
ARTICLE

Bioaccumulation and Translocation of Arsenic
in the Ecosystem of the Guandu Wetland, Taiwan

Chen-Wuing Liu & Yen-Yu Chen & Yu-Hsuan Kao &

Sanjoy-Kumar Maji

Received: 6 January 2013 /Accepted: 2 October 2013 /Published online: 12 October 2013
# Society of Wetland Scientists 2013

Abstract High arsenic (As) levels occur naturally in geother-
mal areas, potentially polluting downstream wetland ecosys-
tems. The study was to determine the distribution of As among
aqueous, solid, and plant phases in the Guandu Wetland of
Taiwan. Chemical compounds (As, Fe, Mn, TOC, SO4

2-, and
FeS2) and isotopic compositions (δ34S) in water and soil sam-
ples were analyzed to characterize the As distribution. The
sequential extraction of As and total As in plant samples
wasanalyzed to estimate the bioconcentration factor (BCF)
and translocation factor (TF; defined as the ratio of metal
concentration in the shoots to those in the roots) of As in
Kandelia obovata in aqueous and solid phases. The As con-
centrations in plants (23.69 mg/kg) were higher than in the
surrounding water (0.0018 mg/L) and soils (17.24 mg/kg).
Kandelia obovata have high As bioavailability and low TF,
causing easy adaptation to grow in As-contaminated wetland
ecosystems. BCFplants/water (13657.92) was higher than
BCFplants/soil (1.38). The uptake and bioaccumulation of As in
Kandelia obovata are significant; therefore, Kandelia obovata
is an As accumulator. The uptake As by the Kandelia obovata
plant might depend on the oxidation of As-contained FeS2 in
the aerial roots and/or adsorption of As on root surface.
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Introduction

Arsenic (As) is a toxic metalloid and human carcinogen in the
natural environment (Smedley and Kinniburgh 2002). High As
levels occur naturally in geothermal areas because of volcanic
activity, resulting in pollution of groundwater, geothermal
spring water, downstream wetlands, and estuary ecosystems
(Lièvremont et al. 2009).

The Guandu Wetland is located in the estuary of the Tanshui
and Keelung Rivers and is widely affected by tidal conditions
(Fig. 1). The tidal estuarine wetland is flooded twice a day;
therefore, seawater mixing with fresh water results in variations
of salinity, sulfate concentrations, pH, and redox conditions,
which may cause As release and retention reactions. Most metal
sulfides provide a potential sink for As in anoxic sediments
(Dellwig et al. 2002), especially in coastal area where sediment
material were easily deposited in the marine formation. The
biogeochemical reactions in anaerobic environment may govern
sulfate/sulfide cycling in sedimentary marine formations
(Thamdrup et al. 1993; Canfield and Thamdrup 1996). Numer-
ous studies have indicated that isotopic techniques are useful for
understanding the influence of sulfur cycling on As mobility in
the geochemical environment (Lipfert et al. 2007;Mukherjee and
Fryar 2008; Kao et al. 2011). However, both the accumulation
and impact of As on ecosystems in the wetland are not yet
adequately distinguished.

Guandu Wetland is a tidal estuary natural preserve which has
Kandelia obovata, Phragmites communis and Cyperus
malaccensis mangrove species in the benthic-mud areas.
Kandelia obovata is the most dominant mangrove species in
Guandu Wetland (Hsueh and Lee 2000). Kandelia obovata has
three physiological mechanisms: (1) Aeration roots transfer ox-
ygen to the roots, thus Kandelia obovata can survive in anaer-
obic wetlands (Kadlec and Knight 1996). (2) Viviparous seed-
lings help disseminate and reproduce Kandelia obovata (Chou
et al. 1987). (3) The salt tolerance of Kandelia obovata enables
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survival in the estuary ecosystem (Mitsch and Gosselink 2000).
Kandelia obovata has been widely studied and was mainly
focused on the accumulation of heavy metals, effect of heavy
metals on plant growth, and effects of root exudates on heavy
metal toxicity (Lu et al. 2007; Xie et al. 2012). As heavy metal
transported to the aerial part inKandelia obovat , the stem acts as
a cation exchange column which can effectively reduce the
amount of heavy metal accumulation in leaves (Hardiman and
Jacoby 1984). The high content of heavy metal in roots is an
important tolerance mechanism of Kandelia obovata .

Variations of salinity, sulfate concentrations, pH, and redox
conditions in wetland system may potentially affect As release
and retention reactions. Hence the distribution andmobility of As
among aqueous, solid, and plant phases are worth for investiga-
tion. The purpose of this study was to discriminate the distribu-
tion of As among aqueous, solid, and plant phases in the Guandu
Wetland, Taiwan. Chemical parameters, As species, ferrous iron
species and sulfur isotopic compositions (i.e., δ34S[SO4] and
δ18O[SO4]), were analyzed. The bioaccumulation and transloca-
tion capacity of the major wetland plant, Kandelia obovata, was
quantitatively assessed to illustrate the uptake of As in the
wetland environment. Results of this study will provide valuable
information to improve our understanding of the transfer path-
ways of As in mangrove ecosystem in the region.

Materials and Methods

Study Area

The GuanduWetland is located in the southwestern part of the
Guandu Plain in Taipei, Taiwan, which is downstream of the
Beitou geothermal spring (Fig. 1). In 1960s, many geothermal
fields at Beitou have been developed to generate energy from
the steam and hot water reservoirs of Tatun Volcano Group
(Song et al. 2000) which lies between two major thrust faults,
the Chinshan Fault and the Kanchiao Fault (Lai et al. 2010,
2011). In geothermal spring water at Beitou, Taipei City,
Taiwan, the As concentration is as high as 4.32 mg/L(Chen
et al. 2007), exceeding the ground water contamination stan-
dard of 0.25 mg/L and potentially resulting in bioaccumula-
tion of As in the downstream wetland ecosystem. The As-rich
spring water flows to Huang Gang Creek, discharging a high-
As flux to the regional Guandu Plain. Long-term irrigation
with high As contents has caused the average As content of
surface (0–15 cm) and subsurface (15–30 cm) soil in the
Guandu Plain to be 145 and 143 mg/kg, respectively, substan-
tially higher than the soil contamination standard of 60 mg/kg
(Chiang et al. 2010). High As contents may accumulate
downstream of the Guandu Wetland and may influence aque-
ous, solid, and plant phases in the Guandu Wetland.

Because the Guandu Wetland is near the mouth of the Kee-
lung and Tanshui Rivers, it has a semi-diurnal tidal regime with a

tidal amplitude of approximately 1–2 m; and although it is only
10 km away from the Tanshui River estuary, the wetland area is
widely affected by tidal fluctuations. Tidal seawater, which can
intrude into the upper estuary approximately 25 km from the
river mouth, mixes with the river water during high tide, but
mixes only partially during low tide (Liu et al. 2001).

The mangrove ecosystems are particularly abundant in the
GuanduWetland, and theKandelia obovata is one of the most
dominant plant species found in this area. Mangroves are
capable of absorbing and accumulating pollutant toxins in
both roots and aerial parts. As a result, the pollutants are
transferred to the detrital food chain in the wetland ecosys-
tems. The pathway of toxins transfer in mangroves via detrital
food chain introduces As into the detritus feeding communi-
ties and thus resulting in input of As into the detrital and
coastal food chains. Similarly, the deposit feeders, such as
fiddler crabs, which are exposed to high As sediment may
transfer the toxin into the food chains. As may be further
transferred and biomagnified at higher trophic levels in the
wetland ecosystem. It is thus important to know the As distri-
bution in the aqueous, sediment, and mangrove phases to
formulate effective management plan in the Guandu Wetland.

Water, Soil and Plant Sampling

The surface water and soil samples in this study were collected
from inland sites and 5 randomly selected sites (S1, S2, S5, S7,
and S9). Core samples were collected at the inner (depth of
70 cm, S2) and outer sites (depth of 85 cm, S5) (Fig. 1).
Porewater samples with a vertical interval of 5 cmwere extracted
using a Rhizon sampler (microporous polymer, <0.2 μm pore
size). The sediment samples with an interval of 5 cm were air-
dried (overnight) to facilitate analyzing the chemical compounds.
All water samples were stored in polyethylene containers,
maintained at 4 °C, and sent to the laboratory within 24 h. All
soil samples were stored in N2-purged plastic bags, dried at room
temperature, and homogenized using 100-mesh sieves in an
anaerobic glove box. A split sample was removed from the glove
box in an oven at 50 °C for 72 h.

Plant samples were taken from the same location as the
surface water, and the soil samples (S1, S2, S5, S7, and S9)
were collected in 3 replicates. Samples of Kandelia obovata
were roughly washed with tap water and then rinsed with
deionized water. The various plant tissues, such as live roots,
stems, leaves, and seedlings, were separated and delivered to
the laboratory within 24 h. The samples were dried in the oven
at 50 °C for 48 h, ground into powders, and passed through
100-mesh sieves (Abedin et al. 2002).

Chemical Compounds of Water, Soil and Plant Analysis

The dissolved oxygen (DO; Thermo Fisher Scientific Star-A
2235), redox potential (Eh; Mettler Toledo Inlab 501 Redox),
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and pH (Mettler InLab Routine; Calibration Buffer Solution 4,
7 and 10) of the water samples were measured in situ. Water
samples were filtered through 0.2 μm membrane filters
(Advantec; mixed cellulose ester) and acidified with a few
drops of 3 M HNO3 to a pH of about 2 (APHA 1998). The
Alkalinity (Alk) and total organic carbon (TOC), and NO3

-,
NH4

+, SO4
2-, HS-, Cl-, Ca2+, Mg2+, Na+, K+, As, Fe, and Mn

concentrations were analyzed. Alkalinity and TOC were mea-
sured using the titration and high-temperature combustion
methods, respectively (APHA 1998). Ions such as SO4

2-,
Cl-, NH4

+ and HS- were determined using an ion chromato-
graph (IC) (DIONEX ICS-900), and Cl- was determined using
AgNO3 titration. Dissolved metal ions, including Na+, Mg2+,
Ca2+, K+, Fe and Mn, were measured using an inductively
coupled plasma-optical emission spectrometer (ICP-OES)
(Perkin Elmer Optima 7300DV ICP-OES) (APHA 1998).

The preservative procedure ofAs and Fe species followed that
outlined by Wang et al. (2011). After pumping, all groundwater
samples were filtered through a 0.2 μm pore membrane filter to

prevent microbial activity and remove suspended particles. In
order to pre-treat groundwater samples by the complexation of
Fe, acidification of samples had been proposed to prevent the
effects of Fe precipitation on As speciation (McCleskey et al.
2004). Ferrous (Fe2+) concentrations of the samples were mea-
sured colorimetrically using a ferrozine method (Lovley and
Phillips 1987). The difference between the concentrations of total
Fe and Fe2+ was considered the Fe3+ concentration. The arsenic
species were separated using an anion column (Phenomenex
Nucleosil, 10 μm, 250 mm×4.6 mm) connected to a high-
performance liquid chromatography (HPLC) (Perkin Elmer Se-
ries 200 HPLC Pump), which was interfaced to an electro-
thermal atomic absorption spectrometer (AAS) (Perkin Elmer
AAnalyst 200 AAS) and a hydride generation (HG) system
(Perkin Elmer FIAS 100) (Huang et al. 2003). The variances of
duplicatemeasurements were less than 10%; recoveries of check
and spike samples were between 85 % and 115 %, respectively.

The soil samples were air-dried, digested in aqua regia, and
filtered to determine the metal ion concentrations such as Fe
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and Mn, using ICP-MS. Sulfate and total organic carbon
contents were analyzed by turbidimetric method and
Walkley-Black method, respectively. To determine the total
As concentration, 30 % H2O2 and 9.6 M HCl were added to
the soil samples to remove organic matter; the soil samples
were then filtered. The AAS and HG systems (Perkin Elmer
FIAS100) were used, in which a mixture of 0.5 % NaBH4,
0.25 % NaOH, and 1 M HCl was used to reduce arsenic to
arsine (EPA, NIEA S310.62C). All the metal concentrations
of solid phases are given on dry matter basis.

The digestion procedure of As in the plant followed that
outlined by Tang and Miller (1991). The plant samples, which
were various Kandelia obovata tissues, required the addition of
25 ml of HNO3 and were allowed to stand overnight. The plant
samples were then supplemented with 30 % H2O2 and heated to
120 °C for 3–4 h to remove organic matter. At room temperature
themixtures were filtered (0.2μmporemembrane filter), and the
total As was determined using an electro-thermal atomic absorp-
tion spectrometer (AAS) and a hydride generation (HG) system,
as described previously. The standard reference material used
was tomato leaves (NIST1573a; As=0.112 mg/kg) and the
extraction recovered 72 % to 106 % of the total As.

Sulfur Isotope Analysis

Porewater samples were filtered with 0.2 μm membrane filters
and acidified with 1 M HCl to maintain the solution pH<2;

10 % BaCl2 was then added to the samples to produce BaSO4

precipitation. The samples were then filtered and dried
(Yanagisawa and Sakai 1983). The δ34S[SO4] was analyzed in
the isotope laboratory at the University of Arizona using a
continuous-flow gas-ratio mass spectrometer (Thermo Scien-
tific Delta PlusXL) (Supporting material (a)).

Before analyzing the sulfur isotope, chrome-reducible sulfide
(CRS; FeS2-S) had to be extracted from the sediment samples.
Both the sediment samples and a small beaker containing a 15-
ml 3% alkaline zinc (Zn) acetate solution were placed in a bottle.
The cap of the bottle was tightened and the solution was flushed
with nitrogen for 30 s. After flushing, 15 ml of 6 N HCl
(anaerobic acid) and 15 ml of an anaerobic Cr(II) solution were
added to the bottle and left to stand for 48 h. An alkaline Zn trap
was retrieved to analyze ZnS and measure CRS using iodine
titration of ZnS precipitation (Hsieh and Shieh 1997). The
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Fig. 2 Piper diagram of the
chemical parameters in surface
water

Table 2 The mean and standard deviation (Std) values of 6 chemical
parameters (mg/kg) from 20 soil samples

Chemical Mean Min Max Std

75.05 43.7 94.5 13.81

TOC 14.51 4.7 25.5 5.06

SO4
2- 1819.9 378.0 3490.0 1002.87

As 16.03 10.1 19.1 2.70

Fe 40725 29000 46900 4754.04

Mn 409 259 625 89.46
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δ34S[FeS2] were analyzed using ZnS powder in the isotope labo-
ratory at the University of Arizona by the Thermo Scientific
Delta PlusXL (Supporting material (b)).

Calculation of Translocation Factor and Bioconcentration
Factor

The translocation factor (TF) is defined as the ratio of metal
concentration in the shoots to those in the roots (Cui et al.
2007; Li et al. 2007; Malik et al. 2010)

TF ¼ Asshoots½ �= Asroots½ � ð1Þ

where Asshoots and Asroots are the As concentrations (mg/kg)
accumulated in the shoots and roots, respectively. TF>1 indi-
cates that the plant translocates metals effectively from the
roots to the shoots (Baker and Brooks 1989).

The bioconcentration factor (BCF) is defined as the ratio of
metal concentrations in the roots to those in the soil or water,
and is determined using Eq. (2) (Abdul and Thomas 2009)

BCF ¼ Asplants
� �

= Asenvironment½ � ð2Þ

where Asplants and Asenvironment are As concentrations (mg/kg)
in the plants and in the environment (soil or water), respec-
tively, BCF>1 indicates that the plant is a metal accumulator.

Results and Discussion

Aqueous and Solid Phases As in Surface Water and Soil

Table 1 listed 18 analyzed chemical compound concentrations in
the surface water samples (S1-S20). The average of DO and Eh
in the surface water were 4.86 mg/L and +79.25 mV, respective-
ly, indicating that the oxidative condition in surface water is a
major redox state. The significant effect of tidal seawater and
infiltration of rainfalls in wetland resulted in high EC, DO, and
Eh values in surface water. The range of As, Fe, and Mn
concentrations in the surface water were from 0.0039 to 0.0011
(mean: 0.0024 mg/L), 0.06 to 0.42 (mean: 0.10 mg/L), and 0.09
to 0.36 mg/L (mean: 0.18 mg/L), respectively. Notably, As
concentrations in the surface water were lower than that outlined
in the drinking water standard (0.01 mg/L) of the Environmental
Protection Administration (EPA) of Taiwan. According to the
classifications of the Piper diagram (Fig. 2) in the Guandu
Wetland, Type I represented the carbonate/temporary hardness,
Type II represented the alkali carbonate, Type III represented the
non-carbonate/permanent hardness, and Type IV represented
saline. The Piper diagram indicated that the principal water type
in the GuanduWetland was Type IV (N=20). The result showed
that the chemical compositions of surface water in the Guandu
Wetland were mainly controlled by mixing of seawater. Hence
the occurrences of low heavy metal concentration in surface

Fig. 3 Depth profiles of
measured pH, Eh, and EC of a
core of S2 and b core of S5
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water were strongly affected by dilution of tidal seawater. The
range of As, Fe, and Mn concentration in the surface soil was
from 10.1 to 19.1 (mean: 16.03 mg/kg), 29000 to 46900 (mean:
40725 mg/kg), and 259 to 625 mg/kg (mean: 409 mg/kg). The
As concentration in surface soil was higher than general soil
content 5–10 mg/kg (mean: 7.2 mg/kg) (Table 2) (Boyle and
Jonasson 1973). The As concentration in the surface soil was
also lower than the 60 mg/kg soil contamination standard of the
Environmental Protection Administration (EPA) of Taiwan. A
contents in surface water and topsoil are below the permissible
environmental contamination guidelines and possess no environ-
mental risks. However As concentrations in surface water of this
study are lower than those in other As contaminated wetland
system suggesting that As may be absorbed on the surface of the
Fe/Mn (hydr)oxide in oxidative condition of nature wetland
system (Zheng et al. 2004; Gonzalez et al. 2006).

Profiles of Aqueous and Solid Phases in Porewater
and Sediment

Figure 3 showed the spatial variation of pH, Eh, and EC which
were measured in porewaters. The Eh of porewaters decreased
from the surface to a deep depth, whereas pH and EC increased.

Infiltration of rainfalls and surface water flows diluted the EC
values of pore water in the shallow layer, but had a mild effect in
deep layer. Permeated oxidative species (e.g., DO, NO3

--N, and
SO4

2-) were also increased in the shallow layer (Table 1). The
low concentration of aqueous As in the shallow layer may be
caused by the adsorption of aqueous As on the amorphous Fe
(hydr)oxides (Fig. 4) (McArthur et al. 2001; Nickson et al. 2000),
leading to the high solid As concentrations in depth of 5 cm (S2,
23.8 mg/kg) and 15 cm (S5, 21.6 mg/kg) (Fig. 5).

Because aqueous As(V) concentrations were very low or
close to zero, we herein only show the As (III) concentration
profile. High aqueous As(III) concentrations were found in 45–
55 cm deep (up to 125.35 μg/L) at S2 and up to 26.39 μg/L in
70 cm deep at S5. Aqueous Fe(II) concentrations in porewater of
S2 and S5 ranged from 0.01 to 22.15 mg/L and 0 to 6.27 mg/L,
respectively (Fig. 4). The vertical redox gradient of S2 and S5
were moving from the oxidizing to the reducing condition along
with depth. Redox-related processes in wetlands were largely
controlled by the reduction of FeOOH in the presence of organic
matter (OM) during bacteria respiration, serving as electron
donors (Bauer et al. 2008; Hossain et al. 2012).

High aqueous As concentrations occurred in the transition
zone of the shallow and deep layer and was accompanied with

Fig. 4 Depth profiles of
measured As and Fe
concentrations of a core of S2 and
b core of S5
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the low concentrations of solid-phase As; this may be caused by
the reductive dissolution of Fe oxides (Figs. 4 and 5).

Under the reducing conditions in the deep layer, aqueous
As concentrations might be constrained by precipitated sulfide
minerals in the sediment (Fig. 6), which are the product
derived from sulfate reduction. The sulfur isotopes fraction-
ation factors (ε=δ34S[FeS2]-δ

34S[SO4]) can be used to evaluate
the sulfur cycling and microbial processes. Sulfate reducing
bacteria (SRB) preferred the lighter sulfur isotopes of sulfate
(Kaplan and Rittenberg 1964), and thus, increased in δ34S[SO4]
with depth represents sulfate reduction in deep layer and easy
adsorption of As on the pyrite surface. Figure 6 shows that the
fractionation factor decreased with depth, but pyrite and δ34S
increased with depth. Hence in the deep layer, aqueous As can
be constrained by the formation of FeS2 in sediment during
bacterial sulfate reduction that is governed by the relative
enrichment of the δ34S[SO4] and S isotope fractionation factor
(ε) values, in accordance with elevated As and FeS2 concen-
trations in sediments (Figs. 5 and 6). In contrast, aqueous As
was liberated due to oxidation where solid FeS2 was
dissolved, resulting the in the low solid FeS2 concentrations,
low sulfur fractionation factor, and positive Eh values in the
shallow oxidizing-layer (Van Stempvoort and Krouse 1994;
Lipfert et al. 2007). The sulfide oxidation processes may

liberate As but low aqueous As concentrations were found
in shallow oxidizing-layer (Table 1), suggesting other geo-
chemical processes or As transfer pathways such as uptake by
plants may be involved.

Arsenic Uptake in Kandelia Obovata

The range of As concentrations in the plant (Kandelia
obovata ) was 20.21–28.33 mg/kg (mean: 23.69 mg/kg), and
the results indicated that Kandelia obovata had a higher As
concentration than did the surrounding water (mean:
0.0018 mg/L) and soil (mean: 17.24 mg/kg) (Table 3).
Kandelia obovata thrives in anaerobic wetlands because its
aeration roots transfer oxygen to its roots (Kadlec and Knight
1996), thereby forming iron oxide (iron plaque) around the
roots which can adsorb As on the surface. The formed iron
plaque on the roots of Kandelia obovata can prevent the
uptake of As and preserve the root (Kadlec and Knight
1996; Meharg 2004; Fitz and Wenzel 2002; Liu et al.
2004a). The mean As concentration in Kandelia obovata
decreased from the roots (19.74 mg/kg) to the stems
(1.76 mg/kg), leaves (1.71 mg/kg), and seedlings (0.48 mg/
kg) (Table 3), suggesting that As accumulated mostly in the
roots. These results were also consistent with those of rice and

Fig. 5 Depth profiles of solid-
phase As and Fe concentrations of
a core of S2 and b core of S5
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fern roots, on which iron plaque was also present (Williams
et al. 2007; Casado et al. 2007; Zandsalimi et al. 2011).
Therefore, Kandelia obovata may still continue to survive in
polluted areas, because its tolerance to and adsorption of As
are more effective than those of other plants.

In this study, TFshoots/roots=0.199 indicated that Kandelia
obovata accumulated As in the roots but did not transfer to the
shoots (Table 4). TFstems/roots=0.088, TFleaves/roots=0.088, and
TFseedlings/roots=0.024 indicated that the As concentrations in
the roots transferring to the stems were similar to those of the
leaves but are larger than those of the seedlings (Table 3). As a

result, all translocation factors ofKandelia obovata less than 1
indicated that the transformation of As in various plant tissues
was extremely low, thereby facilitating adaptationwhen grow-
ing in an As-contaminated wetland ecosystem.

Notably, some previous studies have indicated that the trans-
location factors of trace metals (such as Al, Cu, Ni, Fe, Pb, and
V) in plants (e.g., Malva parviflora, Suaeda aegyptiaca,
Chrozophora tinctoria, Fagonia bruguieri, Gynandriris
sisyrinchium, and Ducrosia anethifolia) were greater than 1;
these plants were also the trace metal accumulators (Abdul and
Thomas 2009). In addition, the translocation factors of the Cretan
brake fern and Chinese brake fern were 1.00–2.61 and 0.17–
3.98, respectively (Wei and Chen 2006).

δ δ

δδ

Fig. 6 Depth profiles of solid-
phase FeS2 concentrations,
δ34S[FeS2] , and ε[SO4-FeS2] of a
core of S2 and b core of S5

Table 3 Arsenic concentration in surface water, soil, plant and various
plant tissues

Sample Surface
water
(mg/L)

Surface
soil
(mg/kg)

Plant
(mg/kg)

Root
(mg/kg)

Stem
(mg/kg)

Leave
(mg/kg)

Seedling
(mg/kg)

S1 0.0011 19.00 22.24 18.14 1.14 2.37 0.59

S2 0.0018 17.60 22.94 19.38 1.20 2.08 0.28

S5 0.0020 16.00 28.33 20.86 4.62 1.91 0.95

S7 0.0020 17.60 24.75 22.04 0.95 1.40 0.36

S9 0.0023 16.00 20.21 18.28 0.90 0.81 0.21

Average 0.0018 17.24 23.69 19.74 1.76 1.71 0.48

Table 4 Translocation factors in various plant tissues

Sample TFshoot/root TFstem/root TFleave/root TFseedling/root

S1 0.226 0.063 0.130 0.033

S2 0.184 0.062 0.107 0.014

S5 0.359 0.221 0.092 0.045

S7 0.123 0.043 0.064 0.016

S9 0.105 0.049 0.045 0.012

Average 0.199 0.088 0.088 0.024
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Arsenic Bioconcentration Factors in the Plant

In this study, the average BCFplant/soil of Kandelia obovata
was 1.49; the results show that accumulation and uptake of
heavy metals by Kandelia obovata was greater than that of
other plants. Because BCFplants/soil>1, Kandelia obovata can
be considered an As accumulator (Ma et al. 2001). Cao and
Ma (2004) applied the BCFplants/soil to evaluate the As bioac-
cumulation in carrots and lettuce, grown on chromate copper
arsenate (CCA)-contaminated soil. The BCFplants/soil is 0.10–
1.61.The range of BCFplants/soil in As-polluted mining soils is
0.0001–0.019 according to different tolerant plants (Casado
et al. 2007). The BCFplants/soil of Kandelia candel on Cu, Zn,
Pb, Cd, and Ni is 2.79, 2.77, 3.03, 4.20, and 4.97, respectively
(Chiu and Chou 1991).

By contrast, BCFplants/water can reflect the accumulation of
As in plants more accurately because only a small portion of
the total soil As can easily be uptaken by plant roots. A small
fraction (0 %–2 %) of the exchangeable solid phase As
appeared to have been adsorbed in the wetland and were
extracted by NaNO3 (Chen 2010), indicating that the uptake
of chemical compounds in plants from sediments was diffi-
cult. The average BCFplant/water of Kandelia obovata was
13657.92, and it was greater than BCFplant/soil in this study
(Table 5). The result shows that the uptake of As in Kandelia
obovata was significant in water because of the low As
concentration in the water, which might be removed either
by tidal effects or plant uptake. Moreover, approximately
60 %–90 % of the extracted As contents were incorporated
in the amorphous and crystalline metal oxides, and the sulfate
reduction simultaneously reduced the As mobility (Chen
2012). Only 0.2 % proportions of exchangeable phase were
found in shallow layer (Chen 2012), suggesting that the plants
uptake of As from soil was mainly from amorphous metal
oxides. Under oxidation condition of shallow layer, the aque-
ous As concentrations with high proportions of sulfides phase
were higher than those of in low proportions of sulfides phase.
The oxidation of As-bearing sulfide hence may thus mobilize
As in the shallow layer. Hence, the uptake mechanism of
Kandelia obovata might depend on the oxidation of As-
contained FeS2 in the aerial roots and/or adsorption of As in
root surface. Notably, the iron plaque forming in the root
surface had strong affinity for adsorbing As. (Chen et al.

1980; Liu et al. 2004b). It will be interesting to analyze the
roots with and without plaques in future studies.

Conclusions

The study discriminates the distribution and mobility of As
among aqueous, solid, and plant phases and assesses bioac-
cumulation and translocation capacity of As in plant in the
Guandu Wetland, Taiwan. The vertical redox profile of core
samples S2 and S5 showed two distinct oxidizing and reduc-
ing zones. As adsorbed on the surface of Fe oxides and Fe
sulfide in the shallow oxidizing layer, and in the deep reducing
layer, respectively. High aqueous As occurred in the transition
zone of the shallow and deep layer, which may be resulted in
the reductive dissolution of Fe oxides. According to results of
S isotopic fractionation, As can be constrained by the forma-
tion of FeS2 during bacterial sulfate reduction in deep layer. In
contrast, aqueous As was liberated due to FeS2 oxidation in
the shallow layer. Arsenic is mostly accumulated in Kandelia
obovata roots, and the accumulation and translocation capac-
ity of As are higher than those of in other plants. Kandelia
obovata is an As accumulator. The uptake mechanism of the
plant might depend on the oxidation of As-contained FeS2 in
the aerial roots and/or adsorption of As in root surface. The
transfer pathway of As in mangroves among aqueous, solid,
and plant phases provides information on As uptake by
Kandelia obovata in the Guandu Wetland. Furthermore, the
results provide the ecological basis for future research in the
development of biomonitoring tools and management plan for
tidal mangrove plain.
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