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Abstract Vernal pools provide critical breeding habitat for
amphibians adapted to temporary waters, but they seldom
receive the same level of protection as permanent wetlands.
In response to continued degradation and loss of pools, man-
agers often attempt to mitigate losses through pool creation or
restoration. However, mitigation efforts often fail to provide
suitable aquatic habitat for vernal pool amphibians.We review
the literature on pool creation in northeastern and central
North America, highlighting how and why constructed pools
often fail to support amphibian-related objectives. We recom-
mend that practitioners consider the complex ecology of pool
ecosystems and the historical and current distribution of pools
and other wetlands in their local context before designing pool
mitigation projects. Using vernal pool creation as a mitigation
option should be a last resort (i.e., when elimination of natural
pools is unavoidable). Monitoring should be target-specific
and conducted for at least 5 years. Topographic, geologic, and
other local factors affecting pool hydrology and ecology vary
regionally; pool creation remains an imperfect science that

will only advance by documenting failures and successes. We
recommend an adaptive management approach to vernal pool
creation in which the effectiveness of techniques is evaluated
and refined based on research.
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Introduction

Vernal pools in the central to northeastern regions of North
America are seasonal wetlands in forested landscapes, free of
permanent fish populations. As their name suggests, they
typically are most fully inundated in the spring, and may also
be referred to as temporary ponds, ephemeral wetlands, or
various combinations thereof. Vernal pools provide the core
breeding habitat for wood frogs (Lithobates sylvaticus), mole
salamanders (Ambystoma spp.), and invertebrates (notably
fairy shrimp [Anostraca]) adapted to life in temporary waters,
but they are often inadequately protected because of their
small size and ephemeral nature. When pools are lost or
severely degraded, mitigation efforts often rely on pool crea-
tion or restoration to replace breeding habitat for pool-
associated amphibians. It is essential to distinguish creation
of vernal pools from restoration because the context is often
very different. Creation usually occurs either as a compensa-
tory mitigation requirement accompanying the removal of an
intact, naturally occurring vernal pool, or as part of a proactive
program to augment or diversify habitat by building new
pools. Vernal pool restoration projects, however, attempt to
return a pool from an altered or degraded condition to a pre-
existing condition (National Research Council 1992; Brooks
and Gebo 2013). This paper focuses on creation of vernal
pools, and while creation and restoration approaches can vary
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dramatically, much of the relevant literature is also applicable
to restoration.

While replacing a hectare of natural wetland with a hectare
of created wetland may result in no net loss of wetland area,
there is likely to be a net loss of ecological functioning
(Hoeltje and Cole 2007; Dahl 2011; Moreno-Mateos et al.
2012). In particular, early reviews by Kusler and Kentula
(1990) and Kentula et al. (1992) demonstrated that wetlands
created for compensatory mitigation often failed to reliably
replace natural wetland functions. This shortcoming is ad-
dressed in more recent guidance from the U.S.
Environmental Protection Agency (2008) regarding the na-
tional “Mitigation Rule.” Under most circumstances, U.S.
federal and some state wetland regulations require that both
area and functional impacts to vernal pools be mitigated.
However, recent legal cases have raised the issue about wheth-
er hydrologically isolated wetlands should receive the same
degree of protection as those with surface connections to
navigable waters (Mahaney and Klemens 2008). This situa-
tion threatens vernal pools in particular (e.g., Leibowitz 2003)
and highlights the need for clear, effective mitigation
strategies.

By definition, wetland restoration seeks to reestablish a
wetland’s physicochemical, hydrological, and ecological
functions (National Research Council 2001), and presumably
vernal pool creation also seeks to establish new pools with
functions similar to those of natural pools. However, vernal
pools are among the most difficult wetland ecosystems to
create or restore primarily because of their hydrological prop-
erties: particularly, the seasonal water regime that is their
defining feature. Furthermore, vernal pool creation or restora-
tion must be coupled with adjacent high-quality post-breeding
habitat for the biphasic amphibian species that depend on
these pools for breeding, but spend most of their lives in
adjacent habitats (Lichko and Calhoun 2003; Semlitsch
2008; Simon et al. 2009).

For practitioners seeking guidance on vernal pool mitiga-
tion strategies, published information can be confusing and
conflicting. Some manuals for vernal pool creation suggest
creating pools is easy (Biebighauser 2003, 2011), yet peer-
reviewed papers to date report generally poor or ambiguous
results in terms of providing breeding habitat to vernal pool-
associated amphibians (Lichko and Calhoun 2003; Petranka
et al. 2003; Vasconcelos and Calhoun 2004, 2006; Petranka
et al. 2007; Korfel et al. 2009; Gamble and Mitsch 2009;
Denton and Richter 2013). In this paper, we review the current
literature on pool creation in central to northeastern North
America (referred to below as the region) as pool creation is
common in this area yet the relevant literature has not been
synthesized. However, analogous research on the creation of
small, often temporary, pools has been undertaken in other
parts of the world, e.g., Australia (Brainwood and Burgin
2009), Brazil (da Silva et al. 2011), California (Black and

Zedler 1996), Spain (Ruhi et al. 2012), and the United
Kingdom (Williams et al. 2008). The purpose of this paper
is to fill this gap by:

(1) providing a summary of the major findings in the current
vernal pool creation literature in our region with a focus
on key indicator amphibians (wood frogs and
ambystomatid salamanders);

(2) defining an ecologically appropriate endpoint for suc-
cessful creation;

(3) providing general recommendations to practitioners
gleaned from the literature;

(However, it is not the goal of this review to provide a
“how-to” manual for vernal pool creation); and

(4) identifying research gaps that should be a focus of pool
creation studies.

Although we have focused on one region in North
America, we believe our recommendations for approaches to
management and future research are relevant, at least concep-
tually, to other ephemeral wetlands around the world.

Vernal pools and key pool-breeding amphibian species

Vernal pools provide critical breeding and nursery habitat,
where amphibian eggs and larvae develop and emerge as
metamorphs to adjacent forests, for wood frogs and species
of mole salamanders. Pools may provide additional breeding
sites for other species, including (but not limited to) four-toed
salamanders (Hemidactylium scutatum), American toads
(Anaxyrus americanus), eastern spadefoots (Scaphiopus
holbrookii), upland chorus frogs (Pseudacris feriarum), and
fairy shrimp (Anostraca) (Calhoun and deMaynadier 2008). In
addition, adult amphibians may use pools as stepping stones
while moving to summer and winter refugia (Semlitsch 1998;
Baldwin et al. 2006a). Pools in the region are typically located
in forested settings where shaded, cool conditions with abun-
dant leaf litter and coarse woody material support detrital-
based food webs in the pools (Palik et al. 2006; Magnusson
and Williams 2006). Wood frogs, mole salamanders, and
certain other species of amphibians are well-adapted to these
relatively nutrient-poor systems where they have limited com-
petition and reduced depredation from fish, other amphibians,
and invertebrates associated with more permanent waters and
more open canopy pools (deMaynadier and Houlahan 2008;
Denton and Richter 2013).

How do we measure success?

A mitigation project should have defined goals, or endpoints
of success. From our perspective, successful pool creation is
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demonstrated by reproduction and metamorphosis by key
indicator species such as wood frogs and ambystomatid sala-
manders for the long-term (i.e., not just the 5 year monitoring
period). In practice, regulators and managers often use a lower
standard of “success,” e.g., simply the presence of any am-
phibian species or the presence of a given target species within
the first 2 years after creation (Lichko and Calhoun 2003);
however, these metrics may bemisleading. Created pools may
be colonized by dispersing individuals from other breeding
pools, or, in the case of onsite mitigation, by returning mem-
bers of the original pool-breeding population , but their pres-
ence is not indicative of successful breeding (Vasconcelos and
Calhoun 2006).

Furthermore, monitoring protocols generally require as
little as 2 years of monitoring post-creation (Lichko and
Calhoun 2003). Our review of the literature, however, under-
scores the importance of monitoring periods for aminimum of
5 years to incorporate demographic and environmental vari-
ability such as the interaction between climate (temperature
and precipitation variability) and hydroperiod. For example, it
may take more than 5 years for green frog (Lithobates
clamitans) or bullfrogs (L. catesbeianus), voracious predators
of wood frog and salamander egg masses and larvae, to
establish in semi-permanent or permanent pools at densities
that generate a detrimental effect on the classic pool breeders
using those same pools (Vasconcelos and Calhoun 2004;
Denton and Richter 2013).

Below we review key factors that affect pool success from
the perspective of key pool-breeding amphibians. We look at
both pool-specific factors and larger-scale issues associated
with pool landscape setting. We address pool-specific con-
cerns and landscape-scale issues separately for simplicity
while recognizing that there are many interactions between
the two.

Pool-specific factors affecting creation success

Hydrology

The hydrology of any given pool will be dictated by hydro-
geomorphic setting (i.e., the landscape position of a pool in the
watershed that dictates the major inputs and outputs of water
to the system), as well as more proximate factors such as
canopy cover (i.e., evapotranspiration), pool surface area,
volume, depth, and connection to groundwater (Cole and
Brooks 2000). Periodic drying (usually in summer, occasion-
ally in autumn and winter) excludes resident populations of
predatory fish, reduces the diversity and abundance of inver-
tebrate predators, and limits competition and depredation from
other amphibian species (Drayer 2012; Denton and Richter
2013; Julian et al. 2013). Additionally, amphibian diseases
may be more likely to persist in permanent wetlands than in

those that dry (Gray et al. 2009; Richter et al. 2013a). For
these reasons, hydroperiod (i.e., the timing and duration of
inundation), is particularly critical to vernal pool ecosystem
functions (Zedler 2000); even variations in vernal pool filling
and drying on the order of 2 to 3weeks can alter pool-breeding
amphibian community composition and the success of any
given species (Paton and Crouch 2002; Babbitt et al. 2003;
Baldwin et al. 2006a; Good 2006; Seigel et al. 2006; Timm
et al. 2007). For example, wood frog and spotted salamanders
deposit eggs early in the spring, but wood frog embryos and
larvae develop more rapidly than spotted salamanders, neces-
sitating a substantially longer hydroperiod to support success-
ful reproduction for spotted salamanders (Fig. 1). In contrast,
marbled salamanders (Ambystoma opacum) deposit eggs in
dry basins in autumn. Eggs hatch after vernal pools recharge,
and overwintered larvae metamorphose on a schedule similar
to wood frogs.

A number of studies report significantly longer
hydroperiods for created pools versus natural pools as well
as differences in water chemistry owing to miscalculation of
water table depths or compacted soils impeding drainage
(diMauro and Hunter 2002; Gamble and Mitsch 2009;
Korfel et al. 2009; Drayer 2012; Denton and Richter 2013).
Longer hydroperiods, particularly semi-permanent to perma-
nent, may mean increased numbers of amphibian species and
invertebrates that prey upon target vernal-pool breeders.
Notably, green frog and bullfrog larvae, which take 2 to 3 years
to develop, and eastern newt (Notophthalmus viridescens)
adults are efficient predators of wood frog and ambystomatid
egg masses and larvae, and may be abundant in created semi-
permanent to permanent ponds (Kross 2014). These species
are also potential reservoirs of disease (Daszak et al. 2004;
Gahl et al. 2012). Denton and Richter (2013) reported that in
Kentucky wood frogs and marbled salamanders were almost
exclusively found in natural, ephemeral wetlands, whereas
large frogs (e. g., green frogs and bullfrogs) and eastern newts
were only found breeding in permanent, constructed wetlands.
In this system, newts and ranid larvae consumed all wood frog
eggs (100–190 clutches) and many ambystomatid eggs in four
created pools over a 4-week period (Richter and Drayer,
unpubl. data). In Maine, green frogs consumed all the wood
frog egg masses (over 100) in two created pools in less than
1 week (Vasconcelos and Calhoun 2004). In short, failure of
created pools to support viable populations of specialized pool
breeders is often directly attributable to improper hydrological
regime (Porej et al. 2004; Vasconcelos and Calhoun 2006;
Gamble and Mitsch 2009; Drayer 2012; Denton and Richter
2013; Kross 2014).

Hydrogeomorphic setting

Vernal pools may develop in a variety of hydrogeomorphic
settings including riparian areas, surface water depressions
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(often in the upper reaches of a watershed), and as groundwa-
ter depressions in low-lying areas (either embedded in larger
wetlands or as discrete depressions). Each of these settings is
characterized by different hydroperiods (ranging from ephem-
eral to semi-permanent vernal pools) and major water inputs
(e.g., precipitation, groundwater inflow, subsurface flow, and
runoff) that may influence water temperature, pool substrate,
and water chemistry (Whigham and Jordan 2003; Sacerdote
and King 2009; Gebo and Brooks 2012). For example, pools
that receive inputs from groundwater as well as from surface
runoff tend to have mucky soils and water chemistry that is
less variable than pools supported primarily by surface water.
Water chemistry and temperature will affect rates of embryo
and larval development in pools (Newman 1998; Karraker
et al. 2008; Battaglin et al. 2009). Local populations of am-
phibians may be particularly adapted to these subtle differ-
ences in pool setting (Rice and Emery 2003; Brady 2012).
However, there is no published information on how to create
pools in these different landscape settings to ensure replication
of the abiotic environment.

Vegetation

Within-pool vegetation structure In our region, the composi-
tion and structure of pool vegetation varies greatly, and only a
few plant species are true vernal pool obligates (e.g., Scirpus
ancistrochaetus [northeastern bulrush] and Hottonia inflata
[featherfoil]; Cutko and Rawinski 2008; Drayer 2012; Denton
and Richter 2013; Pennsylvania Natural Heritage Program
2013). Although vegetation in pools may be important for
providing shade, refuge, and potential egg attachment sites
(Porej and Hetherington 2005; Vasconcelos and Calhoun
2006; Skidds et al. 2007; King 2012), many pools may be
largely devoid of vascular plants. In these cases, fine and
coarse woody material deposited in pools from adjacent trees
and shrubs may serve as egg attachment sites and refugia from
predation.

Potential for invasive species The potential for colonization
by weedy plants in created pools is high, and pools can

become dominated by monocultures of cattail (Typha spp.),
common reed (Phragmites spp. ), purple loosestrife ( Lythrum
salicaria ), or duckweed (Lemna spp.) in disturbed sites,
especially in pools located in more open settings. These plants
can eventually fill or dry out a vernal pool, dramatically
changing the hydroperiod and altering pool chemistry and
temperature (Vasconcelos and Calhoun 2004; Cutko and
Rawinski 2008).

Pool canopy cover Canopy cover adjacent to pools affects
pool temperature and supporting detrital food webs through
inputs of leaf litter, which impacts developmental rates and
species interactions (reviewed in deMaynadier and Hunter
1995; Schiesari 2006; deMaynadier and Houlahan 2008).
Canopy removal directly over and around vernal pools may
alter amphibian community composition as increased light,
temperature, and primary productivity may attract a broader
array of amphibian and invertebrate species that either com-
pete or prey on pool-breeding specialists (Brooks et al. 1998;
Calhoun and deMaynadier 2002; Skelly et al. 2002; Denton
and Richter 2013). Thus, reduction in canopy cover may
preferentially support species typically found in open-
canopy wetlands to the detriment of vernal pool specialists.
For example, Schiesari (2006) found that northern leopard
frogs (Lithobates pipiens) outperformed wood frogs in open
canopy, but not closed canopy conditions. Additionally, pools
may become dominated by algae and duckweed, ultimately
reducing oxygen levels (e.g., by limiting light infiltration and
reducing algal photosynthesis) and limiting their suitability for
target pool breeders (Vasconcelos, unpublished data).

Slope

Most natural vernal pools have shallow littoral zones available
with gradual slopes to the center, which has been linked to
greater species richness compared to constructed wetlands
(Porej and Hetherington 2005; Drayer 2012). In the ridge-
top wetland ecosystem of Kentucky, Drayer (2012) found
natural wetlands to have significantly lower slope (measured
as depth at 1 m from shore; mean±1 SE=9.1±0.8 cm) than

Fig. 1 Amphibian species use vernal pools for oviposition and larval
rearing according to different schedules throughout the year. Typical
species such as wood frogs and spotted salamanders migrate to pools in
late winter or early spring, but larval development takes several weeks
longer for spotted salamanders than for wood frogs. In contrast, marbled
salamanders migrate to pools in late summer and deposit eggs in terres-
trial nest sites within the dry basin. Embryos hatch following autumn
inundation, and larvae overwinter and metamorphose on a schedule

similar to wood frogs. Data are based on movement phenology of adults
and metamorphosed amphibians reported by Paton and Crouch (2002) in
Rhode Island, U.S.A.; shading gradient between endpoints and black
interior reflects 5-95 % range of cumulative percentiles of number of
migrants. Changes in latitude, altitude, and weather will influence end
points. For example, Guttman et al. (1991) estimated that wood frog
breeding commences a mean of 5.2 days later per additional degree of
latitude
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constructed wetlands (15.4±1.6 cm). Created pools that do
not mimic the slope of natural pools may be less suitable for
amphibian recruitment (Porej and Hetherington 2005;
Croshaw and Scott 2006). Steep, abrupt slopes may cause
access problems for salamanders and may limit the growth
of vegetation (Simon et al. 2009; Shulse et al. 2012) or the rate
of melting ice cover in northern climates. Additionally, shal-
low areas can be important for predator avoidance (Porej and
Hetherington 2005), thermoregulation of amphibians for
growth (Wellborn et al. 1996) and to decrease the occurrence
of diseases (Raffel et al. 2010). Optimal slopes vary from pool
to pool depending on typical levels of winter and fall rains
(Croshaw and Scott 2006). Marbled salamanders are particu-
larly sensitive to changes in pool slope because their selection
of nesting sites depends on the interplay of pool bathymetry
and water levels determined by winter and fall rains (Croshaw
and Scott 2006).

Soils

Soil development is highly dependent upon hydroperiod (i.e.,
longer hydroperiods result in saturated conditions that can
create mucky, organic surface layers) and parent materials
(e.g., highly permeable sandy outwash materials versus com-
pact, restrictive tills; Tiner and Veneman 1989). If creation
efforts properly mimic the necessary hydrology and pools are
placed in appropriate hydrogeomorphic settings, soil develop-
ment in created sites should be similar to that of natural pools
(see Biebighauser 2003). If soils from the original wetland are
excavated and used in the created wetland, this should en-
hance the likelihood of colonization by native species (i.e., by
plant seeds and resting stages of invertebrates or dormant cysts
or eggs; Stauffer and Brooks 1997; Colburn et al. 2008).

Soil compaction in created pools may influence hydrope-
riod (Whittecar and Daniels 1999; Gamble and Mitsch 2009).
If the soils have sufficient clay, then they can be readily
compacted to hold water (Biebighauser 2003, 2011).
However, there is always a risk that they will hold water too
long (Korfel et al. 2009). For example in Kentucky, construct-
ed wetlands with the same hydrogeomorphic parameters as
natural wetlands and maximum depths less than 30 cm were
permanently inundated, presumably because of soil compac-
tion (Drayer 2012; Denton and Richter 2013).

Landscape setting and pool context affect success
of creation projects

Because of the complex life histories of pool-breeding spe-
cialists, conservation efforts must support critical population
dynamics including migration from winter hibernacula to
breeding pools, migration from breeding pools to summer

habitat, migration from summer refugia to hibernacula, and
juvenile dispersal (leaving the natal pool to breed in new
pools). Not all pool-breeding amphibians have the same
post-breeding habitat needs (see Baldwin et al. 2006a;
Semlitsch et al. 2008; Rittenhouse and Semlitsch 2007). For
example, wood frogs in the northeastern U.S. often require
three distinct habitat elements including the breeding pool,
summer refugia of forested wetlands or hillside seeps, and
well-drained upland forests for hibernation (Baldwin et al.
2006b, Groff, unpublished data). In contrast, salamanders
may require fewer habitat elements, but may bemore sensitive
to habitat disturbance closer to the pool and to disruption of
migration routes (McDonough-Haughley and Paton 2007).

The literature emphasizes the importance of the forest
matrix linking pools as post-breeding habitat and as migratory
and dispersal corridors (see Compton et al. 2007; Harper et al.
2008; Greenwald et al. 2009; Baldwin and deMaynadier
2009; Denton and Richter 2013; Peterman et al. 2013).
Abundant coarse woody material and leaf litter on the forest
floor and at least 50 % canopy cover have been suggested as
key components of suitable forest habitat (Gibbs 1998; Patrick
et al. 2006; deMaynadier and Houlahan 2008). Disturbance
thresholds for each species of pool-breeding amphibian have
not been widely investigated, but a number of case studies
(Gibbs 1998; Homan et al. 2004; Windmiller et al. 2008;
Windmiller and Calhoun 2008) and extinction models
(Harper et al. 2008) suggest that current regulatory zones
around pools in states with specific vernal pool legislation
are inadequate for conserving pool-breeding amphibian pop-
ulations. Altering as little as 25 % of post-breeding habitat
adjacent to pools led to local extinctions in twoMassachusetts
vernal pools (Windmiller et al. 2008).

In addition to affecting upland habitat quality for amphib-
ians, upland vegetation characteristics may influence pool
characteristics at large spatial scales. Skelly et al. (1999)
suggested that forest recovery following agricultural abandon-
ment increased evapotranspiration rates, leading to decreased
hydroperiods. Presumably, any changes to vegetation within
the catchment area of a pool, such as those caused by succes-
sion or timber harvest, have the potential to affect a pool’s
water balance (Skelly et al. 2005).

A rich body of literature has documented pool-breeding
amphibian migration and dispersal distances from breeding
pools (Richter et al. 2001; Semlitsch 2002; Faccio 2003;
Regosin et al. 2003; Cushman 2006; Baldwin et al. 2006b;
Patrick et al. 2006; Rittenhouse and Semlitsch 2007, see
review in Semlitsch and Skelly 2008). It is generally accepted
that the area within 300 m of a breeding pool is core foraging
and migration habitat for most adult pool-breeding species
(Rittenhouse and Semlitsch 2007; Harper et al. 2008), but this
area can exceed 1,000 m (e.g., Humphries and Sisson 2012).
Genetically significant linkages among pools typically occur
in neighborhoods of pool-based populations within 10 km of
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one another (see Smith and Green 2005; Gibbs and Reed
2008). Data on juvenile movement is limited because it is
often not possible to conduct radio-telemetry studies on ani-
mals this size (but see Roznik and Johnson 2009). Alternative
methods (e.g., fluorescent powder tracking or pit tagging)
only allow for short-term assessment of microhabitat needs
and movement pattern (Emanetoglu et al. 2013). Dispersing
juveniles may travel in excess of 1 km from natal pools
(Patrick et al. 2006; Gamble et al. 2007), if not significantly
farther (Smith and Green 2005). Frogs typically travel farther
than salamanders, and females generally travel farther than
males (Regosin et al. 2003; Rittenhouse and Semlitsch 2007).
Although it is not usually feasible for a mitigation project to
control habitat quality at these distances, the constraints im-
posed by this larger landscape perspective should be recog-
nized because landscape context is crucial to the functioning
of pools (see Kentula 2000; Zedler 2000; Regosin et al. 2005;
Julian 2009; Gardner et al. 2007) and to preserve local genetic
diversity (Gibbs and Reed 2008; Richter et al. 2013b). Many
researchers have documented that amphibians are particularly
sensitive to pool context and quality of the surrounding habitat
(Kolozsvary and Swihart 1999; Lehtinen et al. 1999; Guerry
and Hunter 2002; Babbitt et al. 2009; Simon et al. 2009).

We know of only one peer-reviewed journal article that
provides prescriptive measures for the spatial configuration of
pools at the landscape scale. Petranka and Holbrook (2006)
urged restoration ecologists who are designing creation or
restoration projects to consider whether natural pools are
patchy (clustered, allowing free flow from pool to pool within
a single amphibian population) or distant (suggesting a meta-
population structure with limited interaction among pools). If
pools are patchy, they suggest that creation should provide
clusters of pools with varying hydroperiods to support local
anti-predator responses (i.e., allowing amphibians to switch to
pools with less predation pressure, which can fluctuate annu-
ally). However, we note that “landscape” is a term that can be
used at many scales and one needs to think about particular
species to assess whether pools are “patchy” or “distant.” For
example, are pools within genetic neighborhoods of dispers-
ing amphibians, and are there significant barriers interrupting
typical movement patterns?

Emulating natural patterns of pool distribution and post-
breeding habitat may be difficult depending on the extent and
spatial pattern of the disturbance that initiated the mitigation
effort, availability of suitable terrestrial habitat and suitable pool
sites, and access to information on historical patterns of pools or
other wetlands. For example, Denton and Richter (2013) and
Drayer (2012) compared created and natural wetlands on ridge-
tops in Kentucky’s Daniel Boone National Forest and found
that the creation of permanent pools over the last 20 years has
likely provided avenues of dispersal and migration for green
frogs, bullfrogs, and eastern newts, thereby potentially expos-
ing naturally occurring ridge-top amphibian species to direct

predation and to diseases such as Batrachochytrium
dendrobatidis (amphibian chytrid fungus) and ranavirus
(Daszak et al. 2004; Gahl et al. 2009; Greenspan et al. 2012;
Richter et al. 2013a). In that landscape, permanent created
pools did not support wood frogs and marbled salamanders;
those species remained restricted to natural, ephemeral pools.

Summary

Collectively, the peer-reviewed literature cautions against as-
suming pool creation will successfully create suitable habitat
for target vernal pool species. It suggests that the key to
effective vernal pool creation is attention to context: what
was the historical landscape distribution of wetlands and
vernal pools and what is the current distribution? Seen through
the lens of past and present wetland status, the sometimes
blurred or conflicting messages from the current technical and
scientific literature come into focus. For example, in some
cases, where natural pools have been highly degraded or
locally extirpated, creation may be the only option in efforts
to support wetland-dependent wildlife. This perspective un-
derlies the work of Biebighauser (2003) whose guidance for
creating pools was developed in a region with limited wetland
resources where providing habitat for any wetland wildlife is
likely to be judged desirable (also see Brand and Snodgrass
2009; Simon et al. 2009; Brown et al. 2012). However, such
creation efforts carry a high risk of failure for vernal pool
species that are sensitive to predators associated with more
permanent waters and those that need adjacent forest for post-
breeding habitat (e.g., wood frogs) (Boone et al. 2008; Drayer
2012; Denton and Richter 2013; Kross 2014).

Our review of the literature indicates that vernal pool
creation is an imperfect science and should be used as a last
resort after exhausting more reliable protective methods
(Calhoun et al. 2005; Windmiller and Calhoun 2008; Denton
and Richter 2013). The practice is perhaps appropriate in
landscapes that have been subjected to severe wetland losses,
such as former agricultural landscapes where forests have
recovered but drained and destroyed wetlands have not.
Vernal pool ecosystems are difficult candidates for creation
because the community structure is as tied to the surrounding
forested ecosystems as to the actual pool depression and
because pool function is so tightly tied to hydrology. In
addition, ideal breeding site characteristics may vary among
pool-breeding species regionally (Snodgrass et al. 2000;
Petranka et al. 2007) as do post-breeding habitat quality
tolerances (Windmiller et al. 2008). For these reasons, mitiga-
tion efforts must, first and foremost, consider conserving
existing pools in a suitable landscape, and, if that is impossi-
ble, seek to emulate pools in the region in terms of hydrogeo-
morphic setting, spatial distribution, and natural amphibian
communities.
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Recommendations

Pool specific

& If pool hydroperiod is successfully recreated, generally the
rest will follow if source populations exist within viable
colonization distances. However, hydroperiod is perhaps
the most difficult parameter to reproduce. Therefore, we
caution practitioners to carefully consider the effects of
substrate composition, compaction, maintenance of cano-
py, and construction on pool fauna when building vernal
pools. If pool hydrology is permanent or even semi-
permanent with connections to other waters, fish and
amphibian species typically restricted to permanent wet-
lands may colonize the pool and decimate vernal pool-
breeding amphibians by depredating both egg masses and
larvae. If the vegetation structure is complex, some
ambystomatid species may be able to breed successfully
for a while, but evidence suggests that wood frogs will not
persist (Vasconcelos and Calhoun 2006; Denton and
Richter 2013; Julian et al. 2013; Kross 2014).

& We recommend that practitioners create pools that support
appropriate, natural vegetation (Pearl et al. 2005), hydro-
geomorphic setting, and soil type and compaction asmuch
as possible. Limiting removal of adjacent trees and root
damage during construction will preserve canopy cover,
and reducing soil compaction will facilitate colonization
by herbaceous plants and trees. Obviously, reestablish-
ment of mature forest, which is often the dominant cover
associated with vernal pools in this region, may take many
decades. Wood frogs and ambystomatid species will use
shrubs and persistent graminoids for egg attachment sites.

& Because littoral zones with a gradual slope are important
for life history requirements of some species (e.g., mar-
bled salamanders) and provide more opportunity for es-
tablishment of vegetation, thermoregulation of larvae, and
refuge from predation, we recommend emulating slopes
of local, natural pools.

Landscape and population-scale considerations

& We recommend paying attention to local landscape con-
text and desired endpoints of mitigation. Pool-breeding
amphibians may be organized in metapopulations that
function through exchanges among pools following cata-
strophic events (rescue and colonization processes) and
that depend upon relatively long-distance dispersal events
to maintain genetic integrity (Gibbs and Reed 2008).
Alternatively, pool-breeding amphibians may occur in
patchy populations when pools are relatively close
(<500 m) making pools of varying hydroperiod in close
proximity important for allowing natural exchanges of

breeding adults in responses to within-pool habitat condi-
tions (e.g., responding to changing predator densities in
pools; see Petranka and Holbrook 2006).

& We advise against creating permanent pools. Addition of
created pools with permanent hydroperiods, especially at
unnaturally high densities, may subsidize local popula-
tions of bullfrogs, green frogs, and eastern newts. This can
negatively affect nearby pool-breeding specialists by in-
creasing predation pressure on eggs and larvae and by
increasing the likelihood of disease introductions (Gahl
et al. 2009; Brown et al. 2012; Greenspan et al. 2012;
Denton and Richter 2013), thus potentially creating pop-
ulation sinks. This possibility argues against the strategy
of creating an excess number of vernal pools in the hope
that some portion of them will have the correct
hydroperiod.

& We recommend ample post-breeding habitat and pool
connections be maintained for long-term amphibian pop-
ulation persistence. The 30 m surrounding pools often
serves as critical habitat for newly emerged amphibians
and should provide ample canopy cover, leaf litter, and
coarse woody material for cover and foraging (Regosin
et al. 2003; deMaynadier and Houlahan 2008). However,
persistence of populations is favored by at least 300 m of
forested habitat and connections that allow movements
among pools and pool clusters.

Measures of success over the monitoring period

& Presence of an amphibian species is a poor indicator of
population health; individuals may be transient animals
that are no longer able to breed successfully in the pool.
Trends in abundance of target species over at least 5 years
post-creation is a better measure of population robustness,
although even abundance may not reflect breeding success
in the pool. Ideally, the best measure of success is evi-
dence of breeding and metamorphosis by intended species
over five or more years.

& We recommend a minimum of five years of post-creation
monitoring reproductive effort of target species (number
of egg masses laid) and recruitment (number of animals
successfully metamorphosing and returning to breed).
Seemingly functional pools may be ecological traps where
individuals breed but where larvae are not able to mature
and leave the pool; thus recruitment is a superior metric to
egg mass counts. Survivorship to metamorphosis is a
better predictor of population health than status of eggs
or larvae (Richter et al. 2003; Cushman 2006; Rittenhouse
and Semlitsch 2007; Harper et al. 2008).

& Similarly, because it may take a number of years for
invasive vegetation to occupy and dominate a pool, we
recommend monitoring pool vegetation for at least five
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years after creation. We do not recommend using species
richness as an indicator of pool success (or the contribu-
tion of that pool to regional biodiversity). In fact, richness
can be similar between constructed and natural pools
across the same landscape, while community composition
is different, driven by the presence of species not histori-
cally breeding in the ecosystem (Drayer 2012; Denton and
Richter 2013). Wood frogs and most of the region’s
ambystomatid salamanders are forest-pool specialists, in
part because shaded pools are less likely to harbor com-
petitors and predators including green frogs, bullfrogs,
northern leopard frogs, pickerel frogs (Lithobates palustri-
s), and eastern newts (Korfel et al. 2009).

& We strongly discourage using occupation by widespread,
generalist species such as green frogs and their tadpoles as
a criterion for success as such species do not adequately
replace pool functions or contribute to landscape-scale
biodiversity. In contrast, these species are an indicator of
failure to replace pool functions, especially for wood
frogs.

& We also recommend monitoring from a long-term per-
spective because natural vernal pools tend towards ex-
treme variability, from pool to pool and even within the
same pool from year to year. Just as a natural vernal pool
may not be productive or “successful” in a given year, a
similar allowance should be considered in evaluating cre-
ated pools. Factors such as weather, ecological context,
and the developmental and demographic needs of target
species can inform locally appropriate success criteria.
Indeed, we hypothesize that having occasional years
where pool hydroperiod is very short may facilitate am-
phibian reproductive success over the long run by both
limiting disease and reducing populations of predatory
invertebrates.

Adaptive management

We recommend an adaptive approach (see Salafsky et al.
2001) to management of vernal pools, in which scientists
and practitioners collaborate. First and foremost, it should be
determined if there is a need for vernal pool creation based on
the historical distribution and abundance of vernal pools and
other wetlands, the loss and degradation of these resources,
and the desired future condition. This discussion should in-
clude diverse stakeholders (e.g., landowners, government of-
ficials, scientists, practitioners, and others) so that the best
management policy for a particular region can be determined
(Jansujwicz et al. 2013a, 2013b). Following this, management
protocols (i.e., construction techniques) should be developed
by key technical stakeholders including scientists, engineers,
and managers. Scientists should then monitor the success of
pool creation based on multiple indicators, including

hydroperiod and successful reproduction by focal amphibian
species. These results should be used to refine approaches to
construction, if necessary. As part of the iterative process,
research might be necessary to determine the appropriate
cons t ruc t ion techniques based on nat ive so i l s ,
hydrogeographic characteristics, and other factors affecting
hydrology (Brown and Richter 2012; Drayer 2012; Denton
and Richter 2013).

Future Research Needs

Even if practitioners consult the papers discussed in this
review before embarking on mitigation activities, they offer
little technical guidance, especially in terms of assuring eco-
logically successful outcomes. Below are research needs that
became obvious as a result of our review:

& Regional studies are needed to determine appropriate
compaction parameters based on ambient soil texture,
water source (surface/precipitation versus groundwater),
and geomorphology of proposed construction sites. The
interaction of these parameters should be considered rela-
tive to resulting hydroperiods as well as biological
outcomes.

& Post-breeding habitat requirements of vernal pool species
need to be better defined across their ranges to inform
landscape quality and quantity issues such as directing
vernal pool creation projects to landscape contexts in
which they have the greatest probability of success.

& Soil and substrate structure of vernal pools needs further
study so that the implications of using compacted soil to
retain water is balanced against other life-history needs.

& Longer-term studies will reveal the permanence of out-
comes observed within typical monitoring periods
(<5 years) and if successional trajectories in created pools
differ from natural pools, which are themselves poorly
studied in this regard. Rapidly changing climatic condi-
tions may also necessitate reevaluation of earlier research,
as well as present opportunities to design pools to accom-
modate predicted effects of climate change on wetland-
dependent wildlife.

& Reporting outcomes, both positive and negative, is the
only means by which the practice of vernal pool creation
will progress. Whether in project reports or peer-reviewed
articles, including sufficient detail about pool design pa-
rameters and landscape context is essential to guide future
projects as well as research, especially when these char-
acteristics can be correlated with outcomes.
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