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Abstract Accurate estimates of the extent and distribution of
wetlands and streams are the foundation of wetland monitor-
ing, management, restoration, and regulatory programs.
Traditionally, theses estimates have relied on comprehensive
mapping. However, this approach is prohibitively resource
intensive over large areas, making it both impractical and
statistically unreliable. Probabilistic (design-based) ap-
proaches to evaluating status and trends provide a more
cost-effective alternative; however, limited information exists
about the ability of various design options to meet diverse,
state-level information needs such as accounting for both
streams and wetlands in a single program. This study utilized
simulated sampling to assess the performance of sample de-
sign options for monitoring the extent of wetlands and streams
in California. Simulation results showed significantly and
reliably increased precision and reduced bias with the spatially
balanced, generalized random tessellation stratified (GRTS)
sampling method compared to simple random sampling. In
contrast, results for stratification were mixed and highly de-
pendent on aquatic resource type and geographic region;
consequently, there was no clear, broad advantage observed
for stratification. This study also demonstrated the utility of a
model-based approach for evaluating design options for ap-
plication in other state, tribal, and regional programs.
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Introduction

Wetland and stream mapping is the foundation for many
regulatory, restoration and management programs, including
those that support state and federal no-net loss policies
(Nusser and Goebel 1997; Mitsch and Gosselink 2000)
and inform decisions on compensatory mitigation (Baron
et al. 2002; Clare et al. 2011). Accurate estimates of wetland
and stream extent and distribution are necessary to evaluate
the effectiveness of programs and policies and serve as
sample frames for ambient condition surveys.

The predominant approach for evaluating the extent of
streams and wetlands (here referred to jointly as aquatic re-
sources) has been comprehensive inventory and mapping of
all aquatic features; such an approach is used by the U.S. Fish
and Wildlife Service (USFWS) National Wetland Inventory
(NWI). Comprehensive maps are often preferred because they
can provide detailed information for all locations without
assumptions or inference, are easy to understand, and can
readily convey information to policymakers and the public.

While comprehensive mapping is an attractive approach,
it has proven inadequate for large or complex areas. Under a
comprehensive approach, the entire area must be mapped in
order to provide unbiased estimates of area-wide parame-
ters, such as total wetland area or total stream length (Nusser
et al. 1998; Gregoire 1999). For large geographic areas,
insufficient resources frequently prevent timely completion
and updating of comprehensive aquatic resource inventories
(Tiner 2009; Ståhl et al. 2010). As a result, these inventories
fail to provide estimates of total extent for a single point in
time. For example, the NWI, begun in the 1970s by the U.S.
Fish and Wildlife Service, has yet to produce a complete,
national map of wetland extent (Tiner 2009). The current
NWI covers less than two thirds of the country and is
composed of maps produced between 1970 and the present.
As a result, the NWI provides neither an estimate of current
national wetland extent nor a clear mechanism for determin-
ing change with time.
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In contrast to comprehensive inventories, design-based
mapping uses a probabilistic approach to produce extent and
trend estimates more frequently and from significantly few-
er resources (Olsen and Peck 2008). We use the statistical
term “design-based” to refer to probability-based sampling
designs where every individual in the population has a
known, non-zero probability of selection. These selection
probabilities are determined by the sampling design and are,
in turn, used to infer population characteristics from the
selected sample. Under a design-based approach, a grid is
laid out over the entire area of interest and plots are selected
at random and mapped. Then, the fraction of the target area
covered by the aquatic resource of interest is easily estimat-
ed by design-based inference (Gregoire 1999; Albert et al.
2010). This approach can be independent of the spatial
distribution of aquatic resources and does not require a
pre-existing map of aquatic resources. By mapping proba-
bilistically, observations can be completed at a single point
in time and repeated at regular intervals, enhancing ability to
estimate extent and detect trends.

While probabilistic sampling and mapping cannot pro-
duce a complete map of aquatic resources, the approach can
provide unbiased estimates of area-wide extent and the un-
certainties in that estimate (Albert et al. 2010). For example,
while the NWI has yet to map the entire country, the U.S.
Fish and Wildlife Service’s design-based NWI Status and
Trends program (NWI-S&T) has produced five reports over
the last 30 years (Dahl 2011). These reports include statis-
tical, quantitative estimates of losses in wetland area be-
tween the 1950s and today. Similar probabilistic programs
include the Minnesota Wetland Status and Trends
Monitoring Program (MN-S&T), operated by the
Minnesota Department of Natural Resources (MN-S&T);
and the National Inventory of Landscapes in Sweden
(NILS), operated by the Swedish Environmental Protection
Agency (Kloiber 2010; Ståhl et al. 2010).

Evaluation of wetland extent and distribution is particu-
larly challenging in a state as large (424,000 km2) and
diverse (13 distinct Level-III Ecoregions) as California
(Omernik 2010). In addition, the California Status and
Trends (S&T) program is intended to include both wetlands
and streams, which have very different spatial distributions.
Wetlands are often irregularly distributed based on requisite
geomorphic and hydrologic settings; whereas, streams are
more uniformly distributed across the landscape. Because of
these challenges, a quantitative comparison of design-based
sampling options is appropriate.

This study considered two major design issues for a hybrid
wetland and stream S&T program; sample selection method
and stratification. This work is also the first time these param-
eters have been rigorously evaluated for monitoring wetland
and stream extent and distribution. In previous simulation
work, spatially balanced sampling methodologies have

reduced sample variance compared to non-spatially balanced
methods, such as simple random sampling (SRS), which can
produce clustered samples (Theobald et al. 2007).
Nevertheless, SRS is still commonly used, including by the
NWI-S&T program, because of ease of implementation and
communication of results (Dahl 2011). Systematic sampling is
the simplest spatially balanced design to implement. This
approach, used by the NILS program, selects sampling loca-
tions using a regularly spaced grid (Ståhl et al. 2010).
However, systematic designs may align with spatial patterns
in the population and unbiased variance estimation requires
knowledge of the spatial variability of the population (Flores
et al. 2003). Generalized random tessellation stratified
(GRTS) sampling combines the advantages of SRS and sys-
tematic sampling and is used by the MN-S&T program
(Kloiber 2010). GRTS provides better spatial balance than
SRS by basing sample selection on a hierarchical, square grid
placed over the sample area. GRTS also avoids the spatial
alignment problem of systematic sampling by maintaining a
random distance between adjacent points (Stevens and Olsen
2004; Deegan and Aunan 2006).

Closely related to selection method is stratification, which
can be utilized to improve the accuracy and precision of sample
estimates for heterogeneous areas (Jongman et al. 2006).
Conceptually, stratification improves the accuracy and preci-
sion of sample estimates by dividing the population into ho-
mogeneous subsets, in effect minimizing within-stratum
variability and increasing between-stratum variability. The ex-
pectation is that the homogeneous units will be better described
if sampled and analyzed separately. These more precise and
accurate stratum-level estimates can be aggregated to produce a
more precise and accurate estimate of the whole population.
However, stratification can also reduce flexibility in sampling
execution and analysis. For instance, complex re-weighting
procedures are required if sample estimates are required for
subsets other than the sampling strata (Brus and Knotters 2008;
Chen andWei 2009). Other methods, such as spatially balanced
sampling, may more easily and reliably increase the accuracy
and precision of the overall estimate. Finally, stratification to
improve overall precision relies heavily on accurate prior
knowledge of the population, which is not always available
(Kozak and Zielinski 2007). Therefore, stratification may not
be necessary or appropriate if results are not required for certain
subpopulations or if there is insufficient pre-existing knowl-
edge of the population to support the stratum allocations.

This study used simulated sampling to provide empirical
statistical support for probabilistic monitoring of aquatic
resource extent. Simulations focused on California, explic-
itly explored differences between streams and wetlands, and
considered the impact of design decisions on state-level
program needs. Specifically, we evaluated the following
questions: Can a sample design balance measurement of
wetlands, which have a patchy distribution, with
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measurement of streams, which are more evenly distribut-
ed? Can a probabilistic design adequately monitor rare
wetland and stream types? Can the resulting sample be
analyzed for all subpopulations and regions of interest?
This study used multiple iteration modeling to simulate
various design options and produce a statistically based
evaluation that can form the basis for a recommendation to
the State of California. Although the study focused on
California, the approach and results should apply for any
program attempting to evaluate both streams and wetlands
across large, diverse areas.

Methods

General Approach

We utilized simulated sampling to evaluate sampling design
elements because of its ability to provide empirical distribu-
tions of sample point estimates such as mean wetland and
stream density. We used the empirical distributions to evaluate
the statistical accuracy and precision of design options such as
SRS vs. GRTS and stratified vs. unstratified sampling.

Geographic Databases

We based simulations on digital stream and wetland maps in
California, available for 100 % and 78 % of the state,
respectively (Fig. 1). For the purposes of this study, we
assumed each geodatabase represented the “true” population
of wetlands and streams in California. For streams, we used
the National Hydrography Dataset (NHD) plus, produced by
the U.S. Geological Survey and the U.S. Environmental
Protection Agency. For wetlands, we utilized the NWI, split
into two subsets for analysis because of a change in map-
ping methodology in the mid-1990s. A key step in NWI
wetland mapping is production of a map of streamline

position. Prior to the 1990s, one-dimensional features
representing streamline position were kept separate from
two-dimensional maps of wetland extent. However, begin-
ning in the 1990s, one-dimensional streamlines were buff-
ered and combined with two-dimensional wetlands into a
single map of wetland and stream extent. This change in
procedure significantly increased total area and altered the
spatial distribution of the mapped polygons. Therefore, we
considered NWI maps with buffered streamlines (NWIb),
covering 10 % of California, separately from maps without
buffered streamlines (NWI), covering 78 % of California.

Sampling Approaches

We considered four sampling conditions: (1) unstratified
SRS; (2) stratified SRS; (3) unstratified GRTS; and (4)
stratified GRTS. Numerous other sampling methods exist,
but we chose to focus on SRS and GRTS and the effect of
stratification. We considered spatially balanced sampling a
potentially powerful mechanism for improving sample per-
formance, as discussed earlier. However, we did not evaluate
systematic sampling, another spatially balanced method and
used by the NILS program, because a systematic sample of a
study area cannot be easily modified for future needs. Any
such modifications would require a completely new sample
frame and sample draw. Other commonly employed methods,
such as probability proportional to size or cluster sampling,
require significant prior knowledge about the population
which we could not supply (Smith et al. 2003; Kozak and
Zielinski 2007). Alternative, more technical options, such as
poisson sampling, were not included because they are com-
putationally intensive without significant probability of im-
proving sample performance (Williams et al. 2009).

We stratified along the Level-III ecoregion boundaries
shown in Fig. 1 (Omernik 2010). We chose ecoregions for
stratification for two primary reasons. First, ecoregions rep-
resent relatively homogenous ecological units, consistent
with the assumptions of and motivations for statistical strat-
ification. Second, aquatic resource density varied substan-
tially between ecoregions. For example, streamline density
ranges from 0.5 km km−2 in the Cascades to 1.2 km km−2 in
the Southern California Mountains and wetland density
ranges from 0.01 km2 km−2 in the Southern California
Mountains to 0.21 km2 km−2 in the Northern Basin &
Range. In areas covered by the NWIb maps, wetland density
ranges from 0.01 km2 km−2 in the Sierra Nevada to
0.59 km2 km−2 in the Sonoran Basin & Range.
Additionally, ecoregions are a convenient combination of
numerous physical, climatological, and biological variables.
These variables could be used individually for stratification,
but we did not expect them to be as powerful as ecoregions.
In addition, any attempt to combine variables would quickly
complicate sampling and analysis. Finally, ecoregions

Fig. 1 Level-III ecoregion boundaries and availability of NHD and
NWI digital maps in California; mapping methodology divides the
NWI into maps without (NWI) and maps with (NWIb) buffered
streamlines
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coincide with many of the environmental management
boundaries and subunits used by the State.

When stratifying, we performed optimum allocation for
variance minimization to allocate the total sample between
individual strata (ni):

ni ¼ n
NiσiXk

i¼1
Niσi

0
@

1
A for i in 1; 2;…; k ð1Þ

Under optimum allocation, total sample size (n) is allo-
cated based on the population size (Ni) and population
standard deviation (σi) for each stratum i. As optimum
allocation is based on the presumption of a normally dis-
tributed population, we used the standard deviation of log-
transformed streamline density for NHD allocation and the
standard deviation of arcsine-transformed wetland density
for the NWI and NWIb allocations. These transformations
were selected based on the properties of the two types of
variables — range from 0 to positive infinity with a right-
tailed distribution for NHD and range from 0 to 1 for the
NWI and NWIb.

Dataset Preparation

We began by placing a continuous, 16 km2 grid over the
entire state of California using the fishnet tool in ArcInfo
(ESRI 2010). All grid cells were considered part of the
population and the presence or extent of aquatic resources
within a cell did not affect the inclusion probability. We
applied a random offset (between 0 and 4,000 m) to the
bottom-left corner of the grid in both the x and the y
direction. We utilized the offset to reduce the probability
that the fishnet tool would align grid cells with the
California boundaries.

Next, we clipped the grid to the boundaries of the three
geographic datasets: the state boundary for the NHD;
mapped areas without buffered streamlines for the NWI;
and mapped areas with buffered streamlines for the NWIb
(Fig. 1). The result was a separate grid for each dataset. In
addition, the area of each grid cell now represented the
portion of that cell that overlapped with the mapped area.
Ecoregion was defined for each grid cell based on the
location of the cell centroid.

Then, we intersected the grids with NHD streamlines
and NWI and NWIb polygons. Intersection split stream-
lines and polygons according to plot boundaries and
assigned the grid cell number to each streamline and
wetland segment. The numbers were then used as an
index for determining the total stream length and wet-
land area for each grid cell for each stream and wetland
subtype (defined below). Finally, we computed

streamline and wetland density for each grid cell by dividing
the summed lengths and areas by the cell area.

For the NHD, we considered all streamlines and five sub-
types: stream order (SO) greater than 4; SO equal to 3 or 4; SO
equal to 1 or 2; SO not provided; and SO equal to 1 or 2 with
intermittent flow. For the NWI and NWIb, we considered all
wetlands and six wetland subtypes: esutuarine, lacustrine, ma-
rine, palustrine, riverine, and palustrine, unconsolidated shore,
seasonally flooded (PUSC). By including stream and wetland
subtypes, we could explore sample design performance for a
range of resource densities, geographic distributions, and spatial
heterogeneities. In addition, these subtypes are aquatic resource
groups of interest for management and research purposes in
California and accurate estimate of their extent is one of the
objectives of the California S&T program. The PUSC wetland
subtype was used as a surrogate for rare wetland types in order to
further test sampling performance (Cowardin et al. 1979). PUSC
has also been used by the San Francisco Bay Area, Wetlands
Regional Monitoring Program as a “classification cross-walk” to
vernal pools, a unique and ecologically important wetland type in
California (Holland and Jain 1981; Duffy and Kahara 2011).

Simulations

We conducted all sampling simulations in R version 2.13.1 (R
Development Core Team 2011). Each of the four sampling
designs was simulated 5,000 times for each dataset, a replica-
tion count used by Miller and Ambrose (2000) to give an
adequate estimate of variability in the dataset. For each repeti-
tion, we recorded sample estimates of mean density of each
feature type. GRTS samples were drawn using the grts function
in the spsurvey package (version 2.2), developed for R and
available the Comprehensive R Archive Network (CRAN)
(Kincaid and Olsen 2011). SRS samples using the sample
function in the base R package. We utilized random number
seeds for reproducibility of GRTS and SRS sample draws.

Bias and Precision of the Sample Mean

Simulations produced empirical distributions of the mean
density for each feature type and combination of sampling
parameters. We utilized these empirical distributions to
compare the performance of the different sampling designs.
This section will describe the methods used to evaluate the
empirical distribution of the mean, first to detect potential
bias and second to determine the relative precision of each
sampling design. Bias in the sample mean could indicate a
systematic error in the sampling methodology, which over-
samples a subset of the population and then fails to correct
for this oversample during analysis. Improved precision (a
smaller value as defined here) could indicate that the partic-
ular sample design is more reliable and a smaller sample
size may be possible.
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We measured bias in the sample mean by subtracting the
true population value (μ) from the mean of the empirical
distribution of the simulated sample means (mux) and dividing
by the standard deviation of the empirical distribution (sx):

dCx ¼ mux−μ
sx

ð2Þ

We calculated true population values by taking the mean of
all grid cells. The relationship in Eq. 2 (dCx) is known as
Cohen’s d and is an alternative to a t-test for the difference of
means (Cohen 1988). Because our replication rate was so large
(5,000), a t-test would conclude that very small differences
between mux and μwere significant. However, Cohen’s d does
not consider the number of replications. Instead, the difference
between the empirical distribution and the true value is only
compared to the variability in the empirical distribution.
Cohen’s d cannot produce p-values for difference between
means. However, traditional cutoffs for Cohen’s d for small,
medium, and large effect sizes are 0.2–0.5, 0.5–0.8, and >0.8,
respectively (Cohen 1988). These cutoffs indicate that a large
difference between two values is one that is close to or exceeds
the variability, while a small difference is less than half of the
magnitude of the variability.

We computed the precision (px) of each sampling design
as the ratio of the standard deviation and the mean (sx and
mux) of the empirical distribution of the sample mean,
otherwise known as the coefficient of variation:

px ¼
sx
mux

ð3Þ

We compared px values between sampling conditions
using an f-test for the ratio of variances. This test typically
has a null hypothesis that the ratio of sample variances is
equal to one (i.e., sx1

2 / sx2
2=1). However, 1 can be replaced

by any value and we chose the squared ratio of the mean of
the sampling distributions (mux):

s2x1
s2x2

¼ mu2x1
mu2x2

ð4Þ

Equation 4 can be re-arranged and, using Eq. 3, reduces
to equality px1 / px2=1.

Results

SRS vs. GRTS

GRTS sample selection significantly improved precision
over SRS (Fig. 2). This effect was observed for all resource
types and was not affected by stratification. No method
exhibited substantial bias (dCx between −0.04 and 0.02).

The observed decrease in px was not significantly associated
with the expected spatial distribution of the resource. While
the patchy NWI wetland resource had the largest percent
decrease in px, 19 % for unstratified and 20 % for stratified
designs, the evenly distributed NHD streamline resource
had the second largest, 19 % for unstratified and 16 % for
stratified, and the NWIb, which contains both streams and
wetlands, had the smallest, 8 % for unstratified and 5 % for
stratified. All differences between SRS and GRTS were
statistically significant.

Stratification

The effect of stratification on sample precision was mixed
(Fig. 3). Overall, stratification tended to reduce sample
variance and decrease estimate sample costs; however, strat-
ification both significantly increased and significantly de-
creased px for individual ecoregions and aquatic resources.
For the NHD, stratification reduced the sample variance for
all streamlines by 2.6 % under a SRS design and increased
sample variance by 1.5 % under a GRTS design. For NWI
and NWIb, stratification always decreased sample variance
but the difference was smaller for GRTS than for SRS —
7.8 % and 18.9 % reductions for the NWI and NWIb,
respectively, for an SRS design and 9.5 % and 15.9 %
reductions for a GRTS design.

The NHD and SRS sample selection illustrates the more
variable effect of stratification on individual ecoregions and

Fig. 2 Percent change in px between SRS and GRTS for unstratified
and stratified designs for the NHD, NWI, and NWIb; values below zero
indicate GRTS has a smaller px value and is more-precise than SRS;
asterisks indicate significance level (*p-value <0.05; **p-value <0.01;
***p-value <0.001)
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aquatic resources. For the NHD and SRS, the effect of
stratification ranged from a 11 % decrease in px for high-
order streams in ecoregion 9 (the Northern Basin and
Range) to a 3 % increase for high-order streams in ecoregion
7 (the Klamath Mountains/California High North Coast
Range). For the NHD and GRTS, the range was from a
11 % decrease for streams without a recorded stream order
in ecoregion 6 (the Eastern Cascades Slopes and Foothills)
to a 10 % increase for streams without a recorded stream
order in ecoregion 7. Similar variability was observed for
the NWI and NWIb. Stratification was slightly more likely
to improve precision, and decrease px for SRS than for
GRTS, but this effect was slight. Stratification was also
slightly less likely to improve precision for less common
resource types, such as high-order streams in the NHD or
lacustrine wetlands in the NWI, although this relationship
was also highly inconsistent.

Discussion

Evaluation of design based approaches for estimating extent
of streams and wetlands showed: (i) design-based sampling
balanced measurement of wetlands, which have a patchy
distribution, with measurement of streams, which are more
evenly distributed; (ii) the GRTS approach produced less
biased estimates than SRS and provided representation of all
subpopulations and regions of interest; (iii) there was no
clear and consistent advantage of stratification over an
unstratified design; and (iv) the design-based approaches
used may not adequately sample rare or spatially restricted
aquatic resources.

The observed benefits from GRTS sampling are consis-
tent with the theoretical basis of the sampling methodology
and provide substantial benefits over SRS. By increasing the
diversity and balance of sampled landscapes, spatially bal-
anced sampling is expected to minimize the potential im-
pacts of small-scale autocorrelation on sample variance
(Stevens and Olsen 2003, 2004). Our results also suggest
GRTS sampling may be a more effective approach, in some
contexts, for reducing sample variance than use of stratifi-
cation with optimum allocation. Optimum allocation re-
duces sample variance by allocating sample locations to
individual stratum according to both the size and the vari-
ance of the population within each stratum (Bosch and
Wildner 2003). This approach, used by the NWI-S&T pro-
gram, can produce a spatially representative sample and
reduce sample variance, but requires accurate information
about the spatial variability in the population (Dahl 2011).
Stratum size and variability drive stratification with opti-
mum allocation (Bosch and Wildner 2003); therefore, strat-
ification is most likely to reduce variance for large strata or
subpopulations, and is less likely to reduce variance, or may

Fig. 3 Percent change in px with stratification for SRS and GRTS
designs for NHD (top), NWI (middle) and NWIb (bottom); cell
color indicates the direction and magnitude of the differences;
values below zero indicate the stratified design had a smaller px
and was more precise than the unstratified design; asterisks indi-
cate significance level (*p-value <0.05; **p-value <0.01; ***p-
value <0.001); values in parentheses indicate the percent of the
sample allocated to each of the 13 ecoregions, defined as: (1)
Cascades; (2) Central Basin and Range; (3) Central California
Foothills and Coastal Mountains; (4) Central California Valley;
(5) Coast Range; (6) Eastern Cascades Slopes and Foothills; (7)
Klamath Mountains/California High North Coast Range; (8) Mojave
Basin and Range; (9) Northern Basin and Range; (10) Sierra Nevada; (11)
Sonoran Basin and Range; (12) Southern California Mountains; (13)
Southern California/Northern Baja Coast
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even increase variance, for small strata or rare subpopu-
lations. In contrast, the size and variability of individual
strata do not drive allocation for spatially balanced sam-
pling methods, such as GRTS, and therefore may be more
likely to decrease variance, as was observed here, for all strata
and subpopulations.

Other simulated sampling studies have shown that strat-
ification can be employed to reduce overall sample variance
and to guarantee minimum sample sizes for subpopulations
of interest (Miller and Ambrose 2000; Jongman et al. 2006).
While stratification is commonly viewed as a significant
improvement for many sampling approaches, we do not
believe it is appropriate for the California S&T program.
The mixed results for different regions and resource types
do not, by themselves, provide consistent support for or
against stratification. In addition, stratification may pose
other limitations for implementation of an S&T program.
First, ecoregions are not the only subregions the State may
want to use for reporting results. Reporting may be required
by geopolitical units such as counties or congressional dis-
tricts. Unstratified sampling preserves the ability to conduct
post-hoc analysis using a variety of groups or categories,
thereby maintaining flexibility in the overall program de-
sign. Second, the allocations used in simulations were based
on the stream and wetland distribution in the NWI and
NHD. These allocations most likely do not represent the
ideal allocation due to the incompleteness of the datasets
and changes in stream and wetland extent since creation of
the NHD and NWI data layers. Therefore, these allocations
are unlikely to be accurate for the implemented S&T pro-
gram. The simulations represent a best-case scenario where
the information used for allocation is accurate and complete.
If this best-case scenario cannot provide clear and consistent
support for stratified over unstratified GRTS sampling, it
seems less likely that an actual implementation, where the
allocation information is incomplete and possibly inaccu-
rate, will be successful.

While estimates of overall aquatic resource density are
potentially achievable with acceptable levels of precision,
estimates for rare or spatially limited aquatic resource types
had significantly lower precision in this study. Sample var-
iance improved for GRTS compared to SRS, but was not
reliably or significantly improved by stratification. Accurate
estimates for rare populations are a challenge for all proba-
bilistic sampling designs. Options to address this issue typ-
ically lead to substantially different designs, such as
adaptive sampling, stratification with regional intensifica-
tion, or modification of basemaps and target regions (Smith
et al. 2003; Guisan et al. 2006). Each of these designs
requires assumptions about the distribution of the rare pop-
ulation. However, these assumptions can potentially bias the
resulting estimates if based on incomplete information or if
applied imperfectly (Thompson and Seber 1994). Therefore,

modification of the sampling design to address limitations in
rare population measurement should only be pursued if
monitoring objectives specifically emphasize accurate esti-
mates for rare populations over other objectives. In the case
of the California S&T program, the emphasis is on accu-
rately monitoring total aquatic resource extent; therefore,
modification of the design to possibly increase accuracy
for a rare subtype would be inappropriate. If information
about rare wetlands or streams becomes more important at a
later point in time, the results from the S&T observations
could possibly provide the information necessary to target
rare subtypes.

Our results suggest GRTS provides both spatial balance
and precision for the monitoring of aquatic resource extent
and distribution. This result agrees with analysis conducted
by the MN-S&T program, which also uses unstratified
GRTS sampling (Kloiber 2010). The MN-S&T program
also specifically evaluated the benefits of stratification
according to ecoregion, but determined it did not offer
statistical advantages (Deegan and Aunan 2006). In con-
trast, the NWI-S&T and the NILS use stratification and
systematic sampling, respectively (Ståhl et al. 2010; Dahl
2011). However, both of those programs chose their respec-
tive approaches in order to increase the spatial balance and
improve the precision of the resulting sample. It is also
important to note that the GRTS sampling methodology
was developed after the NWI-S&T program was designed.

Inclusion of both streams and wetlands is a substantial
difference between the objectives of the California S&T
program design and the objectives of existing S&T pro-
grams, which focus on monitoring wetland extent. In addi-
tion to hydrologic connections, California streams provide
valuable aquatic habitat for a number of species that may
also utilize wetland habitats (Riley et al. 2005, Collins et al.
2008). Accurate stream extent and distribution information
is also relevant for many of the same scientific and manage-
ment applications as wetland extent information. Our anal-
ysis shows that aquatic resources with very different spatial
distributions — evidenced in California by patchy wetlands
and more evenly distributed streams — can be simulta-
neously accommodated by a GRTS based design.

Probabilistic monitoring clearly cannot replace compre-
hensive maps, which are essential for site-specific actions.
However, this study supports the use of probability-based
monitoring of wetland and stream density as part of a
coordinated strategy for monitoring wetland and stream
extent and condition. In addition to providing estimates of
wetland and stream density, with unbiased measures of
uncertainty, probabilistic maps can serve as a sample frame
for ambient, field-based condition assessment using tools
such as wetland rapid assessment and indices of biotic
integrity. At the time of this writing, less than ten percent
of the State of California has wetland or stream maps
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produced within the previous 10 years. Absence of an appro-
priate basemap significantly handicaps probability based in-
vestigations of wetland or stream condition using field-based
methods, performed outside of recently mapped areas.
Probabilistically mapped plots provide a cost-effective meth-
od for bridging this gap by providing spatially distributed,
sampling units. Mapped S&T plots can provide a representa-
tive sample frame from which a subset of plots could be
randomly selected and used for field-based assessments of
condition or function.

Results of this study clearly show the feasibility and prom-
ise of a probabilistic approach to estimating wetland status and
trends. By providing a spatially balanced sample, GRTS sig-
nificantly and consistently reduced sample variance, thereby
increasing power to detect change and reducing the necessary
sample size. GRTS sampling also provides additional statisti-
cal and practical advantages, not directly addressed here.
These advantages are a result of how the GRTS sample is
drawn and analyzed. First, GRTS samples can be analyzed
using a local variance estimator which reduces sample vari-
ance and, therefore, the minimum sample size (Stevens and
Olsen 2003, 2004). Second, GRTS sample selection greatly
simplifies the selection of an “over-sample” to provide addi-
tional locations for substitution in case locations in the original
sample are unsuitable for study objectives (Larsen et al. 2008).
The over-sample, also known as a master sample, approach
allows for local or regional intensification and removes the
need to perform a supplementary sample draw for local map-
ping efforts, which would require GIS and statistical software
expertise as well as access to the original sample frame.
Perhaps most importantly, the master sample ensures that
additional sampling locations can be added over time while
maintaining the spatial balance of the entire sample—as long
as locations are used in order from the GRTS master sample
list (Theobald et al. 2007).

Conclusions

This study supports an unstratified, GRTS sampling design for
monitoring aquatic resource extent in California. Based on our
simulated sampling results, this design consistently and reliably
decreases sample variance compared to stratified and SRS de-
signs. These gains are also consistent for both wetlands, which
have a patchy distribution in California, and for streams, which
have a more uniform distribution. Our results provide the first
rigorous evaluation of applying an unstratified, GRTS design to
a S&T monitoring program. These programs are a cost-
effective mechanism for monitoring aquatic resource extent
over large areas — necessary for scientific, management, and
policy decision-making. Finally, the approach we used can
easily be extended to other states and natural resources to
evaluate probabilistic design questions.
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