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Abstract Interactions between surface water and groundwa-
ter (SW-GW), composed of complex hydrological networks,
maintain a dynamic balance between water regimes and sa-
linity in coastal wetlands. Impacted by reclamation activity,
however, changes in water regimes and salinity have resulted
in wetland degradation. To mitigate such reclamation impacts
on coastal wetlands, it is vital to understand the role of SW-
GW interactions involved in maintaining the integrity of
coastal wetlands. The objectives of this review were to: (i)
outlining SW-GW interactions; (ii) addressing ecological re-
sponses to changes in water regimes and salinity; and (iii)
exploring modeling techniques used to ascertain interactions
between groundwater and coastal wetlands. Key findings are
as follows: SW-GW interactions control water regimes and
salinity while maintaining the integrity of coastal wetlands;
the combined effects of water and salinity have an impact on
ecological processes and patterns disturbed by hydrological
pulses; and the distribution of physically-based models is an
approach that can provide a profound means by which to
understand the vital role in maintaining hydrological connec-
tivity. Further research is required to fully reveal SW-GW
interactions in maintaining coastal wetlands integrity and the
mitigating effects reclamation has on coastal wetlands.
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Introduction

Coastal wetlands are defined as ecosystems that are found
within an elevation gradient that ranges between subtidal
depths to which light penetrates to support photosynthesis of
benthic plants and the landward edge where the sea transfers
its hydrologic influence to groundwater and atmospheric pro-
cesses (Perillo et al. 2009). Coastal wetlands where land and
sea are linked are one such ecosystem, characterized by com-
plex hydrological processes that are prone to degradation
(Mitsch and Gosselink 2000; Howes et al. 2010; Dawson
et al. 2011). Along with hydrological gradients, coastal wet-
lands include seagrasses, tidal flats, tidal salt and freshwater
marshes, and mangrove and tidal freshwater forests (Perillo
et al. 2009). Due to the unique characteristics in its structure,
coastal wetlands provide a significant amount of ecosystem
services: (i) supporting fish and other such wildlife by provid-
ing habitat; (ii) improving water quality by filtering runoff;
and (iii) protecting coastal regions from erosion and flooding,
particularly during strong storm events (Costanza et al. 1997;
Chen and Zhang 2000; Zedler and Kercher 2005; Howes et al.
2010).

With rapid societal and economical development, coastal
wetlands have suffered great losses and degradation from
wetland reclamation, population pressures, and misguided
policies over past decades (Yang et al. 2011) in many regions
of the world, e.g., China (Xie et al. 2010; Yang et al. 2011),
America (Turner and Lewis 1997; Perillo et al. 2009) and
Europe (Airoldi and Beck 2007; Almeida et al. 2014). When
excluding shallow coastal waters (depths between 0 and
−5 m), for example, roughly 16 % of China’s coastal wetlands
have been lost between the 1970s and 2007 (Zuo et al. 2013).

Besides inhabited land, reclamation activity (e.g., that
which was converted into land for agricultural and residential
use, port construction, and industrial estates) have altered
hydrological processes, resulting in river, wetland, and
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groundwater fragmentation (Brunner et al. 2009b), which is
likely a key reason behind coastal wetlands degradation seen
today.

Mitsch and Gosselink (2000) noted that, “hydrology is
probably the single most important determinant of the estab-
lishment and maintenance of specific types of wetland,” In
order to mitigate reclamation impacts, hydrological networks
have been incorporated into wetland restoration goals (Lei and
Zhang 2005; Cui et al. 2012). According to Simenstad et al.
(2006), depredated wetland restoration involves processes and
not structures. Under such changes in hydrological connectiv-
ity outlook, a recent development in hydrological research has
combined SW-GW together, treating them as a single system,
and groundwater-dependent ecosystems have even been pro-
posed (Winter et al. 1999; Euliss et al. 2004; Eamus et al.
2006; Jolly et al. 2008). Available surface water is declining
while the extraction of groundwater beyond natural recharge
rates is taking place, lowering the water table and causing the
degradation of groundwater-dependent ecosystem (Jolly et al.
2008; Brunner et al. 2009a, b; Raulings et al. 2010;
Lamontagne et al. 2014). Freshwater wetlands within coastal
regions are also prone to salinization. This is due to
reclamation-induced changes in hydrological cycling,
resulting in recharge increases that in turn lead to increases
in saline groundwater or seawater intrusion (Jolly et al. 2008;
Blum and Roberts 2009; Neubauer 2013). As ecological
processes and patterns have changed as a consequence of
altered hydrological conditions, a great deal of effort has been
focused on restoring more natural water regimes to reinstate
healthy plant communities in hydrologically modified wet-
lands (Lewis 1990a, b; Wilcox and Whillans 1999; Smith
et al. 2007; Raulings et al. 2010) Fig. 1.

This review is comprised of three sections: (i) establishing
controls that impact interactions between SW-GW in coastal

wetlands; (ii) addressing such ecological responses that derive
from the combined effects of water regimes and salinity; and
(iii) summarizing modeling techniques used when determin-
ing interactions between groundwater and coastal wetlands as
well as key modeling processes.

SW-GW Interactions in Coastal Wetlands

Wetland SW-GW Controls

Potential gradient changes under different temporal and spa-
tial scales control groundwater movements and alter interac-
tions between SW-GW in wetlands (Boulton et al. 1998).
Flow regime types typically depend upon water table structure
between wetlands and upland areas (Hayashi and Rosenberry
2002; Fan et al. 2012). Specifically, groundwater flow direc-
tion is governed by the slope of the water table (Jolly et al.
2008; Baalousha 2012). As summarized by Sophocleous
(2002), larger scale hydrologic SW-GW exchanges are con-
trolled by: (i) the distribution and magnitude of hydraulic
conductivity, both within channels and associated alluvial
plain sediments; (ii) the relationship between stream stage
and adjacent groundwater levels; and (iii) the geometry and
position of stream channels within alluvial plains. Jolly et al.
(2008) indicated that SW-GW interactions in wetlands can be
broadly classified into four flow regimes: (i) connected losing
wetland—where wetland surface water is lost (i.e., recharged)
to the underlying aquifer; (ii) disconnected losing wetland—
similar to (i) except that wetland surface water seepage is slow
enough that an unsaturated zone underneath the wetland re-
mains; (iii) flow-through wetland—where water is gained
(i.e., receives discharge) from groundwater in certain areas
of the wetland and where water is lost (i.e., recharged) in other

Fig. 1 An illustration of a typical coastal wetland (derived from an illustration provided in Tiner (1993))
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areas; and (iv) gaining wetland—where water is gained (i.e.,
receives discharge) from the underlying aquifer. Interactions
between SW-GW, affected by groundwater discharge from
regional flow systems and from local flow systems associated
with scarps and terraces, evapotranspiration, and tidal flooding,
is highly variable (Winter et al. 1999; Sánchez-Martos et al.
2014). In this context, under the effect of variations in climate,
tidal flooding as well as other related factors, individual wet-
lands may temporally change from one type to another depend-
ing upon how surface water levels in wetlands and their corre-
sponding underlying groundwater levels change over time even
in groundwater dependent ecosystems (Jolly et al. 2008;
Sánchez-Martos et al. 2014). Subject to precipitation events
and seasonal patterns (Sena and Teresa Condesso de Melo
2012), changes in flow direction (affluence or effluence) take
place when the hydraulic head is altered whereas flow itself
depends upon sediment hydraulic conductivity. Owor et al.
(2011) pointed out that hydraulic gradients are highest during
periods of monsoonal rainfall when direct recharge elevates
groundwater levels. On the other hand, variable flow regimes
could alter hydraulic conductivity of sediment via erosion and
deposition processes and thus affect SW-GW interaction inten-
sity (Sophocleous 2002; Elsawwaf et al. 2012). Hydrological
interactions are inherently complex, being subject to periodic
water-level changes caused by periodic tidal events (Winter
et al. 1999; Yuan and Lin 2009; Gao et al. 2010; Carol et al.
2012; Moffett et al. 2012; Zapata-Rios and Price 2012) Fig. 2.

Vital Roles of SW-GW Interactions in Coastal Wetlands

Vertical and lateral flow exchanges are composed of complex
water networks that maintain the ecological integrity of

coastal wetlands (Euliss et al. 2004; Cook and Richard Hauer
2007; Acworth 2009; Cui et al. 2012; Raab and Bayley 2012).
On the one hand, water networks composed of interactions
between SW-GW provide freshwater while preventing seawa-
ter intrusion (Harvey and Nuttle 1995; Nuttle and Harvey
1995). In an ecological context, connectivity is defined as
the transfer of material between different locations via wind
and water as well as via human and animal activity (Peters
2008). Reclamation activities (e.g., dam construction, farm-
ing, etc.) impede connectivity, restricting the input of fresh-
water for wetland function (McFalls et al. 2010; Zhang et al.
2012), which can even result in the creation of geographically
isolated wetlands (Winter and LaBaugh 2003; Golden et al.
2014). As an example, wetland loss has primarily been driven
by the construction of flood control levees in the Louisiana
coastal zone along the Mississippi River (Blum and Roberts
2009;McFalls et al. 2010). In China, connectivity impediment
and water regime alteration resulting from reclamation also
have caused coastal wetland degradation in the Pearl River
and Yellow River deltas (Cui et al. 2009a, b; Zhang et al.
2012). On the other hand, SW-GW interactions allow for
organic matter and mineral transport, especially in terms of
controlling salinity and interactions that lead to diversity in
wetland type. With the help of connectivity (e.g., vertical and
lateral flow), material and resources can be transported within
and among different wetland types, altering salinity (Winter
2001; McFalls et al. 2010; Álvarez-Romero et al. 2011),
which influences surface water chemistry, water depth, hydro-
logic regimes, soil morphology, and plant species composition
(LaBaugh et al. 1998; Euliss et al. 2004). Flood events can
cause temporal changes in streambed elevation and particle
size composition, which can influence hydraulic properties

Fig. 2 Conceptual groundwater
flow paths to and from a
connected losing; b disconnected
losing; c gaining; and d flow-
through wetland regimes (after
Jolly et al. 2008)
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and stream-aquifer fluxes in beds during and after an event
(Simpson and Meixner 2012). Furthermore, due to complex
interactions between surface water and groundwater, it re-
mains difficult to establish particular reference conditions
used to define “good” surface water quality and to understand
the influence that groundwater has on such coastal wetlands
(Sánchez-Martos et al. 2014).

Response of Ecological Patterns and Processes to SW-GW
Changes

Combined Effects of Water and Salinity

Changes in hydrological processes and salinity are the key
drivers for ecological patterns and processes as well as the
control of ecological evolution (McCarthy 2006; Jolly et al.
2008). A number of studies targeted water regime impacts on
morphological characteristics, density, biomass, and spatial
patterns of plant species (Horton and Clark 2001; Langford
et al. 2009; Froend and Sommer 2010; Xie et al. 2011; Yuan
et al. 2011), exploring tolerance levels and outlining suitable
water regimes for different plant species (James et al. 2003;
Eamus et al. 2006; Merritt et al. 2009; Raulings et al. 2010).
Both temporary and permanent salinity conditions resulting
from water regime changes to coastal wetlands has led to
complex physiological and ecological responses (Jin 2008;
Antonellini and Mollema 2010; Yu et al. 2012; Johns et al.
2014). In other words, combined effects of water regimes and
salinity will control ecological patterns and processes (Slama
et al. 2008; Antonellini and Mollema 2010; Cui et al. 2010;
Gorai et al. 2010). Tolerances of different plant species to the
combined effects of salinity and water have been previously
investigated, such as Suaeda maritima (e.g., Alhdad et al.
2013), Phragmites australis (e.g., Gorai et al. 2010; Yang
et al. 2012), and Sesuvium portulacastrum (e.g., Slama et al.
2008). Although many emergent wetland plant species may
readily tolerate rapid changes in flooding and drying under
freshwater conditions, their tolerance to dynamic water re-
gimes may be compromised by salinity (Salter et al. 2010).
For example, increases in salinity can reduce growth rates and
above-ground biomass production in non-halophytic macro-
phytes, which may reduce inundation tolerance (Johns et al.
2014). Furthermore, salinity resulting from variations in water
regimes also can impact biodiversity in coastal wetlands
(Amores et al. 2013).

Hydrological Events and Water Pulses in Addition to Salinity
Tolerance

Hydrological event pulses, such as flood pulses and tides,
maintain a freshwater and salinity balance in coastal wetlands.

Certain studies have shown that wetlands that undergo pulsing
hydrology experience higher carbon (C) productivity and
retention in soils than wetlands that are continuously flooded
(Middleton 2002; Neubauer 2013; Marín-Muñiz et al. 2014).
For example, soil microbial communities respond quickly to
changes in salinity, altering the rate of soil organic carbon
(SOC) loss and associated biogeochemical processes (Cham-
bers et al. 2013). The interconnection of river channels and
floodplains is critical because ecological functions such as
production, decomposition, and consumption are driven by
flood pulses, and water fluctuation drives succession (Middle-
ton 2002). Hydrological event pulses can maintain a dynam-
ical balance in coastal wetlands with respect to variation in
salinity tolerance between different plant species and life
stages (Brock and Casanova 1997; Kefford et al. 2007;
Raulings et al. 2010). P. australis is generally considered to
be less salt-tolerant than Spartina alterniflora. It has been
proposed that recent P. australis invasions are related to a
reduction in salinity associated with anthropogenic alterations
of habitat, such as storm runoff being redirected to the rear of
marshes (Silliman and Bertness 2004; Cui et al. 2010). Al-
though controversial, juvenile plants are considered more
sensitive to water regimes and salinity than adult plants, and
the reproductive capacity of adults may be impaired by ele-
vated, albeit sublethal, salinity levels (Jolly et al. 2008). Mis-
matched tolerance levels to water regimes and salinity can
unquestionably alter plant species and populations in coastal
wetlands by such means as flood pulses or seawater intrusion
via over pumping of aquifers, and even alter wetland integrity
(Spalding and Hester 2007; Amores et al. 2013;
Hopfensperger et al. 2014; Johns et al. 2014).

Modeling Interactions Between SW-GW

Modeling Groundwater and Coastal Wetlands Together

Modeling interactions between groundwater and coastal wet-
lands can provide a profound means by which to understand
the vital role in maintaining the connectivity of hydrological
processes (Kazezyılmaz-Alhan et al. 2007; Fleckenstein et al.
2010; Yang et al. 2010; Guay et al. 2013; Haines 2013). Jolly
et al. (2008) reviewed modeling approaches between ground-
water and wetlands in arid and semi-arid regions. They found
that researchers have paid more attention in site-specific and
developing generic relationships between water body geome-
try and lake/wetland-aquifer interactions. As a result, they
focused on site-specific transient studies using traditional
numerical modeling approaches and newer analytic element
techniques and link-node approaches. Realizing such short-
comings of earlier studies, more attention is starting to be paid
to the movement of both water bodies and sea salt. This is
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especially important considering unsaturated zone processes
within and around wetlands, which are critical in terms of
ecological responses, particularly in relation to vegetation
growth, decomposition, and nutrient release (Kazezyelmaz-
Alhan and Medina 2008; Yuan et al. 2011). Due to a lack of a
specific wetland model, distributed parameter physically-
based models have been applied to reflect complex hydrolog-
ical processes in wetlands, such as MIKE SHE (Graham and
Refsgaard 2001), InHM (VanderKwaak and Loague 2001),
and MODHMS (Panday and Huyakorn 2004). Most integrat-
ed models are also based on the assumption of a constant fluid
density, and thus their applicability to coastal regions is ques-
tionable unless it can be somehow shown that model results
are insensitive to density variation (Langevin et al. 2005).
Numerical models are increasingly used to explore hypotheses
and to develop new conceptual models related to SW-GW
interactions (Xu et al. 2009). New technologies such as dis-
tributed temperature sensing (DTS) allow for an assessment of
process dynamics at unprecedented spatial and temporal res-
olutions (Fleckenstein et al. 2010; Rau et al. 2012). Although
integrated models provide a good means by which to under-
stand interactions between groundwater and coastal wetlands,
owing to the large number of contributing hydrological pro-
cesses, shallow hydraulic gradients, and variable density flow
conditions, there remains much to do to improve model per-
formance in this regard (Yuan and Lin 2009; Haines 2013).

Key Processes Involved in Modeling Groundwater in Coastal
Wetlands

Due to the complex ecohydrological characteristics of coastal
wetlands, more attention should be paid to model interactions
between groundwater and coastal wetlands, such as (i) vari-
ability in changes of evapotranspiration (ET) alongside wet-
land ecological patterns. On the one hand, ETwill be altered
alongside ratio changes between open water and vegetation
coverage that results from changes in water levels (Sánchez-
Carrillo et al. 2004; Huckelbridge et al. 2007; Headley et al.
2012). On the other hand, plant species communities, owing
to specific physiological and ecological characteristics, are
subject to high ET rates (Xu et al. 2010; Zhou et al. 2010;
Białowiec et al. 2012). Owing to the difficulty in
distinguishing between vegetation ET and water evaporation,
how plants enhance or reduce ET remains controversial,
which increases water budget uncertainty in modeling inter-
actions between SW-GW. (ii) High pulses in hydrological
events can result from floods, tides, and reclamation. Being
influenced by climatic changes and anthropogenic activity,
coastal wetlands (especially in estuaries) are easily affected
by high hydrological pulsing events, such as floods, tides, and
water-sediment regulation (Day et al. 2007; Cui et al. 2009a;
Moffett et al. 2012). High hydrological pulsing events can
alter the steady state of water regimes that result from

physiological and ecological characteristics, even leading to
changes in plant species distribution or ecosystem evolution
(Day et al. 2007; Moffett et al. 2012; Temmerman et al. 2012).
Furthermore, due to the influence of high hydrological pulsing
events, especially tides, the transport of seawater to wetlands
is inherently complex. Conversely, changes in salinity can
also impact ecological processes and alter hydrological pro-
cesses (Gómez-Sapiens et al. 2013; Webb et al. 2013). All of
the above factors can alter boundaries in integrated models
and increase difficulties in modeling interactions between
SW-GW.

Conclusion

Interactions between SW-GW control water regimes and sa-
linity, preventing seawater intrusion in coastal wetlands. Com-
plex hydrological networks, maintained via vertical and lateral
water interactions, play a vital role in maintaining diverse
habitats and forming wetland networks. The combined effect
of water and salinity results in a complex mechanism related
to plant species tolerance, controlling the spatial distribution
of vegetation. Hydrological event pulses (e.g., flood and tidal
pulses), and, in particular, inundation, drought, and seawater
intrusion promoted by reclamation, have altered morphologi-
cal characteristics of plant species, density, biomass, and
spatial patterns, resulting in wetland degradation. The distri-
bution of physically-based models provides a profoundmeans
by which to understand the vital role in maintaining hydro-
logical connectivity. More attention should be paid to key
processes within integrated models, such as variability in ET
changes alongside ecological patterns of wetlands as well as
high hydrological event pulses resulting from floods, tides,
and reclamation.
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