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Abstract Based on long-term NDVI (Normalized Difference
Vegetation Index) derived from Global Inventory Modeling
and Mapping Study (GIMMS) and daily meteorological ob-
servations from 14 stations in the Poyang Lake Basin, this
study investigated the relationship between vegetation varia-
tion and climatic extremes during 1982–2006. Ten typical
indices were adopted to describe climatic extreme, including
two precipitation-related and eight temperature-related indi-
ces. Correlation analysis shows that monthly averaged
NDVI variations are generally determined by temperature
but not precipitation extremes. Positive correlations appear
between NDVI and temperature indices, and the correlations
are more significant in spring and autumn. Significant neg-
ative correlations are found in summer and winter be-
tween NDVI and precipitation-related indices. In addi-
tion, spatial heterogeneity analysis shows that NDVI is
more vulnerable to climate change for the middle basin
than other regions. Finally, we demonstrate that NDVI
can currently responds to temperature extremes or with
a lag of 1 month. With respect to precipitation extremes, the
strongest response may occur 2 months later. Our study high-
lights the role of climate extremes to the NDVI, and is helpful
to improve the understanding of vegetation vulnerability to
climate fluctuations.

Keywords Climate extremes .Monthly . NDVI . Poyang
Lake Basin

Introduction

There is a general agreement that global warming and related
changes in the water cycle are likely to enhance the frequency
and severity of extreme climate events (Holmgren et al. 2006;
Wallace et al. 2014; Tao et al. 2014), which have already
caused more severe floods and droughts (Kerr 2003;
Schuster et al. 2012; Woodward et al. 2014; Kim et al.
2014), and subsequent significant impacts on natural ecosys-
tems and human societies (Hasson et al. 2009; Rocklov and
Forsberg 2009; Frank et al. 2015). A current view is that
extreme climate events trigger vegetation shifts, as these
events can induce generalized mortality disrupting a situation
in which vegetation would either remain stable or follow suc-
cessional replacement in equilibrium under stable climate con-
ditions. There are important challenges imposed by the need
of long-term studies, but a research agenda focused on the
condition and inertia of vegetation under extreme events is
well suited to understand the variety of responses (Lloret
et al. 2012). Recently, long-term remote sensing data on spa-
tial scales of sub-meter (LiDAR) to kilometers (AVHRR) pro-
vide a consistent and repeatable measurement for capturing
the effects of many processes causing vegetation changes
(Hui et al. 2008; Verbesselt et al. 2010). The Normalized
Difference Vegetation Index (NDVI) is a widely used index
characterizing vegetation growth conditions due to its close
correlation with the fraction of photosynthetically active radi-
ation absorbed by plant canopies, the Leaf Area Index (LAI),
the potential photosynthesis and the biomass amount.
Vegetation can be differentiated from water, cloud, snow and
other objects by the reflectivity differences of the near-infrared
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and red wave bands (Liu et al. 2012). It can also reduce most
irradiance changes relative to instrument calibration, sun an-
gle, terrain, cloud shadow and atmospheric conditions
(Tucker, 1979; Crippen 1990). Thus, the NDVI is a good
proxy for evaluating the potential links of the variability in
regional ecosystems and local ecotones with the spatio-
temporal variability to climate conditions (e.g., Tourre et al.
2008; Koepke et al. 2010; Zhang et al. 2013; Frost et al. 2014).

Accordingly, increasing concern on extreme climatic
events has triggered extensive research on vegetation dynam-
ics, especially the relationship of the NDVI to climatic indices
(e.g., Wang et al. 2010; Van Asch and Hoek 2012;
Shevyrnogov et al. 2013). Actually, the impacts of climate
changes on vegetation growth are diverse and not constant.
Numerous studies have validated the responses of NDVI to
climatic changes, and concluded that they differed among
vegetation types (Breda et al. 2006; John et al. 2013). For
example, Li and Tao (2000) demonstrated that correlation be-
tween annual NDVI and annual precipitation stronger over
grasslands than over areas covered with shrubs and forests.
Reichstein et al. (2013) also proposed that there were specific
anticipated effects of climate extremes on forests, peatlands,
grasslands, and croplands depending on the type of
ecosystem. Liu et al. (2013) analyzed vegetation extremes of
eight biomes in Amazonia, and found that extreme low
precipitation shows the strongest correlation with declines in
temperate broadleaf forest and temperate grassland.

Previous studies found that the vegetation type is an impor-
tant factor in the strength of the correlations between the NDVI
and climate indices. The sensitivity of different biomes to cli-
matic changes has been proven to have different response times
which might be the consequence of a more lasting or even
profound impact after a certain time lag. Valladares et al.
(2007) claimed that physiological and developmental responses
to temperature shift of the vegetation (organism) from normal
acclimation required a few days to weeks. Cavender-Bares and
Bazzaz (2000) proposed that adult trees had a suit of
morphological and physiological traits that could attenuate the
impact of severe conditions. Miriti et al. (2007) believed facil-
itative interactions varied throughout the different life-history
stages, which in turn might exhibit different sensitivity to ex-
treme climatic events. Knowledge of dominant time lag be-
tween vegetation and climate extremes might be helpful to as-
sess the resistance and resilience of vegetation and improve our
understanding of vegetation vulnerability to climate change.
However, the delayed responses of vegetation to climate ex-
tremes variation and the mechanisms are poorly understood.

Despite several efforts to evaluate changes in the climate
indices and their impacts on NDVI, climate conditions of re-
gions unobserved are usually predicted using limited meteo-
rological datasets in previous studies. Interpolation methods
are always used based on the hypothesis of spatial homoge-
neity. But climate conditions generally bear high uncertainty,

because they are jointly affected by complicated topography,
land use, human activity and other factors. Moreover, most
former studies concentrated on several common climate
indicators. How the changes in climate extremes affect
NDVI remains unknown and require further investigation.

The Poyang Lake Watershed is one of the most frequently
affected areas by a variety of flood and drought events in
China, and is well known for its ecological and economic
importance (Guo et al. 2008; Zhang et al. 2012). The
Poyang Lake Basin is located in Jiangxi Province, which is
the center of China’s rice growing region. During severe flood
events, around 10,000 km2 of farmland and rural areas are still
inadequately protected by levees (Shankman et al. 2006).
Some 10 million people are at risk of being affected by floods
and droughts. Historical severe drought and flood events have
caused huge economic losses, numerous fatalities, and serious
damages to rural and urban areas surrounding Poyang Lake.
The Poyang Lake Basin is famous for abundant biomes,
which, for example, provide sufficient bait and natural habitat
for hundreds of thousands of migrating birds. The dramatic
changes in precipitation and temperature over the Poyang
Lake Basin play an important role in shaping the vegetation
ecosystem (Kanai et al. 2002). The knowledge of the severity
and spatial patterns of such ecological impacts becomes cru-
cial (Seneviratne et al. 2012). The Poyang Lake Basin has
experienced historical changes in climate conditions and veg-
etation cover, and thus provides an excellent study site.

At present, the temporal and spatial patterns of the re-
sponses of the NDVI to climate extremes have not been in-
vestigated for the Poyang Lake Basin. Therefore, the three
objectives of this research are to: (1) investigate the dominant
effects of monthly climate extremes on the NDVI for the pe-
riod 1982–2006; (2) estimate the temporal and spatial hetero-
geneity of the relationship between typical climate extremes
and the NDVI; and (3) analyze if Blag effects^ between cli-
mate extremes and the NDVI exist.

Datasets and Methodology

Study Area

The Poyang Lake is located in the northern parts of Jiangxi
province, China, and connected to the south bank of the mid-
dle and lower reaches of the Yangtze River (Wang et al. 2012).
Poyang Lake is fed by the inflows of five tributaries
(Ganjiang, Fuhe, Xinjiang, Raohe and Xiushui) and dis-
charges into the Yangtze River through a narrow outlet located
in Hukou (Fig. 1). The lake has a drainage basin area of 162,
225 km2, about 97 % of Jiangxi province (Shankman and
Liang 2003). The wide alluvial plain is surrounded by hills
and mountains with a maximum elevation of around 2200 m
above mean sea level. In recent decades, the lake and the
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surrounding catchments have suffered from frequent occur-
rences of droughts and floods, especially in the 1990s and
2000s (Wang et al. 2008; Min et al. 2011).

Located in the core area of the Poyang Lake Basin is the
Poyang Lake Wetland, which has been registered as a Ramsar
wetland site of international importance, in 1992 (Zhang et al.
2012). There exists abundant wetland vegetation in and
around the area, while the hills and mountains in the east,
west, and south are covered by subtropical forest. The central
area of the Poyang Lake Basin is relatively flat and mainly
used for farming (mainly crops are rice and oilseed rape)or for
urban dwellings. Hence, the vegetation in this area is often
affected by human activities. Usually, shrubs and perennial
or annual grasses (e.g. Carex cinerascens, Triarrhena
lutarioriparia and Phragmites australis) cover the floodplains
around the lake. The amount of biomass in the flood prone
areas is often affected by the water level fluctuation of the lake
(Liao et al. 2013). According to the generalized NDVI, the
plants start growing rapidly in May, and the biomass peaks in
August and September (Fig. 2).

The major growth period of the vegetation in the Poyang
Lake Basin takes place in spring and summer with influences
from the subtropical monsoon. The monthly average tempera-
ture ranges from 5.8 °C in January to 28.7 °C inAugust (Fig. 2).
The annual average precipitation is about 1712 mm. There is a
significant transition of monthly precipitation in June, when it
decreases dramatically after that. With respect to the annual
cycle, about 54.2 % of the total precipitation falls in March to
June, but only 15.9 % occur from October to the next January.

Datasets

Monthly characteristics of the plants are closely related to
characteristics of the annual cycle of weather patterns, there-
fore changes in plant phenological events may signal impor-
tant year-to-year climatic variations. The land surface condi-
tions (1982–2006) of the Poyang Lake Basin are derived
using the remote sensing data from the Advanced Very High
Resolution Radiometer (AVHRR), provided by the Global
Inventory Modeling and Mapping Study (GIMMS) group of

Fig. 1 Topography, location of the 14 meteorological stations, and the river network (containing five main tributaries: Ganjiang, Fuhe, Xinjiang, Raohe
and Xiushui) of the Poyang Lake Basin
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NASA (Tucker et al. 2005). The final output have been
screened for large-view angles and clouds, and partially
corrected for atmospheric effects (Gurgel and Ferreira 2003).
It is worthy noting that GIMMS NDVI provides biweekly
composite NDVI, by applying a maximum value compositing
(MVC) algorithm. It is believed that MVC algorithm can
largely reduce effects of atmosphere and land anisotropy.

The monthly NDVI has been generated from the processed
biweekly NDVI composites. TheMVC procedure was used to
minimize the effects of cloud contamination and to reconstruct
the NDVI to a monthly time series. In this study, the monthly
NDVI dataset with a spatial resolution of 8 km for a time
period from January 1982 to December 2006 is used to inves-
tigate the vegetation characteristics. There are usually two
ways to match remote sensing data and site observations.
The first way is to extract remote sensing data according to
site coordinates. The second way is to interpolate site obser-
vations with resolution of remote sensing data. Since interpo-
lation may introduce extra uncertainty, site-centered mean val-
ue of 3 × 3 NDVI pixels was calculated to represent site
NDVI. Mean NDVI values around meteorological sites were

presented in Table 1. Applying this averaging method seems
more reliable, as it reduces (i.e. smoothers) the spatial error
and keeps the condition of the underlying surface vegetation at
each weather station as uniform as possible.

Considering the continuity and validity of the datasets, 14
meteorological stations of Jiangxi province were chosen for
research, each of which has a long-term data from 1982 to
2006. Detailed information of 14 stations as well as statistical
information of precipitation and temperature is summarized in
Table 1. For each station, the China Meteorological Data
Sharing Service System (http://cdc.cma.gov.cn/) has
provided daily maximum air temperature (Tmax), daily
minimum air temperature (Tmin) and 24 h precipitation
(PRCP) for the time period of 1982–2006.

In the present study, crucial indices (2 precipitation indices
and 8 temperature indices) of climate extremes are selected
and calculated using the software RClimDex (Version 1.0) as
developed andmaintained by Zhang Xuebin and Yang Feng at
the Climate Research Branch of the Meteorological Service of
Canada (Hyndman and Fan, 1996; Zhang et al. 2005). All
indices have been recommended by the CCl/CLIVAR

Fig. 2 Inner-annual cycle of the
NDVI, mean temperature and
precipitation in the Poyang Lake
Basin, 1982–2006

Table 1 Geographic information
of 14 meteorological stations and
their mean monthly precipitation,
average annual temperature, and
average annual NDVI for 1982–
2006. The mean monthly
precipitation and average annual
temperature are calculated from
daily meteorological data. The
average annual NDVI is
calculated using biweekly remote
sensing data

ID Stations Longitude Latitude Altitude Precipitation Temperature NDVI
degree degree m mm/month °C

58506 Lushan 115.9833 29.5833 1164.5 173.53 11.84 0.35

57598 Xiushui 114.5833 29.0333 146.8 135.82 16.71 0.53

58527 Jingdezhen 117.2000 29.3000 61.5 151.79 17.75 0.51

58519 Boyang 116.6833 29.0000 40.1 138.20 17.87 0.35

58606 Nanchang 115.9167 28.6000 46.7 136.73 17.92 0.35

58608 Zhangshu 115.5500 28.0667 30.4 144.76 18.06 0.41

58715 Nancheng 116.6500 27.5833 80.8 144.28 17.96 0.48

57793 Yichun 114.3833 27.8000 131.3 136.03 17.46 0.47

57799 Ji’an 114.9667 27.1167 76.4 129.23 18.60 0.37

58813 Guangchang 116.3333 26.8500 143.8 147.69 18.42 0.48

57896 Suichuan 114.5000 26.3333 126.1 123.51 18.70 0.47

57993 Ganzhou 114.9500 25.8500 123.8 122.84 19.52 0.44

58626 Guixi 117.2167 28.3000 51.2 160.23 18.61 0.43

58634 Yushan 118.2500 28.6833 116.3 153.48 17.67 0.46
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Expert Team for Climate Change Detection Monitoring and
Indices (ETCCDMI). The precipitation and temperature data
have been quality controlled before the selected indices have
been computed in advance. The details of the ten selected
indices are shown in Table 2.

Methodology

In this study, correlations between climate indices and NDVI
were estimated by the Pearson correlation coefficient.
Pearson’s R measures the strength and direction (decreasing
or increasing, depending on the sign) of a linear relationship
between two variables. It ranged from −1.0 to 1.0, with higher
values indicating better agreement, and is given by

R ¼

XN

i¼1

Oi−O
� �

Pi−P
� �

XN

i¼1

Oi−O
� �2

" #0:5 XN

i¼1

Pi−P
� �2

" #0:5 ð1Þ

whereOi and Pi denote the monthly value of the two variables,
and �O and �P denote the means of the two variables, respec-
tively. In general, this paper addresses the comparison of cli-
mate indices (P) with the NDVI (O) based on the same set of
conditions (i.e., a pairwise comparison) for a 25-year period
with N time increments for an arbitrary duration (here: at sea-
sonal and monthly time scale).

Results

Relations Between NDVI and Extreme Indices
on a Monthly Basis

According to the annual cycle of climate extremes, TXn
(Minimum Tmax), TNn (Minimum Tmin) and TXx
(Maximum Tmax) all increased by about 0.05 °C·year−1, less
than the increase of TX90p (Warm days, 0.38 °C·year−1) and
TN90p (Warm nights, 0.36 °C·year−1). Precipitation indices of
RX1day (Maximum 1-day precipitation amount) and RX5day
(Maximum 5-day precipitation amount) increased by about

Table 2 Descriptions of the selected ten extreme climate indices

ID of Index Name of Index Definitions Unit

RX1day Max 1-day precipitation amount Monthly maximum 1-day precipitation mm

RX5day Max 5-day precipitation amount Monthly maximum consecutive 5-day precipitation mm

TMAXmean Daytime temperature Monthly mean value of TX (daily maximum temperature) °C

TMINmean Nocturnal temperature Monthly mean value of TN (daily minimum temperature) °C

TXx Max Tmax Monthly maximum value of daily maximum temperature °C

TXn Min Tmax Monthly minimum value of daily maximum temperature °C

TNx Max Tmin Monthly maximum value of daily minimum temperature °C

TNn Min Tmin Monthly minimum value of daily minimum temperature °C

TN10 Cool nights Percentage of days when TN < 10th percentile Days

TN90 Warm nights Percentage of days when TN < 90th percentile Days

TX10 Cool days Percentage of days when TX < 10th percentile Days

TX90 Warm Days Percentage of days when TX < 90th percentile Days

Fig. 3 Correlation coefficient between the selected ten climate indices
and the NDVI onmonthly time scale, 1982–2006: awhole year (N = 300,
r0.05 = 0.11, r0.01 = 0.15), the horizontal dashed lines (green) denote the
95 % confidence interval, solid line (red) denote the 99 % confidence

interval; b four seasons (N = 75, r0.05 = 0.23, r0.01 = 0.30), blank denotes
no significant correlation between climate indices and NDVI (at the 95%
confidence level)
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0.21 mm·year−1and 0.44 mm·year−1, respectively. However,
the increase of annual temperature and precipitation did not
lead to a significant increase or decrease in NDVI (rate of
change was smaller than 0.01 %).

Correlation analysis using deviation from the value of
normal year (monthly average of the 25 years data) for

every climatic variable and NDVI will give the more
exact information on direct effects of climate extremes
on vegetation. Accordingly, relations between NDVI and
extreme indices on a monthly basis were investigated
using deviation of long term dataset (Fig. 3a). Figure 3a
shows a decreasing strength of the monthly NDVI response

Fig. 4 Spatial patterns of correlation coefficients between monthly mean
NDVI and extreme climate indices (a: TXn (°C); b: TNn (°C); c: TNx
(°C); d: TXx (°C); e: RX1day (mm); f: RX5day (mm)) in different
seasons. The height of each bar presents the value of correlation

coefficient relative to the reference value in each legend, respectively.
Bars above the bottom denote positive values, bars below the bottom
denote negative values. N = 75, r0.05 = 0.22, r0.01 = 0.30
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to extreme indices in order of TXn, TNn, TNx
(Maximum Tmin), TXx, RX5day, RX1day, TN10p
(Cool nights), TX10p (Cool days), TX90p and TN90p.
Correlations between NDVI and all the former seven
indices are significant (at the 95 % confidence level).
Namely, NDVI in the study region was mainly dominated
by the extreme minimum night-time and day-time tem-
peratures indices. Monthly NDVI generally responds
positively to temperature indices and negatively to pre-
cipitation indices.

Meanwhile, relations between monthly NDVI and ex-
tremes indices in different seasons were evaluated and
presented in a color image (Fig. 3b). The former six
climate indices (TXn, TNn, TNx, TXx, RX1day, and
RX5day) show significant positive correlations with NDVI
in spring and autumn (at the 95% confidence level). However,
correlations between NDVI and the former four temperature
indices (TXn, TNn, TNx and TXx) are not significant in sum-
mer and winter. On the other hand, NDVI presents very sig-
nificant negative response to RX1day (Rmean = −0.37,
p < 0.01) and RX5day (Rmean = −0.47, p < 0.01) in summer
and winter.

Because TN10p does not impact NDVI significantly in
either season (Fig. 3b), the former six indices (TXn, TNn,
TNx, TXx, RX1day and RX5day) were chosen according to
the value of correlation coefficients in Fig. 3a to evaluate the
spatial heterogeneity of relations between NDVI and climate
extremes.

Spatial Distribution of the Correlation Coefficients
of NDVI and Extreme Indices

For simplicity, temperature indices of TXn, TNn, TNx and
TXx, precipitation indices of RX1day and RX5day were se-
lected here as typical extreme climate indices. Spatial patterns
of relations between NDVI and typical indices were investi-
gated among different seasons on a monthly time scale
(Fig. 4).

The authors find that in spring and autumn, NDVI variation
responses to TXn, TNn, TNx and TXx positively and signif-
icantly (Fig. 4a, b, c and d). But relations are much weaker in
summer and winter, they also vary in sign.

Moreover, the impacts of RX1day and RX5day on NDVI
differed among seasons (Fig. 4e, f). Positive correlations were
detected between NDVI and the two extreme precipitation
indices in spring and autumn for almost all meteorological
stations, while most of the correlations were negative in sum-
mer and winter.

According to the spatial heterogeneity of relations between
NDVI and climate extremes in specific season, we can con-
clude that, NDVI in the middle basin is less correlated to
climate variation than NDVI in other regions of the study area.
These variances are much more apparent for RX1day and
RX5day (Fig. 4e, f). For instance, the mean value of
absolute correlation coefficients between spring NDVI in
meteorological stations of the middle basin (Boyang,
Nanchang and Zhangshu) and RX1day is 0.08. The

Fig. 4 (continued)
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significance level is much lower than that of other stations for
the same period (Rmean = 0.31, P < 0.01). Distribution of
relations between NDVI and other indices also presents the
similar patterns.

Delayed Responses of NDVI to Extreme Climate Indices

In order to recognize lag effects of climate extremes, the au-
thors calculated the correlation coefficients between monthly
NDVI and climate extremes with different time lags (Table 3).
It is easy to conclude that TXn without time lags (or with a lag
less than 1 month) have the most significant effects on month-
ly NDVI. Strongest relations between NDVI and other tem-
perature indices of TNn, TXn and TXx were found with a lag
of 1 month. On the other hand, NDVI exhibited the strongest
responses to precipitation indices of RX1day and RX5day
with a lag of 2 months.

Discussion and Conclusion

Monthly analysis of relations between NDVI and climate ex-
tremes proposed that extreme temperature indices (TXn, TNn,
TNx and TXx) have stronger impacts on NDVI than precipi-
tation indices (RX1day and RX5day) in Poyang Lake Basin.
This conclusion is consistent with the hypothesis that for
southern humid vegetation, where water is not a limiting fac-
tor for vegetation growth, higher temperature rather than in-
creased precipitation is associated with the increase of NDVI
(Zhang et al. 2010; Piao et al. 2014). This weak correlation
between NDVI and precipitation indices may be attributed to
the coincident reduction of incoming solar radiation during
wet period (Beer et al. 2010; Piao et al. 2003).

Actually, relations between NDVI and climate extremes
vary in different seasons. The correlations of NDVI with tem-
perature indices are weaker in summer and winter than in

spring and autumn. High temperature increases the efficiency
of plant photosynthesis and water use efficiency, and pro-
motes the growth of vegetation in spring. By contrast, in au-
tumn, metabolism of vegetation weakens with the decrease of
available energy. On the other hand, high temperature may
lead to increase of evaporation and decline of soil moisture
in summer. The vegetation fraction of annual herbaceous
plants, as well as deciduous forests decreased due to the phe-
nological feature of vegetation rather than climate change in
winter (Chen et al. 2006).

Compared to extreme temperature indices, significant neg-
ative correlations between monthly NDVI and extreme pre-
cipitation indices (RX1day and RX5day) in summer and win-
ter implied that increased precipitationmay lead to a decline of
NDVI during these two seasons. As discussed above, there are
intensive river network and robust irrigation system in south-
ern plains of China. Meanwhile, precipitation in this region
concentratedmainly in summer, more rainfall might cause soil
supersaturation and decrease bioactivity in the wet season.
Landslide caused by big flood and excessive precipitation is
one of the biggest threatens of mountain vegetation.
Inundation of vegetation in lowland areas, especially in the
areas around the Poyang Lake by flood can also lead to the
decrease of NDVI. In addition, much cloud in rainy day also
reduced the solar radiation and inhibited photosynthesis of
plants. In winter, much precipitation might result in a decrease
in soil temperature, and decreased soil temperature would
probably become the key factor for restraining vegetation
growth, according to Liebig’s law of the minimum (Zhang
et al. 2013; Von Liebig 1842).

Furthermore, relations between NDVI and typical extreme
climate indices exhibited spatial heterogeneity among differ-
ent meteorological stations. Vegetation in middle basin was
less sensitive to climate change than other regions (Fig. 4). To
the best of the authors’ knowledge, the flat middle basin cov-
ered with more arable lands is more likely to be affected by
artificial factors. Farming processes such as seed, weeding,
fertilization and harvest, and so on would possibly change
the greenness of plants. These changes were not controlled
by climate conditions exactly. Moreover, concentrated con-
structing lands (urban land, factory and mine, road, oil field
and airport, and so on) in middle area would not respond to the
climate changes either.

It is noteworthy that vegetation ecosystems adapt to climate
change attributes to physiological, anatomical, and functional
strategies. These strategies are mainly reducing water loss,
respiration costs, photosynthetic activity, and growth rate.
But it takes a certain time lag (Potter and Brooks 1998;
Vicente-Serrano et al. 2013). In the present study, a notable
discovery was that extreme temperature indices with a lag of
1 month (or less than 1 month) had the strongest impacts on
NDVI. Meanwhile, most significant response of NDVI to ex-
treme precipitation indices was observed with a lag of

Table 3 Cartogram of multiple correlation coefficients between the
basin averaged NDVI and monthly climate extreme indices with
different time lags

Climate indices Correlation coefficient

0 1 2 3

TXn 0.90 0.88 0.63 0.22

TNn 0.87 0.91 0.69 0.30

TNx 0.82 0.89 0.71 0.34

TXx 0.81 0.85 0.67 0.32

RX1day 0.40 0.64 0.68 0.56

RX5day 0.28 0.53 0.64 0.57

0 means climate indices and NDVI were collected over the same period
(N = 300, r0.01 = 0.15); 1–3 indicates NDVI lag behind climate indices for
1–3 months
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2 months. Delayed responses of monthly NDVI in Poyang
Lake Basin to climate extremes were detected in this study,
but the specific reasons and the differences of response pat-
terns need further investigation and discussion.

The authors’ investigation of relationship between climate
indices and vegetation, as well as the lag effects of tempera-
ture and precipitation on NDVI are consistent with other stud-
ies (Gu et al. 2009; Zhang et al. 2011). Different scholars
diverged in their climate change impact assessments because
multiple processes at different temporal, spatial, and organi-
zational scale could influence ecosystem dynamics in conflict-
ing directions. Biotic and abiotic factors not explicitly dealt
with in the authors’ study include the competition and adap-
tation among species, soil properties, soil moisture content,
topography, fire occurrence, grazing management and urban-
ization, all of which could be important in affecting vegetation
activity at the site-specific level (Yang et al. 1998). Estimating
change from remotely sensed data however was not straight-
forward, since time series contained a combination of season-
al, gradual and abrupt ecosystem changes occurring in parallel
(Verbesselt et al. 2012).

Our present works together with previous studies highlight-
ed the role of climate extremes to the NDVI and confirmed the
high vulnerability of ecosystem in the Poyang Lake Basin.
Understanding the characteristics of climate extremes and
the mechanisms how they affect vegetation is crucial for im-
proving the knowledge of vegetation vulnerability to climate
fluctuations and climate change.
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