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Abstract Constructed wetlands have been used to treat
wastewater because of their efficiency at removing fecal indi-
cator bacteria (FIB), their low cost, and their ease of mainte-
nance. This study investigates the ability of a surface-flow
wetland (0.03 ha in size), constructed in the rural village of
Elsah, Illinois, to treat FIB pollution. The objectives of this
study were to: 1) compare mean FIB concentrations (specifi-
cally thermotolerant coliforms [TTC] and enterococci [ENT])
in the wetland during low versus high precipitation condi-
tions; 2) compare mean FIB levels among different sampling
locations along the wetland’s treatment gradient; and 3) deter-
mine whether FIB and other environmental variables were
significantly correlated. Both TTC and ENT levels increased
during storm events, likely due to increased mobilization of
sediment. Both TTC and ENT were significantly lower in
zones located further from the inflow point. The strongest
correlation was observed between TTC and ENT, and both
parameters were strongly correlated with precipitation.
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Introduction

Although nonpoint source pollution is the most well-known
pollution problem in the Mississippi River watershed (Karr
and Dudley 1981; Young et al. 1989; Pereira and Hostettler
1993), point source pollution remains a concern, despite sig-
nificant progress since the passage of the 1972 Clean Water
Act (Sparks 2010). Even today, the Mississippi River has not
reached Bswimmable^ and Bfishable^ levels (National Park
Service 2014), in part due to contamination by point-source
pathogens (Russell and Weller 2013). The exact sources of
these pollutants is still being determined (National Park
Service 2014), but it is known that bacterial pollution gener-
ally comes from fecal matter, which can originate from
malfunctioning septic systems (Russell and Weller 2013).

Large river systems are difficult to study (Mihuc and
Feminella 2001) and their problems are difficult to change
(Gore and Shields 1995), so some studies have examined
small tributaries to major river systems as indicators of how
to solve pollution problems in the larger river system (Royer
et al. 2006). Small streams are also valuable in their own right,
as they provide ecosystem services such as linkages to down-
stream ecosystems, floodwater and groundwater storage, nu-
trient and sediment removal (Cappiella and Fraley-McNeal
2007), and wildlife habitat (Cappiella and Fraley-McNeal
2007; Pracheil et al. 2013). As the site of one such small
tributary (Elsah Creek), Elsah, Illinois has the potential to
contribute to pollution remediation in the larger Mississippi
watershed.

A recently constructed wetland in Elsah was expected to
provide water quality benefits for runoff inflows (List 2014).
Prior to construction, runoff from Elsah village flowed down
steep hills directly into Elsah Creek, a small tributary of the
Mississippi River. Students and professors at Principia
College have analyzed the water quality of Elsah Creek since
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1994, and their data suggest that the creek’s water is highly
contaminated by fecal indicator bacteria (FIB) (J. Cornelius,
pers. comm. 2014). Because Elsah lacks a sewage treatment
plant, and septic tanks are the primary option for sewage treat-
ment in Elsah, it is generally assumed that high FIB levels in
Elsah Creek are caused by malfunctioning or otherwise inad-
equate septic systems (J. Cornelius, pers. comm. 2014). As a
result of its location between these FIB sources and Elsah
Creek, the wetland (BElsah Wetland^ from this point on) has
potential to filter out FIB before they flow into the creek and
eventually the Mississippi.

The objectives of this study were to: 1) compare mean FIB
concentrations (specifically thermotolerant coliforms [TTC]
and enterococci [ENT]) in the wetland during low versus high
precipitation conditions; 2) compare mean FIB levels among
different sampling locations along the wetland’s treatment
gradient; and 3) determine whether FIB and other environ-
mental variables were significantly correlated. It was hypoth-
esized that: 1) FIB concentrations would increase during pe-
riods of high rainfall (stormflow) as compared to low rainfall
(baseflow); 2) FIB concentrations would decrease with dis-
tance from the wetland’s inflow point; and 3) there would be
an association among environmental variables and FIB. These
objectives were testing using a variety of precipitation, water
level, and water quality monitoring techniques during the fall
of 2014.

Methods

Site Description

Elsah Wetland is classified as a surface-flow constructed wet-
land (Mitsch and Gosselink 2007) or a free water surface
(FWS) wetland (Kadlec and Wallace 2009), and is located in
Elsah, Illinois, USA. The wetland’s surface area is approxi-
mately 0.03 ha, with a width of approximately 15 m and a
length of approximately 25 m. Average depth in the deepest
part of the wetland was approximately 24.4 cm during the
study period. Retention time was not quantified, but was esti-
mated to vary between less than 1 day to a few weeks. Runoff
from Elsah Village flows down steep hills and through a con-
crete drainage ditch that terminates in the wetland. The wet-
land’s location at the end of this runoff stream, and immedi-
ately adjacent to Elsah Creek, makes it a potential filter for
runoff before it flows into the Mississippi River.

Prior to the start of sampling, Elsah Wetland was divided
into four Bzones^ from which samples were collected, each
successive zone further from the inflow point. Zone 1 was
located nearest the inflow stream; Zone 2 was located after
the transition point between the inflow stream and wetland,
where topography leveled and emergent plants were notice-
able; Zone 3 was located in the middle of the wetland; and

Zone 4 was located in the outflow area bordering the creek
(Fig. 1). During baseflow conditions, the barrier at the wet-
land’s outflow point prevented wetland water from entering
the creek (Fig. 1).

Sampling Methods

From 18 September to 7 December, 2014, the wetland was
sampled five times during baseflow conditions (little to no
precipitation 24–48 h before sampling) and five times during
stormflow conditions (precipitation 24–48 h before sampling),
for a total of ten sampling events. Each sampling event pro-
duced four grab samples of water collected from the four
respective zones. Grab samples were kept at 4 °C and ana-
lyzed within 24 h of collection. Indicator bacterial concentra-
tions undergo diurnal variation, so while not all grab samples
were collected at the same time each day due to timing con-
straints, all samples were obtained between the hours of 11 am
and 5 pm, when little variation in bacterial concentration
should have occurred (Kim et al. 2009). Each sampling event
included zone-by-zone measurements of water temperature,
conductivity, total dissolved solids (TDS), dissolved oxygen
(DO), pH, and oxidation-reduction potential (ORP) with a
multiprobe (Model 556, YSI, Inc., Yellow Springs, OH).
Water level was recorded from a staff gauge installed between
Zone 2 and Zone 3.

Water Sample Analyses

Sterile 120 mL IDEXX bottles containing sodium thiosulfate
were used to collect grab samples, and four additional, iden-
tical bottles were designated for making dilutions of each grab
sample. For the purpose of thermotolerant coliform (TTC)
detection, two of the four bottles received IDEXX Colilert®-
18 indicator, and each of the two received a different water
sample dilution (1/10 and 1/100, respectively). For the pur-
pose of enterococci (ENT) detection, the remaining two bot-
tles received IDEXX Enterolert® indicator and the same re-
spective sample dilutions.

Each dilution was transferred to an IDEXX Quanti-Tray®/
2000 and incubated according to IDEXX procedures: trays
containing Colilert®-18 were incubated in a Binder® oven
for 18 h at 44.5 °C, while trays containing Enterolert® were
incubated for 24°h at 41 °C. Blanks for Colilert®-18 and
Enterolert® were included for each round of incubation.
After incubation, Most Probable Numbers (MPNs) for TTC
and ENTwere determined using the IDEXX MPN table.

Statistical Analyses

Precipitation 24 and 48 h prior to each event was obtained
from the nearest USGS weather station (USGS 05587450
Mississippi River at Grafton, IL, waterdata.usgs.gov), which
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was located about 8 km from the wetland. Two-way ANOVAs
(IBM SPSS Statistics software, Version 19, IBM, New York,
NY) were applied to the FIB (TTC and ENT) data, to deter-
mine whether FIB concentrations were related to position in
the wetland (represented by BZone^), and/or to precipitation
(represented by BFlowRegime^). FIB data was log-
transformed to meet ANOVA requirements, and although
the log-transformed ENT data missed the normality cutoff
according to the Kolmogorov-Smirnov test, ANOVA was
used because it is robust to departures from normality, espe-
cially when sample sizes are large (n>30). Both the Zone and
FlowRegime ANOVA models were significant, but because
there was no interaction between zone and flow regime, data
was pooled for mean comparison among zones and between
flow regimes (Fig. 3). A post-hoc Tukey test was used to
compare means pooled by zone. Because flow regime only
had two categories (baseflow and stormflow), flow regime
data was not analyzed with a Tukey test, which requires that
a parameter have at least three categories. Instead, flow regime
mean comparison was computed with a Student’s t-test
(n<30) in Microsoft Excel. Associations between FIB and
other environmental variables were calculated using
Spearman Correlation in SPSS.

Results

Precipitation and Water Levels

Precipitation showed high temporal variability. During the
first stormflow sampling event (10/2/14), 9.5 cm of rainfall
accumulated in the 24 h prior to sampling (Fig. 2), while mean
rainfall for the other four storm events was only 1.07 cm.
During the fourth stormflow event (10/30/14), only
0.058 cm of rain accumulated (Fig. 2). Water level also

showed high temporal variability, but water level did not nec-
essarily correspond to rainfall. For instance, although peak
water level coincided with peak rainfall during the heaviest
storm on 10/2/14, water level on 9/25/14 was very high, at
33 cm, despite an absence of antecedent rainfall (Fig. 2).

Fecal Indicator Bacteria

Two-way ANOVAs for both Log(TTC) and Log(ENT) were
statistically significant (p<0.1). For Log(TTC), there was no
interaction between zone and flow regime (Zone*FlowRegime
p=0.69), but taken separately, zone and flow regime had sig-
nificant effects (p = 0.00 and 0.01, respectively). For
Log(ENT), there was also no interaction between zone and
flow regime (Zone*FlowRegime p=0.77), but as with TTC,
zone and flow regime taken separately had significant effects
(p=0.06, 0.01, respectively). Post-hoc Tukey tests showed sig-
nificant differences between Zones 1 and 3, 1 and 4, 2 and 4,
and 3 and 4 in terms of mean TTC concentration and a signif-
icant difference between Zone 1 and Zone 4 in terms of mean
ENT concentration (Fig. 3). For both TTC and ENT, Zone 4
concentrations were low compared to those of other zones
(Fig. 3). Student t-tests revealed significant differences between
stormflow and baseflow FIB concentrations: water had signif-
icantly higher mean TTC and ENT concentrations during
stormflow conditions (Fig. 3).

Spearman correlation analyses revealed many significant
relationships among FIB and environmental variables
(Table 1). For TTC, the highest correlation was observed with
ENT (0.69), followed by Precip 48 (0.53) and Precip 24
(0.47). ENT also had the highest correlations with Precip 48
(0.65) and Precip 24 (0.51), as well as a significant negative
relationship with pH (-0.41) (Table 1).

Discussion

Hydrology and Fecal Indicator Bacteria

The hypothesis that FIB concentrations would vary from
baseflow to stormflow was supported in the case of both
TTC and ENT. As key contributors to wetland function, pre-
cipitation and water level have potentially large impacts on a
wetland’s ability to remove contaminants such as FIB. In
Elsah Wetland, mean concentrations for both TTC and ENT
were significantly higher during stormflow conditions
(Fig. 3). Additionally, precipitation, both 24 and 48 h before
sampling, was significantly correlated to TTC (0.47 and 0.53,
respectively) and ENT (0.51 and 0.65, respectively) (Table 1).

While some sources suggest that rainfall dilutes contami-
nants (Kadlec 1989; US EPA 1999; Strauch et al. 2014), most
hydrology studies have observed increases in FIB concentra-
tions with increases in rainfall. This relationship has been

Fig. 1 Aerial view of ElsahWetland. Borders between Zone 2 and 3 and
Zone 3 and 4 were determined by tree cluster location. The border
between Zone 1 and Zone 2 coincided with a change from steep to flat
topography, a broadening of the wetland, and the presence of emergent
aquatic macrophytes beginning in Zone 2
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observed in studies of freshwater creeks and rivers (Crabill
et al. 1999; Dorner et al. 2006; Rowny and Stewart 2012;
Lee et al. 2014) as well as coastal waters (Evanson and
Ambrose 2006; Fries et al. 2006; Lee et al. 2006; Fries et al.
2008; Dwight et al. 2011; Walters et al. 2011). Some of these
studies specifically note that this positive relationship is gen-
erally caused by storm events re-suspending sediment-bound
bacteria into the water column (Crabill et al. 1999; Dorner et
al. 2006; Fries et al. 2006; Lee et al. 2006; Fries et al. 2008;
Walters et al. 2011). The FIB-rainfall relationship appears less
frequently in the wetland literature, although Birch et al.
(2004) found that rainfall reduced a treatment wetland’s
TTC removal efficiency (with the most intense storms causing
a large drop in TTC removal efficiency), and that elevated
TTC concentrations coinciding with rainfall were likely due
to particle re-suspension. Mitsch and Gosselink (2007) con-
firm this effect, noting that intense storms generally cause
sudden outflows of contaminants in wetlands. In Elsah, an
unusually intense storm surrounding the 10/2/14 sampling
event corresponded to very high FIB concentrations, and
may have skewed overall FIB data for storm events (Fig. 3).

Water level did not always increase in proportion to precip-
itation, probably because water level was manipulated as part
of an adaptive management plan, for which the wetland was
either partially drained or supplemented with water from
Elsah Creek to deal with herbivory from a muskrat (Ondatra
zibethicus) (M. Rhaesa, personal communication, December
7, 2014). However, precipitation and water level were signif-
icantly correlated (Table 1), which implies that the adaptive
management plan did not completely counteract the effects of
precipitation. Water level may have increased with storm
events as increased rain caused the creek to overflow into
the wetland, thereby increasing water level.

Although ENTwere positively correlated with water level,
TTC had no significant correlation with water level (Table 1).

One explanation for this result is that ENTand TTC may have
originated from different sources. A study of bacterial markers
by Flood et al. (2011) suggests that ENT is more closely re-
lated to animal waste sources than to human sewage. Given
that Elsah Creek passes through rural areas, presumably with
wildlife exposure, wildlife may have contributed to elevated
ENT levels in the creek. Viau et al. (2011) suggested that ENT
may come from agricultural land, which would support the
idea that Elsah Creek contains high ENT, as the creek passes
through an agricultural watershed. If high ENTconcentrations
occurred in Elsah Creek, and wetland water level increased
with creek overflow, then increases in water level solely due to
creek water may have coincided with elevated ENT concen-
tration regardless of the factors increasing TTC concentration.

Zone and Fecal Indicator Bacteria

The hypothesis that bacteria levels would vary among the four
zones was supported. The two-way ANOVA showed that Zone
was a significant factor affecting both TTC and ENT, with the
lowest TTC and ENT concentrations observed in Zone 4
(Fig. 3). Most constructed wetland studies, instead of compar-
ing FIB concentrations among zones, have focused exclusively
on comparing FIB concentrations in influent and effluent, and
have noted a decrease in FIB concentration once water passes
through the wetland (Davies and Bavor 2000; Coleman et al.
2001; Knowlton et al. 2002; Steer et al. 2002; Arias et al. 2003;
Hench et al. 2003; Karathanasis et al. 2003; Solano et al. 2004;
Ou et al. 2006). The overall water quality improvement ob-
served in ElsahWetland is therefore consistent with the general
scientific consensus.

Hydrology and wetland studies generally assume that FIB
bind to soil particles in the water and are immobilized as soil
particles settle (Davies and Bavor 2000; Vymazal 2005;
Hathaway et al. 2011). Zone 4 may have experienced

Fig. 2 Precipitation data from the
Grafton Weather Station. Arrows
represent sampling events. BB^
indicates a baseflow event, while
BS^ indicates a stormflow event

542 Wetlands (2016) 36:539–546



particularly high rates of sedimentation, and therefore FIB im-
mobilization. Zone 4 was substantially narrower and shallower
than other zones (the only exception being Zone 1, the runoff
channel itself, which is not part of the wetland). Because parti-
cles settle out of the water column more easily when the basin
cross-section is small (O’Green and Bianchi 2015), Zone 4’s
small cross sectionwould have encouraged FIB-containing par-
ticles to settle and escape detection by water sample analysis.
Increased exposure to UV radiation may have contributed to
low FIB concentrations in Zone 4. UV radiation is a major
cause of FIB mortality in water (Manios et al. 2006; Boukef

et al. 2010; Cho et al. 2010), including wetlands (Richter and
Weaver 2003). Because water was shallowest in Zone 4, UV
radiation may have reached FIB associated with submerged
biofilms and sediment most easily. Confirming this effect was
beyond the scope of this study, and is recommended as a topic
for future research. Bacterial adsorption to biofilms, an impor-
tant removal mechanism for FIB in constructed wetlands (Stott
and Tanner 2005; Osem et al. 2007; Kalibbala et al. 2008;
Lohay et al. 2012; Mulling et al. 2013; Morató et al. 2014),
may also have increased FIB removal in Zone 4 due to high
plant densities there.
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Fig. 3 Mean TTC comparisons
among zones (i) and between
flow regimes (ii), and mean ENT
comparisons among zones (iii)
and between flow regimes (iv).
Figures reflect the results of post-
hoc Tukey tests ((i) and (iii)) and
Student’s t-tests ((ii) and (iv)).
Error bars represent the standard
error of the mean. Different letters
indicate a statistically significant
difference among means

Table 1 Spearman correlation coefficients for significant (p-value > 0.1) correlations among fecal indicator bacteria and environmental variables

Fecal Coliform
(MPN 100 mL−1)

Enterococci
(MPN 100 mL−1)

Temperature
(oC)

Conductivity
(mS cm−1)

TDS DO
(Mg L−1)

pH ORP Precip
24 (cm)

Precip
48 (cm)

Enterococci 0.69
Temperature NS NS
Conductivity NS −0.29 −0.36
TDS NS −0.28 −0.36 1.0
DO NS NS NS NS NS
pH NS −0.41 0.35 0.29 0.29 NS
ORP 0.33 NS 0.52 −0.45 −0.46 NS NS
Precip 24 0.47 0.51 NS −0.63 No Data NS NS 0.30
Precip 48 0.53 0.65 NS −0.59 No Data NS NS 0.44 0.82
Water Level NS 0.39 0.40 −0.43 No Data NS NS NS 0.47 0.41

BNS^ means Bnot significant.^ (TDS Total Dissolved Solids, DO dissolved oxygen,ORP oxidation reduction potential, Precip 24: precipitation amount
in the last 24 h, Precip 48: precipitation amount in the last 48 h)
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Zone 4 likely experienced greater treatment due to its position
along the wetland’s treatment gradient. As hydraulic residence
time (HRT) increases, bacteria exposure to treatment also in-
creases (Arias et al. 2003; Karathanasis et al. 2003; Ou et al.
2006; O’Green and Bianchi 2015). While this study did not
quantify retention time, estimates of approximate residence time
in each zone were made based on observation. Water movement
in the wetland was sluggish to nonexistent during baseflow con-
ditions, as Zone 1 inflows are shallow or intermittent, but more
consistent water movement in Zone 1, triggered by storm events,
presumably forces water down the mild elevation gradient to
Zone 4. In this case water in Zone 4 represents the longest
HRT in the wetland; water must take a longer path to get to
Zone 4, and is unlikely to escape due to the overflow barrier,
especially once the wetland reverts to baseflow conditions
(Fig. 1). Periodic diversion of water into the wetland from
Elsah Creek also triggered water movement towards Zone 4.
Ripples on thewetland’s surface from these inputswere observed
as far along the gradient as Zone 3, but Zone 4 always appeared
quiescent, probably because of its narrow basin morphology and
dense vegetation. This lack of disturbance in Zone 4 likely con-
tributed to low FIB concentrations, as sediment-bound FIB were
not kept in suspension by fast-moving creek diversions.

Other Environmental Variables and Fecal Indicator
Bacteria

The hypothesis that there would be an association between FIB
and environmental variables was partially supported.
Thermotolerant coliforms were positively correlated to ORP;
ENT were negatively correlated with pH; and TTC and ENT
were positively correlated to each other (Table 1). A number of
studies have found similar results. For example, studies of river
water quality found positive relationships between TTC and
ENT (Cabral and Marques 2006; Suzuki et al. 2012), and the
positive correlation observed between TTC and ORP (Table 1)
aligns with Belmont et al.’s (2004) results, in which Eh (related
to ORP) decreased as water moved through a wetland.

Several other studies obtained results that differ from those
observed in Elsah Wetland. The lack of correlation between FIB
and temperature in Elsah Wetland, the opposite of the trend ob-
served in other studies (Alcalde et al. 2003; Walters et al. 2011),
was likely due to the short sampling period, which covered only
the fall season. Other studies found that FIB removal in wetlands
changed with the seasons (Shellenbarger et al. 2008;
Papadopoulos et al. 2011; Pan and Jones 2012), so future studies
should examine Elsah Wetland over an entire year or multiple
years. Belmont et al. (2004) and Ou et al. (2006) observed a
reduction in constructed wetland pH when comparing influent
to effluent, the opposite trend of that observed in Elsah Wetland,
in which pH increased with ENT reductions as water moved
through the wetland (Table 1). pH is a complex parameter to
study as many variables interact with pH, so the significance of

this discrepancy should be examined further by follow-up re-
search. Studies have shown an increase in DO as water moves
through a treatment wetland system (Hench et al. 2003; Belmont
et al. 2004; Ou et al. 2006). In Elsah Wetland, however, no
correlation between DO and FIB was observed (Table 1).
Future research could approach this issue by examining the wet-
land’s hydrologic dynamics in more detail. Suter et al. (2011)
found that turbidity was positively correlated to ENT, so the
negative correlation between TDS (a component of turbidity)
and ENT observed in Elsah Wetland was unexpected (Table 1).
Because turbidity and TDS measure different aspects of water
quality, future research should measure turbidity directly, espe-
cially given the importance of turbidity for predicting pollution
discharge following storm events (Struck et al. 2008).

Limitations and Conclusions

The specifics of constructed wetland FIB removal mechanisms
are not well understood (Stottmeister et al. 2003), and con-
structed wetlands have been compared to Bblack box^ systems
involving unknown biogeochemical transformations (Haberl et
al. 2003). This study seeks to shed light on the Bblack box^ as it
applies to small, surface-flow constructed wetlands, by going
beyond inflow versus outflow comparisons to address changes
in FIB and other water quality parameters along a treatment
gradient. However, as evidenced by the complex results obtain-
ed in the correlation analysis, future studies should continue to
examine the biogeochemistry and hydrology of the wetland in-
depth, and should consider alternative testing methodologies
that could provide data on precise movements and sources of
FIB. IDEXX methodology is EPA-approved (US EPA 2003)
and is easy to use, making it an ideal method for a preliminary
study such as this one. However, alternative methods may be
preferable for future research (see Baker and Herson 1999). For
instance, the microbial source tracking approach uses genetic
markers to track specific contaminants as they move through
water (e.g. Flood et al. 2011; Lee et al. 2014; Morató et al.
2014; Ridley et al. 2014), and could be applied to tracking
the movement of FIB.

From a management perspective, further research is recom-
mended to address the consistent failure of Elsah Wetland to
meet water quality standards. Even in low-FIB Zone 4, ENT
MPNs often exceeded the recommended surface water stan-
dard of 33 MPN/100 mL (US EPA 1986), while TTC concen-
tration often exceeded Mitchell and Stapp’s (1997) recom-
mendation that treated sewage effluent contain no more than
200 TTC colonies/100 mL. Constructed wetlands’ failure to
meet water purification guidelines is documented in the liter-
ature (e.g. Belmont et al. 2004), highlighting the fact that most
treatment wetlands are designed to Bpolish^ wastewater rather
than remove high concentrations of sewage contamination
(Solano et al. 2004). Additionally, Mitsch and Gosselink
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(2007) caution that constructed wetlands using natural sys-
tems for treatment may have unpredictable results. Elsah
Wetland was no exception, as FIB levels fluctuated among
sampling events. Given this water quality variability, a man-
agement plan for Elsah Wetland should utilize a model to
predict FIB concentration, such as the commonly used first-
order decay model (see Wong and Geiger 1997; Struck et al.
2008). Despite its limitations, Elsah Wetland is an important
addition to a community for which wastewater treatment and
septic tank monitoring is currently unfeasible. Given its status
as a constructed-created wetland hybrid, with few controls on
its operation, the pollution remediation observed in Elsah
Wetland suggests that relatively low-cost treatment wetlands
can be effective. Installing an additional wetland along the
same inflow stream or elsewhere in the village may provide
sufficient FIB removal to enable Elsah Wetland outflows to
meet EPA standards.
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