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Abstract To evaluate the influence of human activities on
ecosystem respiration (CO2) and CH4 fluxes and determine
the seasonal and spatial variations, wemeasured CO2 and CH4

fluxes at four sampling sites (west side of the seawall, WSS;
oilfield, OF; Spartina alterniflora coastal marsh, SCM; aqua-
culture pond, ACP) in the Yellow River estuary from June to
December in 2013. Both CO2 and CH4 fluxes showed sea-
sonal and spatial variations in the Yellow River estuary. The
average CO2 fluxes from WSS, OF, SCM and ACP were
125.36, 111.03, 241.97 and −39.49 mg CO2 m

−2 h−1, while
CH4 fluxes were −0.0110, −0.0165, 0.2012 and 0.0034 mg
CH4 m

−2 h−1, respectively. Spatial variations of CO2 and CH4

fluxes were mainly affected by vegetation and soil moisture.
There were significant relationships between both CO2 fluxes
in WSS and SCM and CH4 flux in SCM with temperature.
CO2 and CH4 fluxes were mainly affected by the interactions
of thermal conditions and other abiotic factors in OF and ACP.
Human activities have great effect on greenhouse gas emis-
sion, especially in the area where exotic-species S. alterniflora
invaded. The construction of seawall blocked sea water
transporting into the study area leading to low soil moisture
which accelerated CO2 emission. Aquaculture ponds act as an
emission of CH4 and consumption of CO2.
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Introduction

Carbon dioxide (CO2) and methane (CH4) are important
greenhouse gases (GHG). The concentrations of CO2 and
CH4 in atmosphere increased from 280 ppm and 715 ppb in
pre-industrial times to 379 ppm and 1,774 ppb in 2005,
respectively (IPCC 2007). The levels of CO2 and CH4 have
a significant impact on global warming. Therefore, there is a
need for quantifying the potential of an individual ecosystem
as a source or sink for atmospheric CO2 and CH4 (Purvaja and
Ramesh 2001).

Coastal marsh ecosystem is characterized by high tem-
poral and spatial variations including topographic feature,
environmental factors, and astronomic tidal fluctuation,
and is very sensitive to global climate changes and human
activities (Sun et al. 2013). Considerable efforts have
been invested in the past two decades to quantify the
CO2 and CH4 fluxes in different coastal wetlands
(Purvaja and Ramesh 2001; Allen et al. 2007; Cheng
et al. 2007; Tong et al. 2012; Sun et al. 2013;
Poffenbarger et al. 2011). However, most of the research
focused on the emission of GHG from natural wetlands;
data of GHG emission from anthropogenic coastal wet-
land is insufficient. As the development of economy,
human activities, such as land-use changes and introduc-
tion of invasive alien plants, have more and more impact
on coastal wetlands. The phenomenon of transformation
of natural coastal wetlands into a harbor, seawall, indus-
trial complex or urban district is very common, this trans-
formation will change the geomorphology of the coastal
line and the physical processes of the coastal system
permanently, which can result more negative influence
on the coastal environment and ecosystem (Bi et al.
2012). Changes in land use have a profound impact on
GHG flux. Inubushi et al. (2003) suggested that
converting a secondary forest peatland to paddy field
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increased the annual emissions of CO2 and CH4 to the
atmosphere, while transforming the secondary forest to
upland decreased the emissions.

Human-induced invasion by exotic-species also have a
profound impact on the GHG flux. Invasion by exotic plant
species has been considered to be one of the most serious
problems for natural ecosystems (Walker and Smith 1997).
Spartina alterniflora was introduced to China in 1979, to
protect the coastal banks and stabilize the sediment along the
eastern coast in Fujian province, Southeast China . Currently,
S. alterniflora distributs widely along the east coast of China
(Wang et al. 2006a) due to its faster growth rate compared to
the native species (Qin and Zhong 1992; Wang et al. 2006b).
The coverage of S. alterniflora was approximately 260 ha in
six counties by 1985 and increased to more than 112,000 ha
by 2,000 (An et al. 2007). Therefore, information on emission
of GHG from ecosystem invaded by S. alterniflora is urgently
needed, however, studies in this field were mainly conducted
at the estuary in the southern part of China (Tong et al. 2012;
Cheng et al. 2007; Cheng et al. 2010; Zhang et al. 2010), but
information for the estuary in the northern part of China is
largely unknown as yet. Thus, it is very important to evaluate
how the invasion by exotic-species affects GHG emission in
wetlands at estuary area in Northern China.

The Yellow River is well known as a sediment-laden river.
Approximately 1.05×107 tons of sediment is carried to the
estuary and deposited in the delta each year (Cui et al. 2009)
resulting in vast area of floodplain and special wetland land-
scape (Xu et al. 2002; Wang et al. 2004). Typical reclaimed
land patterns in the Yellow River estuary included harbor,
seawall, salt pans, oilfield, aquaculture ponds and industrial
complex. A recent study showed that the area of natural
wetlands decreased by 44.5 % in four decades (1976–2008)
in the Yellow River estuary, while constructed wetland in-
creased by 1.997×104 hm2 in the same period due to rapid
development of coastal aquaculture and salt industry (Chen
et al. 2011). Wang et al. (2013) pointed that the exploitation of
tidal flats resources and construction of artificial ponds related
to holothurian culture in the YellowRiver delta had become an
emerging industry. And the field occupied by holothurian
culture covered an area of 1.5×104 ha in the Yellow River
delta. S. alterniflora was transplanted into Yellow River estu-
ary for three times in 1985, 1987, and 1990. The coverage of
S. alterniflora has now reached up to 614.59 hm2 (Zhu et al.
2012). Human activities havemore andmore impact in Yellow
River estuary. Therefore, evaluating the influence of human
activities on the emission of GHG is a big necessary in this
area.

In this paper, we quantitatively evaluated the variations in
the levels of CH4 and CO2 in a typical coastal marsh which
was significantly influenced by human activities. The objec-
tives of this study were to: (i) measure the emissions of CO2

and CH4 from exotic S. alterniflora; (ii) determine the

relationship between GHG emission and environmental fac-
tors; and (iii) estimate the difference of the seasonal change in
CO2 and CH4 emissions under different human activities.

Materials and Methods

Site Description

This study was conducted in the Yellow River estuary in
Dongying City, Shandong Province, China. The Yellow
River estuary has a typical continental monsoon climate with
distinct seasons; summer is warm and rainy, and winter is
cold. The annual average temperature is 12.1 °C and the frost-
free period is 196 d. The average temperatures for spring,
summer, autumn and winter are 10.7, 27.3, 13.1, and
−5.2 °C, respectively. The mean tidal range of the irregular
semidiurnal tide is 0.73 to 1.77 m in the intertidal zone of the
Yellow River estuary. Soils in the study area are dominated by
intrazonal tide and salt soil. The dissoluble salt content in
surface layer (0 to 20 cm) of salt soil is very high (>8 g/kg),
and its grain composition is dominated by sand and silt (50–
80 %). The average annual evaporation and precipitation are
1962 and 551.6 mm, respectively, with about 70 % of the
precipitation occurs in June to August. The main types of
vegetation are Sueada salsa, Phragmites australis,
Triarrhena sacchariflora, Myriophyllum spicatum, Tamarix
chinensis, and Limoninum sinense.

Due to its rich oil and gas resources, Wuhaozhuang region,
part of the Yellow River estuary, is significantly affected by
human activities. Seawalls were constructed in this region to
improve oil production and other economic activities (e.g.
aquacul ture) . S. al terni f lora was int roduced to
Wuhaozhuang in 1990 to protect the seawall from damage.
Additionally, Wuhaozhuang is one of important aquaculture
farms in Yellow River estuary.We selected four sampling sites
in this region, which represented the four typical human-
influenced areas in this region, including (a) the west side of
the seawall (WSS) (east side of the seawall is the Bohai Sea)
(38°01′8.79″N, 118°58′6.84″E); (b) oil field (OF, there are lots
of oil wells on the ground) (38°01′8.73″N, 118°57′44.63″E);
(c) S. alterniflora coastal marsh (SCM) (38°00′24.8″N,
118°58′23.2″E); and (d) aquaculture pond (ACP) (38°00′
26.16″N, 118°58′23.0″E) (Fig. 1).

Experimental Design

Fluxes of CO2 and CH4 from WSS, OF, and SCM were
measured using static, manual stainless steel chamber and
gas chromatography techniques. A stainless steel base with a
water groove on the top was inserted into the ground for 20 cm
depth in May 2013. A chamber was placed into the groove
during measurement; meanwhile water was injected into the
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groove to build an open-bottom square box. The outside of the
chamber was covered with an insulating layer (2 cm thick) to
reduce the impact of direct radiative heating during sampling,
which can cause very little difference in temperature between
the inside and the outside of the chamber (Teiter and Mander
2005; Søvik and Kløve 2007; Jiang et al. 2010; Tong et al.
2010; Sun et al. 2013, 2014). Air inside the chamber was
circulated with battery-driven fans installed inside the cham-
ber to make sure that the gas sample was uniform in the
chamber. CH4 and CO2 emissions from ACP were measured
using floating chambers and gas chromatography techniques.
The floating chambers were made of opaque PVC. A flotation
gear was installed to make sure that the chamber can float on
water. Insulating layer and fans also placed for floating
chambers.

Measurements were made in June, August, October, and
December of 2013 at the four sites. Each measurement cam-
paign consisted of 12 chambers set up at four positions (three
chambers per site). Gas samples were collected at 7:00, 9:30,
12:00, 14:30; and 17:00 h on each sampling date, which have
been shown to be the optimum measurement period by Sun
et al. (2013, 2014). The gas samples were withdrawn from the
headspace of the chamber in a 20-min interval (totally 60 min

for each measurement) using a 50 ml syringe equipped with a
three-way stopcock. Samples were injected into pre-evacuated
packs and taken to the laboratory for determination within
36 h.

The gas samples were determined with gas chromatogra-
phy (Agilent 7890A, Agilent Co., Santa Clara, CA, USA)
equipped with FID. The CH4 was separated from the other
gases with a 2 m stainless-steel column, with an inner diam-
eter of 2-mm 13XMS column (60/80 mesh). The CO2 was
separated with a 2 m stainless-steel column with an inner
diameter of 2 mm Porapak Q (60/80 mesh). The FID operated
at 200 °C using high-pure nitrogen as a carrier gas, at a flow
rate of 30 ml/min. The column temperatures were maintained
at 55 °C for all separations. The greenhouse gas concentra-
tions were quantified by comparing the peak areas of samples
against standards. During the gas measurement, standards
were analyzed every eight samples of determination to ensure
the data quality, the relative standard deviation (RSD) for each
sample should below 6 %. The gas flux was calculated using
the following equation (Song et al. 2008):

J ¼ dc

dt
� M

V 0
� P

P0
� T

T0
� H

China

N

Bohai Sea

Yellow River

Shenxiangou

Culture ponds

Oil field

Sea wallWuhaozhuang

Spartina 
Alterniflora 
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Shenxiangou

Fig. 1 Sketch of the study area
and experimental plots (black
star) in the Yellow River estuary
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where J is the gas flux (mg m−2 h−1), dc/dt is the slope of
the gas concentration curve variation, along with time, M is
the mole mass of each gas, P is the atmospheric pressure at the
sampling site, T is the absolute temperature during sampling,
V0, T0 and P0 are respectively, the gas mole volume, air
absolute temperate and atmospheric pressure under standard
conditions, H is the height of chamber above the water sur-
face. The rates of CH4 and CO2 emissions were calcu-
lated by fitting the changes in the determined concen-
trations of CH4 and CO2 over a 60-min period to a
linear model. The regression concentration coefficients
from linear regressions were rejected when R2 was less
than 0.9. Positive values indicate net flux to the atmo-
sphere (efflux), and negative values indicate consump-
tion of atmosphere gases by the soil (influx).

Environmental data were measured at each site during
sampling. Air temperature inside the chamber was measured
with a thermometer inserted into the chamber. Soil tempera-
ture at 5, 10, 15, 20, and 25 cm depth was measured with five
ground thermometers inserted into the corresponding depth.
On each sampling date, three soil samples per layer (0 to 10,
10 to 20, and 20 to 30 cm) were collected at each site to
determine soil water content. Water temperature was also
measured with the thermometer during gas sampling. In
August 2013, the aboveground biomass in WSS, OF and
SCM was estimated. Three quadrants (50×50 cm for OF
and SCM, 5×5 m for WSS) were selected for biomass mea-
surement at each of the three sites. Biomass was oven-dried
(80 °C) to a constant weight.

Statistical Analysis

Statistical analyses were conducted using SPSS 16.0 and
Origin 7.5. The results were presented as a mean of replicates,
with standard error (SE). Significant differences in GHG
emissions and environmental factors between different sites
were determined by one-way analysis of variance [ANOVA,
followed by Tukey’s Honest Significant Difference (HSD)
test]. Correlation analysis was conducted to examine the rela-
tionship between fluxes and the measured environmental var-
iables. In all tests, differences were considered significant
when p<0.05.

Results

Plant Growth

Vegetation in WSS is predominated by Tamarix chinensis
(>60 %), while that in OF and SCM are Suaeda salsa
(>99 %) and S. alterniflora (>99 %), respectively. The cover-
age and maximum aboveground biomass of T. chinensis,

S. salsa, and S. alterniflora are 10, 70, 95 %, and 200.11±
15.82 (mean ± SE) g m−2, 376.862±31.50 g m−2, 1281.92±
176.93 g m−2, respectively. The aboveground biomass of
S. alterniflora was greater than these of T. chinensis and
S. salsa.

Variation in CO2 Fluxes

CO2 flux includes respiration from living aboveground and
belowground plant parts as well as aerobic and anaerobic
microbial activities in the soil column. This CO2 flux can be
called ecosystem respiration and is associated with the overall
carbon flow of the ecosystem (Nykänen et al. 1998). CO2

fluxes from the four sites ranged from −181.23 to 878.03 mg
CO2 m

−2 h−1 over the entire sampling period (Fig. 2). Average
CO2 fluxes in WSS, OF, SCM and ACP from June to
December were 125.36, 111.03, 241.97 and −39.49 mg CO2

m−2 h−1, respectively. All sites except ACP (negative value)
released CO2 during the entire experimental period. The CO2

flux rates from WSS, OF, and SCM showed the similar
seasonal pattern, initial increase followed by a subsequent fall.
The greatest CO2 flux rates from WSS (334.69 mg CO2

m−2 h−1), OF (264.32 mg CO2 m−2 h−1), and SCM
(583.07 mg CO2 m−2 h−1) were observed in August while
the smallest CO2 flux rates (27.08, 13.41, and 37.22 mg CO2

m−2 h−1, respectively) were observed in December. A signif-
icantly greater CO2 flux was observed from SCM than WSS
(p=0.028), OF (p=0.016), and ACP (p=0.000). The CO2 flux
from ACP varied significantly from June to December, and
smaller than that from WSS (p=0.002), OF (p=0.006) and
SCM (p=0.000). The greatest consumption was observed
from ACP in August (−71.14 mg CO2 m

−2 h−1).

Variation in CH4 Fluxes

CH4 fluxes from the four sites ranged from −0.2390 to
0.5252 mg CH4 m−2 h−1 (Fig. 3). Average CH4 fluxes in
WSS, OF, SCM, and ACP from June to December were
−0.0110, −0.0165, 0.2012, and 0.0034 mg CH4 m−2 h−1,
respectively. The flux rate of CH4 from SCMwas significantly
greater than that from WSS (p=0.000), OF (p=0.000), and
ACP (p=0.000). During the entire experimental period, SCM
was a net source of CH4, while both net emission and net
consumption of CH4 occurred at other sites. The greatest CH4

flux rate from SCM (0.4107 mg CH4 m
−2 h−1) was observed

in August, while it was observed in October from OF
(0.0157 mg CH4 m−2 h−1) and ACP (0.0165 mg CH4

m−2 h−1). The CH4 flux from WSS varied significantly from
month to month during the measurement period, with the
greatest consumption being observed in October
(−0.0258 mg CH4 m

−2 h−1).
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Environmental Factors

There was no significant difference in the air temperature
among the four sites (p>0.05), and so did in soil temperature
among different layers (5, 10, 15 and 20 cm depth) at WSS,
OF, and SCM (p>0.05) (Table 1). Spearman correlation anal-
ysis indicated that most of the relationships between CO2 (or
CH4) fluxes and air temperature (or soil temperature) fromOF
and ACP were not significant (p>0.05) (Table 2). CO2 fluxes
from SCM and WSS showed significantly positive relation-
ships with air or soil temperature (p<0.05). And there was no
significant relationship between CH4 flux and air/soil temper-
ature (p>0.05) at the sampling sites except SCM. In addition,
CH4 flux significantly correlated with soil water content (pos-
itive, p<0.05), but not for the CO2 flux.

Discussions

Seasonal Variation of CO2 and CH4 Fluxes

CO2 and CH4 emissions varied markedly among different
seasons at the four sites (Figs. 2 and 3). Similar variations
have been reported in previous studies (Allen et al. 2007;

Song et al. 2008; Cheng et al. 2010; Sun et al. 2013). Chen
et al. (2010) reported a seasonal variation in CO2 flux in a
subtropical mangrove swamp in Hong Kong showed that
seasonal variations and the flux in warm seasons was greater
than in cold seasons. We also found that CO2 flux in warm
seasons (June and August) was significantly greater than that
in the cold seasons (October and December) in WSS, OF, and
SCM. The significant relationship between CO2 flux and air
temperature and soil temperature was consistent with those
reported by Cheng et al. (2010) who found that CH4 emissions
from S. alterniflora and S. mariqueter soils positively corre-
lated with soil temperature. Similarly, Whalen (2005) ob-
served that seasonal patterns of trace gas emissions were
governed by seasonal variability in temperatures affecting
water availability, production of substrate precursors, and
microbial activity. No significant relationship were found
between CO2 flux and air or soil temperature from OF,
maybe due in part to the complex interactions of temperature
and other biotic/abiotic factors, such as water content.

CH4 flux was not related to temperature significantly ex-
pect SCM. Sun et al. (2013) suggested that, in coastal marsh of
the Yellow River estuary, seasonal variations in CH4 emission
was not affected by seasonal variability in temperatures. In our
study, the greatest CH4 emission rate from OF (0.0157 mg
CH4 m

−2 h−1) andWSS (−0.0258 mg CH4 m
−2 h−1) were both
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Fig. 2 Carbon dioxide (CO2) fluxes from WSS (west side of the seawall), OF (Oil field), SCM (Spartina alterniflora coastal marsh) and ACP
(aquaculture pond) in different months in the Yellow River estuary
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observed in October. This result indicated that the influence of
temperature on CH4 emission was masked by other biotic/
abiotic factors, such as vegetation or soil moisture. Factors

affecting CH4 emission are diverse and controlled by the
interplay of CH4 production, oxidation, and transport process-
es (Ding et al. 2004). Kutzbach et al. (2004) reported that the
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Fig. 3 Methane (CH4) fluxes from WSS (west side of the seawall), OF (Oil field), SCM (Spartina alterniflora coastal marsh) and ACP (aquaculture
pond) in different months in the Yellow River estuary

Table 1 Air, ground and water temperatures, and soil water contents of the four study sites in the Yellow River estuary

Environmental parameters WSS OF SCM ACP

Air temperature (°C) 21.72±4.45 a 20.92±11.31 a 18.99±9.23 a 19.12±8.61 a

5 cm ground temperature (°C) 20.84±6.78 a 22.37±7.46 a 19.75±5.77 a –

10 cm ground temperature (°C) 19.68±6.24 a 19.86±6.91 a 18.43±5.53 a –

15 cm ground temperature (°C) 17.72±5.82 a 19.69±6.10 a 17.51±5.69 a –

20 cm ground temperature (°C) 17.74±5.13 a 17.87±5.76 a 17.00±5.34 a –

Water content (%)

0–10 cm 9.99±1.99 a 18.14±0.33 b 23.07±0.73 c –

10–20 cm 10.64±1.70 a 17.64±0.92 b 26.94±2.12 c –

20–30 cm 11.26±1.01 a 21.61±0.82 b 28.91±1.21 c –

0–10 cm water temperature (°C) – – – 17.70±5.82

10–20 cm water temperature (°C) – – – 17.62±5.67

WSS, West side of the seawall; OF, oil field; SCM, S. alterniflora coastal marsh; ACP, aquaculture pond

Values are means (±S.E.) of samples (n=60 for air temperature, ground temperature and water temperature; n=12 for water content) collected fromWSS,
OF, SCM and AP. Statistically significant differences among study sites (p<0.05) were calculated for multiple comparisons using ANOVA and are
indicated by different letters within each row
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ratio between CH4 production and oxidation is controlled by
soil moisture which regulates the relative extent of oxic and
anoxic environment within soils. Our result showed that CH4

emissions were positively correlated with soil moisture in
WSS, OF, and SCM (Table 2).

CO2 and CH4 fluxes across the air-water interface of ACP
had obvious seasonal variations (Figs. 2 and 3). Xing et al.
(2005) also pointed that the fluxes of CH4 and CO2 showed
strong seasonal dynamics from a shallow hypereutrophic sub-
tropical Lake in China, CH4 emission rate was the greatest in
summer, whereas CO2 was adsorbed from the atmosphere in
spring and summer, but underwent a large-scale emission in
winter. In our study, CO2 flux over the entire sampling period
from ACP ranged from −71.14 to −3.96 mg CO2 m−2 h−1,
indicating that ACP was a sink for CO2, with the greatest CO2

consumption occurred in August. Previously, 13CDIC and
pCO2 measurements suggested that respiration and decompo-
sition of organic sediments were the primary sources of CO2

in the water column (Striegl et al. 2001). Del Giorgio et al.
(1999) reported that in the water column of temperate lakes
the baseline respiration, fueled by allochthonous C, was inde-
pendent of phytoplankton production. When primary produc-
tion was high, baseline respiration was insignificant and algal
activity usually dominated the CO2 exchange across air-water
interface. Therefore, we consider ACP in our study to be a
highly autotrophic water body with high primary production,
and the baseline respiration supported by external organic
matter was insignificant, which corresponded to the measured
CO2 flux that ranged from −71.14 to −3.96 mg CO2 m

−2 h−1.
Moreover, the insignificant relationship between CO2 flux and
air temperature or water temperature (Table 2) confirmed the
conclusion that ACP was an autotrophic water body where
algal photosynthesis, rather than the mineralization of organic
matter, played a more important role in CO2 flux, because an
increase in air temperature favored the CO2 production de-
rived from the mineralization of organic matter (Huttunen

et al. 2003). Xing et al. (2005) observed that, in a subtropical
lake (Donghu, China), exponential relationships between CH4

emission and air, water surface, and sediment surface temper-
ature were observed in a subtropical lake (Donghu, China)
(Xing et al. 2005). However, in our study, CH4 emission from
ACP was not affected by seasonal variability of temperature.
CH4 emission in air-water interface resulted from the balance
of two opposing processes: methanogenesis in anoxic condi-
tions and the oxidation of the generated CH4. The production
of CH4 is dependent on the concentration of PO4

3− (Schrier-
Uijl et al. 2011), phytoplankton primary production (Xing
et al. 2005), electron donors and acceptors (Van Bodegom
and Scholten 2001). In addition, the CH4 could be oxidized to
CO2 during any stage of its travel from the sediment through
the water column to the atmosphere (Whiting and Chanton
2001). A large fraction of the unoxidized CH4 was likely to be
emitted to the atmosphere by diffusion.

Spatial Variation of CO2 and CH4 Fluxes

Vegetation type and species composition affected the carbon
dynamics and the formation and emission of the GHG in
wetlands (Van Der Nat and Middelburg 2000; Ström et al.
2005). The significant higher fluxes of CO2 and CH4 from
SCM than other three sites indicated that the invasion by
exotic S. alterniflora had resulted in increase in CO2 and
CH4 fluxes sharply, which was consistent with the result of
Tong et al. (2012), who found that CH4 cycling in
S. alterniflora marshes was high CH4 production in Min
River estuary in southern China. The same conclusion was
obtained in the Yangtze River estuary (Cheng et al. 2007) and
in Jiangsu province (Zhang et al. 2010).

Plants have three main functions in the regulation of CO2

and CH4 emissions. Firstly, plants act as an important source
of methanogenic substrate through excreting labile carbohy-
drates as exudates and root debris. Minoda et al. (1996) and

Table 2 Spearman correlation analysis between CO2, CH4 fluxes and environmental factors

Environmental parameters CO2 CH4

WSS OF SCM ACP WSS OF SCM ACP

Air temperature (°C) 0.448b 0.356 0.699b 0.024 0.042 0.147 0.674b 0.147

5 cm ground temperature (°C) 0.645b 0.645b 0.641b – 0.062 0.230 0.695b –

10 cm ground temperature (°C) 0.648b 0.375 0.642b – 0.102 0.177 0.677b –

15 cm ground temperature (°C) 0.653b 0.419 0.713b – 0.132 0.260 0.753b –

20 cm ground temperature (°C) 0.654b 0.374 0.678b – 0.159 0.230 0.757b –

Water content (%) 0.252 0.140 0.224 – 0.692a 0.587a 0.713b

0–10 cm water temperature (°C) – – – 0.173 – – – 0.302

10–20 cm water temperature (°C) – – – 0.132 – – – 0.329

a Correlation is significant at the 0.05 level (2-tailed), b correlation is significant at the 0.01 level (2-tailed). WSS, west side of the seawall; OF, oil field;
SCM, S. alterniflora coastal marsh; ACP, aquaculture pond
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Watanabe et al. (1999) pointed out that substrates derived
from plants contributed up to 90 % of the total CH4 emission.
Roots can directly regulate most aspects of rhizosphere C flow
either by regulating the exudation process itself or by directly
regulating the recapture of exudate from soil (Jones et al.
2004). Zhang et al. (2010) found that increase of CH4 emis-
sions was mainly due to a rise in porewater CH4 concentra-
tions in the S. alternifloramesocosm, therefore concluded that
S. alterniflora could fix and allocate more organic carbon,
such as root exudates and debris inputs to the soil. Therefore,
when compared with S. salsa, the presence of S. alterniflora
ensured enhanced CH4 production and emission in wetlands.
In our study, the WSS, OF and SCM were predominated by
T. chinensis, S. salsa, and S. alterniflora, respectively.
Rhizospheres in these sites were different due to different
vegetations and that probably affected the emission of CH4

and CO2. It is likely that the slightest change in the chemistry
of the soil or physiology of the plant induced rapid shifts in the
quantity and quality of the exudative flux (Jones et al. 2004).

Secondly, numerous reports demonstrated that CH4 emis-
sion was well correlated with aboveground living biomass of
vegetation (Hirota et al. 2007; Tong et al. 2012). In this study,
the maximum aboveground biomass of T. chinensis, S. salsa,
and S. alterniflora were 200.1131±15.8172, 376.8582±
31.5023, and 1281.9200±176.9304 g m−2, respectively. The
high aboveground biomass of S. alternifloramatched with the

high emission of CO2 and CH4 from the SCM, therefore
supporting the conclusion that aboveground live plant bio-
mass was a key factor controlling carbon production and
emission. Tong et al. (2012) also found that S. alterniflora
could fix and then allocate more carbon to the soil, which in
turn resulted in higher CH4 production and emission when
compared with native species.

Thirdly, plants act as a conduit for CO2 and CH4 transport
through the aerenchyma system, and as a source of oxygen
stimulating CH4 oxidation. Using 14C labeling techniques,
Christensen et al. (2003) observed that the emission of CH4

was dependent on the amount of vascular plants. Other studies
also found that 39.7–90.0 and 48.8–90.0 % of CH4 emission
were transported by S. alterniflora and Phragmites australis
(Cheng et al. 2007). S. salsa adapts to tidal inundation because
the transportation mechanism carries oxygen from above-
ground parts to the roots via the aerenchyma (Han et al.
2005). But we found that CO2 and CH4 emissions from OF
(dominated by S. salsa) were lower than those from SCM
(dominated by S. alterniflora). That may be due to the differ-
ence of vegetations in the two sites. S. salsa is a succulent
halophytic herb (Song et al. 2009) while S. alterniflora, which
belongs to the perennial grass family, has visibly evident
lacunae in its stems (Tong et al. 2012), which may explain
why the CH4 transport potentials of S. alterniflorawas higher
than that of S. salsa. However, S. alterniflora has a thick stem

Table 3 CO2 and CH4 flux rates from this study and literature

Location Vegetations CO2

(mg m−2 h−1)
CH4

(mg m−2 h−1)
Observation period References

Yellow River estuary, China Tamarix chinensis (WSS) 125.3625 −0.0110 June~December 2013 This study
Suaeda salsa (OF) 111.0289 −0.0165
Spartina alterniflora (SCM) 241.9720 0.2012

aquaculture pond (AP) −39.4909 0.0034

Yellow River estuary, China Suaeda salsa a ND −0.0128 October 2009~July 2010 Sun et al. 2013

Yellow River estuary, China Suaeda salsa 20.86~45.31 ND May 2012 Zhang et al. 2014

Min River eatuary, China Spartina alterniflora ND 15.1 January 2007~Decenber 2009 Tong et al. 2012

Yangtze River estuary Spartina alterniflora ND 0.64 (0.16~
1.12)

April~October 2004 Cheng et al. 2010

Jiangsu, China Spartina alterniflora ND 0.88 May~October 2009 Zhang et al. 2010
Suaeda salsa ND 0.54

Brisbane River estuary,
Australia

Avicennia marina ND 0.003~17.4 April 2004~July 2005 Allen et al. 2007

Peat, Netherlands Lake 61.6±7.1 3.9±1.6 June 16th~July 6th 2009 Schrier-Uijl et al. 2011

Bay of Fundy, Germany Spartina alterniflora etc. 104.167 b 6.667 b July~Semperber Magenheimer et al. 1996

Min River estuary, China Shrimp pond −48.79 1.00 October 20 th, 21th 2011 Yang et al. 2012
Polyculture pond of fish
and shrimp

−105.25 5.74

Québec’s reservoirs, Canadian Reservoirs 62.83 b 0.367 b 1993~2003 Tremblay et al. 2005

Switzerland Reservoirs 40.417 b 0.0083 b September 2003~August 2006 Diem et al. 2012

Temmesjoki River, Finland River 225 b 2.75 b 2003~2004 Silvennoinen et al. 2008

b Mean values after unit conversion
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and well-developed aerenchyma tissue, which can deliver
more oxygen into the rhizosphere and lead to higher rates of
CH4 oxidation under S.alterniflora stands. But CH4 emission
from S. alterniflora was still higher than others because this
effect was outweighed by the higher CH4 production.

Soil moisture in SCM was greater than that in WSS and
OF. This was a result of the construction of seawall, which
blocked the transport of sea water into the study area and the
low coverage of vegetation in WSS and OF under the strong
evaporation (evaporation/precipitation ratio, 3.52) condition.
Significantly positive impact of moisture on CH4 emission
was observed in WSS, OF, and SCM, but the relationship
between CO2 fluxes and moisture was not significant
(Table 2). In our study, soil moisture in SCM was greater than
these in WSS and OF, and was inundated occasionally by tide
on the neap tide day. The consumption of CH4 fromWSS and
OF and the emission from SCM in our study consisted with
the conclusion that soil moisture controlled CH4 emission
from sites where the water table fluctuates below the soil
surface (Christensen 1993). On other hand, low soil moisture
make O2 diffuse into soil to oxygen CH4 to CO2.

Comparisons with Other Studies

At present, reports which focused onGHG emission in Yellow
River estuary are scarce. Sun et al. (2013) and Zhang et al.
(2014) studied GHG emission in natural wetlands and found
that fluxes of CH4 and CO2 were −0.0128 mg CH4 m

−2 h−1

(Sun et al. 2013) and 20.86 to 45.31 mg CO2 m
−2 h−1 (Zhang

et al. 2014), respectively (Table 3). Compared with CO2 and
CH4 fluxes from natural wetlands where is affected minimally
by human mentioned in these two studies, we found that CO2

fluxes recorded from WSS and OF in our study were greater,
while CH4 fluxes were close to the reported values. That
might due to the construction of seawall leading to low mois-
ture which accelerated CO2 emission. CO2 and CH4 emissions
from S. alterniflora marsh (SCM) in our study were also
greater compared with that from natural wetland, differences
in vegetation may be the main reason. CH4 flux from
S. alterniflora marshes in Yellow River estuary was smaller
than these from S. alterniflora marshes in Min River estuary
(Tong et al. 2012), Yangtze River estuary (Cheng et al. 2010),
and Jiangsu province, China (Zhang et al. 2010), which might
due to the different latitudes that study areas located. The
emission of CH4 and consumption of CO2 in aquaculture
pond, similar to the result of Yang et al. (2012), which differ-
ent from natural water body (lakes, reservoirs) act as a source
of CO2 and CH4 (Tremblay et al. 2005; Silvennoinen et al.
2008; Schrier-Uijl et al. 2011; Diem et al. 2012). Aquaculture
ponds are significantly influenced by human activities, there-
fore nutrient substance content and physicochemical property
of these will be different from natural water bodies (lakes,
reservoirs), which can lead to differences in GHG emissions.

Conclusion

Human activities have profound impact on greenhouse gas
emission in the Yellow River estuary. Exotic-specie
S. alterniflora invasion significantly increased CO2 and CH4

emissions due to its strong gas transportation capacity and
excreting large amounts of substrates for methanogens. The
construction of seawall blocked sea water transporting into the
study area leading to low soil moisture which accelerated CO2

emission. Aquaculture pondwas a source of CH4 and a sink of
CO2. However, the results of this study are preliminary and
need to be validated with further studies. More investigations
and long-term measurements (including year-to-year varia-
tions) on CO2 and CH4 exchanges between ecosystem and
atmosphere are needed in order to gain a better understanding
of human activities on CO2 and CH4 emissions in the Yellow
River estuary.
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