove forests in this country, mainly caused
by aquaculture development and coastal urbanization, has trig-
gered unintended environmental and social consequences such
as direct and indirect changes of the hydrological regime, land
degradation, water pollution, and sedimentation of coastal eco-
systems (FAO 2007a; McNally et al. 2011). Can Gio Biosphere
Reserve established by the UNESCO Man and the Biosphere
Program in 2000 covers around 75,740 ha in which approxi-
mately 40 % was mangrove forests (UNESCO/MAB 2000).
The mangrove forests in this study region was one of the most
beautiful mangrove forests in Southeast Asia, which were high
biodiversity with more than 200 species of fauna and 52 species
of flora (UNESCO/MAB 2000).

During the Vietnam War, approximately 665,666 gal of
Agent Orange, 343,385 gal of Agent White, and 49,200 gal
of Agent Blue had been sprayed in the study region by the
U.S. military during 1962–1971, consequently destroyed at
least 57 % of mangrove forests (Ross 1975). The mangrove
reforestation program of mangrove forests launched in
1978 has brought remarkable ecological improvements.
The region has a population of approximately 67,272 peo-
ple in which roughly 50 % were forest managers whose
duty was to manage the forest areas where they lived; more
than 20 % were aquaculture shrimp farmers, and 15 %
were others (e.g., fisherman and salt farmers) (Tuan and
Kuenzer 2012). Although the region is designated as a
biosphere reserve, it has still been suffering from the con-
version of mangrove forests to other uses, especially aqua-
culture farms. Thus, understanding of spatio-temporal
changes in the extent of mangrove forests in the study
region over a long period was deemed important to provide

economists, ecologists, and natural resources managers in
the region with valuable information to improve manage-
ment strategies for mangrove ecosystems.

Remote sensing has been recognized as an indefensible
tool for mangrove forest monitoring at various scales.
Efforts have been made to investigate mangrove forests using
data produced from, for example, QuickBird and IKONOS
(Wang et al. 2004), Système Pour l’Observation de la Terre
(SPOT) (Pasqualini et al. 1999; Saito et al. 2003; Conchedda
et al. 2008), Moderate Resolution Imaging Spectroradiometer
(MODIS) (Muchoney et al. 2000; Tateishi et al. 2014), and
Landsat satellite systems (Liu et al. 2008; Alsaaideh et al.
2011; Bhattarai and Giri 2011; Giri et al. 2015). The use of
low and high-resolution satellite data reveals limitations, in-
cluding high cost of data acquisition and historical data con-
straints associated with changes of mangrove forests over the
past decades. In this study, Landsat data were used for inves-
tigating multi-temporal changes of mangrove forests because
the data have advantages of 30 m spatial resolution, seven
spectral bands, and long historical archives (Landsat 5, 7,
and 8), thus allowing us to investigate the spatiotemporal
changes ofmangrove forests in the region from 1980s to 2014.

A number of suppervised methods have been developed
and used for land-use/cover (LUC) classification, such as
maximum likelihood classifier, which is a traditional algo-
rithm based on a well-developed theoretical base (Bolstad
and Lillesand 1991), support vector machines (Boser et al.
1992), artificial neural networks (Bruzzone et al. 1999), linear
mixture model (Adams et al. 1986). These supervised classi-
fication methods required training samples obtained directly
from the satellite data to train the algorithms for classification.
One of the most challenges to apply these classifiers for multi-
year classification of mangrove forests was to select appropri-
ate training samples for different classes due to temporal
changes of LUC over time. Different training datasets applied
for different year data may lead to different classification re-
sults, potentially creating mapping biases when examining
changes of mangrove forests between the years. In this study,
we aimed to develop a new mapping approach to investigate
multi-temporal changes of mangrove forests in the study region
from Landsat data. The tasselled cap transformation (TCT)
(Kauth and Thomas 1976) was first applied to compress
Landsat data into a few bands. A new index, ratio of greenness
to brightness (GBR), was then calculated and used for mapping
mangrove forests using the unmixing model (Sheng et al.
2001). A hardening process was eventually applied using a
threshold value obtained from the receiver operating character-
istic (ROC) curve (Metz 1986; Zweig and Campbell 1993) to
convert a mixed pixel to a pure pixel in respect to two desired
classes of mangrove forests and non-mangrove forests.

The main objective of this study was to develop a mapping
approach to investigate multi-temporal changes in the extent
of mangrove forests in Can Gio Biosphere Reserve, South
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Vietnam using Landsat data during periods 1989–1996,
1996–2003, 2003–2009, and 2009–2014.

Study Area

We chose Can Gio Biosphere Reserve in South Vietnam to
investigate multi-temporal changes of mangrove forests from
Landsat images (Figs. 1 and 2). The region covers approximate-
ly 75,740 ha, lying between 10° 22′–10°40′ N and 106°46′–
107°01′ E. Mangrove forests cover roughly 40 % of the region
(Tuan and Kuenzer 2012). The region had a population of ap-
proximately 63,000 people (GSO 2013). They settled in the
coastal fringes and riparian habitats connected with the sea.
During the Vietnam War, most of mangrove forests in the re-
gion was destroyed by herbicide spraying. An effort of the local
government after the war wasmade to rehabilitate approximate-
ly 21,000 ha ofmangrove forests. Today, the region has become
one of the most beautiful and extensive biosphere reserves of
rehabilitated mangroves in the world with a diverse landscape
of mangroves, marshes, and mudflats. The mangrove forests in
the region had high biodiversity with more than 100 plant

species, 77 mangrove, 130 species of algae, 63 zooplankton
species, 127 species of fish, 30 species of reptiles, 100 species
of invertebrate benthic animals, 145 bird species, and 19 mam-
mal species. It is thus critical for biodiversity conservation
(UNESCO/MAB 2000). The mangrove forests were found at
a range of heights from less than 1 m in some inland areas and
in saline flats to 20 m along estuaries. Due to socioeconomic
development and rapid population growth, some parts of the
mangrove forests have been under threats to be cleared for other
uses, especially aquaculture, salt farming activities, and infra-
structure construction. The destruction of mangrove forests has
continuously degraded ecological and socioeconomic services
of mangrove ecosystems, subsequently creating environmental
impacts, including soil erosion, land degradation, siltation, and
vulnerability to storms (UNESCO/MAB 2000).

Data Collection

A set of Landsat Surface Reflectance Climate Data Record
(CDR) images, including three Landsat Thematic Mapper
(TM) images (06 March 1989, 02 March 1996, and 18

Fig. 1 Map of the study area with
a reference to the geography of
Ho Chi Minh City, Vietnam. The
inset shows the 2013 false-color
Landsat image (RGB= 543). The
bright red generally relates to
mangrove forests
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December 2009), a Landsat Enhanced TM Plus (ETM+) image
(24 January 2003), and a Landsat 8 (Operational Land Imager,
OLI) image (25 February 2014) acquired from the U.S.
Geological Survey (USGS), was used. The Landsat TM data
have seven spectral bands, with a spatial resolution of 30 m for
bands 1–5 and 7. The TM band 6 (thermal infrared) is acquired
at 120 m resolution, but is resampled to 30 m. The Landsat
ETM+ data consist of eight spectral bands with a spatial reso-
lution of 30 m for bands 1–7. The ETM+ band 6 (thermal
infrared) is acquired at 60 m resolution, but is resampled to
30m. The Landsat 8 data have nine spectral bandswith a spatial
resolution of 30 m for bands 1–7 and 9. The ETM+ and OLI
band 8 (panchromatic band) have a spatial resolution of 15 m.
The spectral bands are generally between the optical and short-
wavelength-infrared regions, except for band 9 of Landsat 8
data, which has a cirrus wavelength between 1.36 and 1.38 μm.

The 2000 LUC map (scale: 1/50,000) collected from Sub-
National Institute of Agricultural Planning and Projection,
Vietnam was used as reference data for field investigation,
crosschecking, and accuracy assessment of the classification re-
sults. This map was constructed from Landsat images and

validated through field survey data. The map, including nine
LUC classes, was regrouped into two classes: mangrove and
non-mangrove forests. The map was then converted to the raster
form (30m resolution) and used as the ground reference data.We
separated the ground reference data into two groups of pixels:
group-1 (1000 pixel for mangrove forests and 1000 pixels for
non-mangrove forests) used to derive thresholds for mangrove
extraction, and group-2 (500 pixels for mangrove and 500 pixels
for non-mangrove) used to validate the classification results.

Methods

The methods of this study had three main steps (Fig. 3): (1)
data pre-processing including geometric corrections of
Landsat images and reflectance normalization, (2) mangrove
extraction using GBR and unmixing model, and (3) accuracy
assessment of the mapping results using the ground reference
data. Post-classification change detection was finally carried
out to investigate multi-temporal changes in the extent of
mangrove forests in the study region.

Fig. 2 Map showing the
mangrove forests in the study area
extracted from the 2000 land-use
map. The dark red and blue pixels
randomly extracted from this map
were used for computing the
Jeffries-Matusita distance (JM)
and accuracy assessment of the
classification results

568 Wetlands (2016) 36:565–576



Data Pre-processing

The Landsat images acquired for 1989, 1996, 2003, and 2009
were corrected for geometric errors using the 2014 Landsat OLI
image as a reference base. The process was implemented for
each image using 20 ground control points, uniformly selected
from distinct features throughout the target image. The results
yielded a root mean squared error of less than 15m. The images
were registered to the Universal Transverse Mercator system
(zone 48 N) and then subset over the study region. The reflec-
tance normalization for 1989, 1996, 2003 and 2009 Landsat
images was also processed using the 2014 Landsat 8 image as
a reference base. This process used the image histogram
matching algorithm to force the distribution of brightness
values in the 1989, 1996, 2003, and 2009 images as close as
possible to the 2014 reference image, and to minimize the spec-
tral variations within each LUC type. Details about the histo-
gram matching algorithm can be found in the text of Remote
Sensing Digital Image Analysis (Richards and Jia 2006).

Mangrove Extraction

We extracted mangrove forests through two main steps. The
TCT (Kauth and Thomas 1976) was first applied to compress
Landsat data into a few bands associated with physical scene
characteristics (Crist and Cicone 1984). In this study, the GBR
used for mangrove extraction is calculated as follows:

GBR ¼ Greeness

Brightness
; ð1Þ

where, Brightness andGreennesswere calculated as a weight-
ed sum of Landsat bands using TCT coefficients (Table 1).
The rationale for using this ratio because the first feature,
Brightness, is a weighted sum of all the bands, and was de-
fined in the direction of principal variation in soil reflectance,
and thus used to highlight soil brightness or built-up features.

The second feature,Greenness, is a contrast between the near-
infrared bands and the visible bands. The substantial scatter-
ing of infrared radiation resulting from the cellular structure of
green vegetation, and the absorption of visible radiation by
plant pigments (e.g., chlorophyll), combine to produce high
Greenness values for targets with high densities of green veg-
etation, while the flatter reflectance curves of soils are
expressed in lowGreenness values. Because mangrove forests
in the study region is naturally distributed in intertidal coastal
wetlands between the land and sea, three components of a
pixel in the satellite image include vegetation, water, and soil.
Thus, we assumed that a ratio of Greenness to Brightness
could signify the canopy reflectance of mangrove forests com-
pared to other LUC types. The assumption was verified using
the Jeffries-Matusita distance (JM), which measures the spec-
tral separability between LUC classes (Richards and Jia 2006)
using the following equation:

JM ¼ 2 1−e−B
� �

; ð2Þ

where B is the Bhattacharyya distance (Bhattacharyya 1943),
expressed as:

B ¼ 1

8
m1−m2ð Þ2 2

σ2
1 þ σ2

1

þ 1

2
ln
σ2
1 þ σ2

1

2σ2
1σ

2
1

; ð3Þ

where m1, m2 and σ1 , σ2 are the class means and class vari-
ances, respectively. The JM distance has values from 0 to 2. A
value of 2 indicates a complete separability between two clas-
ses (i.e., mangrove forests and non-mangrove forests), and
lower values indicate a higher possibility of misclassified
classes.

This study also assumed that a mixed pixel in the study
region was composed of vegetation (i.e., mangrove forests,
fruit trees/orchards, rice fields) and a mixture of water and
wet soil. Thus, the unmixing model for a mixed pixel can be
expressed using the following equation (Sheng et al. 2001):

ρmix ¼ α� ρvegetation þ 1−αð Þ � ρwater; ð4Þ

where ρvegetation and ρwater are threshold values of reflectance
for vegetation and water pixels, respectively. A pixel with a
value of ρvegetation or above was identified as pure vegetation
(i.e., mangrove forests) and that with a value of ρwater or below
was pure water; anything in between was a mixture of both
vegetation and water or soil. Thus, the fraction (α) of a mixed
pixel between pure vegetation (mangrove forests) and pure
water or soil reflectance can be estimated using the following
equation:

α ¼ ρmix−ρwater
ρvegetation−ρmix

ð5Þ

The values of α range from 0 to 1, with 0 indicating a pure
water/soil pixel and 1 indicating a pure vegetation pixel. A

Data Pre-processing

Geometric correction

Reflectance normalization

Data Collection

Landsat data (1989, 1996, 

2009, 2014)

Land-use/cover (2000)

Google Earth imagery

Ground reference data

Mangrove Extraction

GBR calculation

Unmixing model

Accuracy Assessment

Error matrix (Khat, overall, 

producer and user accuracies)

Mangrove Change Analysis

Fig. 3 An overview of the methods used for investigating mangrove
forests in the study area
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hardening process was implemented using a threshold value to
convert a mixed pixel to a pure pixel in respect to two classes
of mangrove forests and non-mangrove forests. The threshold
value for each year data was obtained using 2000 pixels
(1000 pixels for mangrove forests and 1000 pixels for non-
mangrove forests) randomly extracted from the ground refer-
ence data (group-1). The ROC curve, which is a representation
of the trade-off between the false negative and false positive
rates for every possible cut-off, was used for threshold deriva-
tion. Eventually, threshold values of 0.704, 0.686, 0.653,
0.674, and 0.727 were obtained from ROC curves and used
for mangrove extraction of the data 1989 1996, 2003, 2009,
and 2014, respectively (Fig. 4).

Accuracy Assessment

The classification maps containing ‘salt-and-pepper’ noise
were removed using the majority filter (Lim 1990). Because
of the unavailability of land-use maps covering the study area
for 1989, 1996, 2003, 2009, and 2014, this study depended on
the ground reference data to perform the accuracy assessment
of the mapping results (Fig. 2). The ground reference data was
constructed in a way that we rechecked and updated areas of

mangrove forests that had not been changed during 1989–
2014 based on several reference sources including the 2000
digital LUC map, existing literatures and analogous LUC
maps, and Google Earth imagery. This ground reference
map was then converted into a raster form (30 m resolution)
and used to select samples for accuracy assessment of the
mapping results. A total of 1000 pixels (500 pixels for man-
grove forests and 500 pixels for non-mangrove forests) were
randomly extracted from this ground reference map for each
class to compare with those from the 1989, 1996, 2003, 2009,
and 2014 classification maps. The error matrix using the over-
all, producer, and user accuracies, and Kappa coefficient were
calculated to measure the classification accuracy.

Results and Discussion

Characteristics of Different Land-Use/Cover Classes

The JM distance processed for GBR indicated the well-
separability between mangrove forests and other LUC types
(i.e., rice field, fruit trees/orchards/settled areas, aquaculture
farms, and others such as built-up areas, mudflat, and salt
fields) (Table 2). The higher levels of separability were ob-
served for mangrove forests and others (JM=1.4), as well as
mangrove forests and aquaculture land (JM=1.4). The lower
value was observed for mangrove forests and rice field
(JM=1.3), and the lowest separability belonged to mangrove
forests and fruit trees/orchards/settled areas (JM = 1.2)

Fig. 4 The ROC curves obtained from the ground reference data were
used to determine thresholds used for mangrove classification of the data
1989 1996, 2003, 2009, and 2014, respectively

Table 1 Tasseled cap
coefficients for Landsat TM,
ETM+, and OLI at-satellite
reflectance

Blue Green Red NIR SWIR1 SWIR2

Landsat TM

Brightness 0.3037 0.2793 0.4743 0.5585 0.5082 0.1863

Greenness −0.2848 −0.2435 −0.5436 0.7243 0.084 −0.18
Landsat ETM+

Brightness 0.3561 0.3972 0.3904 0.6966 0.2286 0.1596

Greenness −0.3344 −0.3544 −0.4556 0.6966 −0.0242 −0.263
Landsat OLI

Brightness 0.3029 0.2786 0.4733 0.5599 0.508 0.1872

Greenness −0.2941 −0.243 −0.5424 0.7276 0.0713 −0.1608

Table 2 The JM distance between mangrove and other LUC classes
calculated for GBR

LUC classes Mangrove forest

Rice fields 1.3

Fruit trees/orchards/settled areas 1.2

Aquaculture farms 1.4

Others (e.g., mudflat, salt fields, built-up areas) 1.4
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because these LUC types (e.g., fruit trees and orchards) were
evergreen and they were planted along roads and scattered
over the study region. In general, the JM results suggested that
the use of GBR was sufficient to differentiate mangrove for-
ests from other LUC types.

Mapping Accuracies and Spatiotemporal Distributions
of Mangrove Forests

The mapping results for each year data were validated using
the ground reference data. A number of 500 pixels for each
class (i.e., mangrove forests and non-mangrove forests) were
randomly extracted from the ground reference data to compare
with those synchronized from the 1989, 1996, 2003, 2009,
and 2014 classification maps using a confusion matrix. The
comparison results indicated that the overall accuracies and
Kappa coefficients were respectively 90.6 % and 0.81 for
1989, 92.2 % and 0.84 for 1996, 92.6 % and 0.85 for 2003,
and 90.2 % and 0.8 for 2009, and 80.7 % and 0.81 % for 2014
(Table 3). Of 500 pixels used to measure the mapping accura-
cy in each class, the class of mangrove forests generally had
the producer accuracy level higher than 90%, in all cases. The
slightly lower producer accuracies of 90 % and 92.4 % were
respectively observed for 1989 and 2014, which were corre-
sponding to omission errors of 10 % and 7.6 %, respectively,
due to spectral confusion between mangrove and non-
mangrove classes during the classification. In general, the
mapping results could be affected by several factors, including
mixed-pixel issues and cloud cover. Mangrove forests in the
study region are shrubs, mostly distributed along shorelines
and estuaries. Patches of mangrove forests in some strips were
smaller than 50m and often fragmented by complex river/road
networks and small-scale aquaculture farms. The effects of
mixed-pixel issues could limit the discrimination of mangrove
forests due to spectral confusion between this class and asso-
ciate LUC types, especially when vegetation is sparse.
Because cloud cover commonly observed in the tropical re-
gion created challenges for collecting a set of cloud-free
Landsat images on the same day, this study used images ac-
quired during the dry season from January to March.
Although the histogram matching method was used for image

normalization to reduce spectral differences between Landsat
images, differences between atmospheric conditions of im-
ages may also exaggerate spectral variations within each
LUC type, subsequently causing the mapping errors. It was
also noted that the ground reference data used in this study
were prepared from existing LUC maps and the high resolu-
tion Google Earth imagery. The resolution bias between the
classification maps and the ground reference data due to spa-
tial resolution difference could also be an intrinsic character-
istic exaggerating the mapping errors. Overall, the results
achieved from this study confirmed the effectiveness of the
proposed approach for investigating the spatiotemporal
changes of mangrove forests in the study region based on
multi-temporal Landsat imageries.

The mapping results showed the spatiotemporal distribu-
tions ofmangrove forests in the study region for five particular
years of 1985, 1996, 2003, 2009, and 2015 (Fig. 5). In gener-
al, mangrove forests in the study region sheltered the coast-
lines, fringes of estuaries, and riverbanks associated with the
brackish water margin between land and sea, but more con-
centrated in the middle part of the study region because this
part was strictly managed by the local authorities as natural
reserves for biodiversity conservation. The mangrove forests
in the northern, eastern, and southern parts of the region were
relatively fragmented due to development of a number of ag-
riculture and aquaculture fields, especially small-scale shrimp
farms. During the Vietnam War (1964–1970), mangrove for-
ests in the study region were significantly destroyed due to
massive defoliant spraying (e.g., Agent Orange). After a de-
cade, mangrove forests in the region remained degraded al-
though reforestation efforts started in the 1980s. The smaller
area of mangrove forests was thus observed for 1989 (26,
447.8 ha), but increased afterwards in 1996 (30,437.8 ha),
2003 (30,679.4 ha), and 2009 (33,083.7 ha), mainly attributed
to the local government’s reforestation efforts. However, im-
pacts of coastal land-use change, especially aquaculture de-
velopment, caused a slightly loss of mangrove forests in 2014
(31,283.5 ha) (Fig. 6).

Changes in the Extent of Mangrove Forests

Multi-temporal changes in the extent of mangrove forests in
the study region between different periods (1989–1996,
1996–2003, 2003–2009, 2009–2014, and 1989–2014) were
investigated (Fig. 7). It was obvious that the impacts of
Vietnam War caused the remarkable loss of mangrove forests
during 1989–2014 (Table 4). In general, the overall change
within the study region during this 25-year period indicated
the loss of approximately 19.9 % of mangrove forests, while a
significant proportion of mangrove forests in the region
(44.2 %) was newly planted or rehabilitated. The lost area of
mangrove forests was mainly due to the conversion of man-
grove forests to other uses, especially the development of

Table 3 Results of accuracy assessment from the classification results
for each year data

Parameters Classification results

1989 1996 2003 2009 2014

Producer accuracy (%) 90.0 95.2 94.4 93.2 92.4

User accuracy (%) 91.1 89.8 91.1 87.9 89.4

Overall accuracy (%) 90.6 92.2 92.6 90.2 90.7

Kappa coefficient (%) 0.81 0.84 0.85 0.80 0.81
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Fig. 5 Spatial distributions of mangrove forests in Can Gio biosphere reserve: a 1989, b 1996, c 2003, d 2019, and e 2014
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aquaculture farms (Vannucci 2004) in which shrimp culture
was especially identified as a major cause of direct and indi-
rect loss of mangrove forests because of deforestation for
pond construction and changes in hydrology, sedimentation,
and water pollution. The newly added area of mangrove for-
ests was mainly attributed to the local government’s efforts to
restore areas of mangrove forests destroyed during the
Vietnam War (1962–1971).

The relative changes in the extent of mangrove forests were
also examined for each period within the study region. The
results indicated that the largest change was found during the
period 1989–1996. The area of mangrove forests converted to
non-mangrove forests was approximately 12.4 %, while ap-
proximately 32.4 % was newly planted or recovered at the
same time. The reason for this conversion was that shrimp
farming was popularly adopted in the Mekong River Delta,
South Vietnam during the 1980s owing to the availability of
brackish water suitable for shrimp aquaculture development
and the high prices of shrimp on the world market that created
considerable financial benefits to the local communities. The
conversion of mangrove forests to other uses was reduced
afterwards during the periods 1996–2003 and 2003–2009,
when only approximately 4.6 % and 4.8 % of mangrove for-
ests were respectively lost for other uses, in part, because of
the local government’s rehabilitation program to respectively
reforest approximately 15.1 % and 15.6 % at the same time.

During these periods, the decline in deforestation could be
partly attributed to better management strategies for mangrove
protection. The large proportions of the study region were
reforested or newly planted with mangrove forests because
under the decision of the International Coordinating Council
of the Program on Man and the Biosphere the study region
was nominated as a world’s biosphere reserve by the
UNESCO on 21 January 2000 (UNESCO/MAB 2000); as a
consequence, a new initiative was started in the context of
strong reforestation efforts in during the 1990–2000s. From
2009 to 2014, only 6 % of mangrove forests was newly
planted, while the loss of mangrove forests increased
(13 %), mainly due to pressing needs of economic

development and changes in international prices of shrimp
markets, thereby, reflecting in the rate of shrimp farm con-
struction in the region. Although the region during this period
was legally characterized as state lands officially managed by
governmental institutions during this period, the estuary coast-
al lowlands were de facto areas. Various management regimes
(ranging from private to common property and open access)
coexisted that allowed farmers to intensify shrimp
aquaculture.

Conclusions

The findings achieved from this study supported our mapping
approach for investigating multi-temporal changes in the ex-
tent of mangrove forests in Can Gio Biosphere Reserve during
periods 1989–1996, 1996–2003, 2003–2009, and 2009–2014.
The mapping results compared with the ground reference data
indicated that the overall accuracies and Kappa coefficients
were generally higher than 90 % and 0.8, respectively, in all
cases.When investigating changes ofmangrove forests during
this 25-year period (1989–2014), approximately 19.9 % of
mangrove forests were lost for other uses, especially aquacul-
ture development, while a significant effort was made to re-
habilitate around 44.2 % of mangrove forests. The remarkable
loss (12.4 %) and rehabilitation (32.4 %) were especially ob-
served during 1989–1996 due to development of aquaculture
farms and the local government’s reforestation efforts adopted
in the 1980s. The conversion ofmangrove forests to other uses
was reduced afterwards during the periods 1996–2003 and
2003–2009, when only approximately 4.6 and 4.8 % of man-
grove forests were respectively lost for other uses, in part due
to the government’s efforts to respectively reforest roughly
15.1 and 15.6 % at the same time. From 2009 to 2014, only
6 % of mangrove forests were newly planted, while the loss of
mangrove forests increased (13 %), owing to pressing eco-
nomic development and changes in international prices of
shrimp markets, thereby, reflecting in the rate of shrimp-

Fig. 6 Total areas of mangrove forest obtained from the classification for
five particular years 1989, 1996, 2003, 2009, and 2014

Table 4 Relative changes in the extent of mangrove forests between
1989–1996, 1996–2003, 2003–2009, and 2009–2014

Period Loss Increase

Ha % Ha %

1989–1996 2472.7 12.4 6462.7 32.4

1996–2003 1056.2 4.6 3460.6 15.1

2003–2009 1056.2 4.8 3460.6 15.6

2009–2014 3359.5 13.0 1559.3 6.0

1989–2014 3975.1 19.9 8810.8 44.2

The loss and increase of mangrove forests in percentage are calculated as:
(sj− si)/si× 100, where sj and si are the areas of the mangrove forests and
non-mangrove forests classes in the ith and jth years, respectively
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Fig. 7 Changes in mangrove forests between: a 1985–1996, b 1996–2003, c 2003–2009, d 2009–2014, and e 1989–2014
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farm construction in the region. This study demonstrates the
effectiveness of the proposed methods used for investigating
spatiotemporal changes of mangrove forests in the study re-
gion using multiple Landsat imageries. The results obtained
from this study could provide new insights of spatiotemporal
changes of mangrove forests over decades that may contribute
to evaluate successful land-use plans for coastal development
and conservation of mangrove ecosystems in the region
simultaneously.
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