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Abstract The goal of this research was to determine the
utility of subpixel processing of multi-temporal Landsat
Enhanced Thematic Mapper Plus (ETM+) data for the iden-
tification and mapping of isolated wetlands ≥ 0.20 ha (0.50
acres) in Cuyahoga County, Ohio. Segmentation and object-
oriented analysis of Landsat ETM+ was used to map forested
and emergent marsh isolated wetlands in Alachua County,
Florida, previously; however, the isolated wetlands in our
study area lacked the well-defined, high-contrast boundaries
between wetland and surrounding upland needed to make this
method successful. We developed a new methodology
that incorporated Landsat ETM+; a Normalized Differ-
ence Vegetation Index mask; and subpixel matched fil-
tering–which determines the apparent abundance of
wetlands at subpixel levels in the presence of spectrally-
mixed, unknown background through a partial unmixing algo-
rithm–to map > 43 km2 (16 mi2) of isolated wetlands in our
1,189 km2 (459 mi2) study area. The final overall accuracy
of the classification was 92.8%, with a Kappa coefficient of

0.86; producer accuracy for isolated wetlands was 87.9%
(omission error 12.1%) and user accuracy was 97.4% (com-
mission error 2.6%). The subpixel matched filtering method
used in this research appears to provide an effective means
for mapping isolated wetlands ≥ 0.20 ha, especially those
with boundaries that are not easily identified.

Keywords Detection . Imagery .Mapping .Matched
filtering

Introduction

Wetlands are defined as areas that are transitional between
terrestrial and aquatic systems, where the water table is usually
at or near the surface or the land is covered by shallow water
(Mitsch and Gosselink 2000). Geographically isolated wet-
lands are wetlands that are completely surrounded by
uplands, with no apparent surface water connections to
perennial waters (Tiner 2003a). Research on isolated wet-
lands has increased in recent years due to the 2001 Solid
Waste Agency of Northern Cook County (SWANCC) vs. U.S.
Army Corps of Engineers U.S. Supreme Court ruling [531
U.S. 159 (2001)], which effectively removed federal protec-
tion status for isolated wetlands under the Clean Water Act
using the Migratory Bird Rule, thereby limiting their pro-
tection (Downing et al. 2003).

While federal protection of isolated wetlands is now limited,
these systems nevertheless perform many important ecological
and hydrological functions, such as ground water recharge
(Leibowitz 2003), floodwater retention and maintenance of
lotic system base flow (Whigham and Jordan 2003; Lane
and D’Amico 2010), and biogeochemical cycling of
nutrients (Tiner 2003b; Whigham and Jordan 2003). In
addition, although typically smaller than non-isolated
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wetlands, isolated wetlands are locally quite numerous
(Tiner 2003a) and are important in wetland metapopulation
dynamics (Semlitsch and Bodie 1998). Isolated wetlands
also provide habitat for unique endemic species and often
have high species diversity and richness (Semlitsch and
Bodie 1998; McKinney and Charpentier 2009). A recent
study by Comer et al. (2005) found that at least 86 plant
and animal species listed as threatened or endangered are
supported by isolated wetlands, and more than half of those
taxa are completely dependent on isolated wetland habitat.

Isolated wetlands are distributed throughout the United
States and include playas, prairie potholes, pocosins, wood-
land and California vernal pools, wet dune swales, sinkhole
wetlands, desert springs, kettle hole bogs, and fens (Tiner et
al. 2002). Comer et al. (2005) determined that of the 276
types of wetlands described for the United States, 29% (81)
are defined as geographically isolated; most of these types
of isolated wetlands are located in depressions on the land-
scape (Leibowitz 2003). A number of factors contribute to
the formation of these natural isolated wetlands, including
climate, topography, surficial geology, glacial history, and
tectonics (Tiner 2003b).

Unfortunately, the vast majority of geographically isolated
wetlands have not been identified or mapped. McKinney and
Charpentier (2009) maintained that the first step in the
conservation of geographically isolated wetlands was to
identify their frequency, distribution, size, and type. There
is a pressing need for an accurate and reliable assessment of
the number and area of isolated wetlands to monitor their
loss, understand their ecological importance, and address
mitigation measures (Munoz et al. 2009).

Satellite remote sensing analysis has had a long and
successful history in accurately mapping wetlands (e.g.,
Hutton and Dincer 1979; Jensen et al. 1984; Ozesmi and
Bauer 2002; Töyrä and Pietroniro 2005; Frohn et al. 2011).
Ozesmi and Bauer (2002) provided an excellent review on
satellite remote sensing of wetlands and detailed success-
ful mapping techniques. There are many advantages for
using satellite imagery to map isolated wetlands, includ-
ing repeated coverage, mapping of multi-temporal and
multi-seasonal changes, multispectral data layers, and
ease of integration in a geographic information system
(Ozesmi and Bauer 2002; Frohn et al. 2009). Despite these
advantages, very few studies use satellite remote sensing for
mapping isolated wetlands (e.g., Frohn et al. 2009; Reif et
al. 2009), possibly due to the limited availability of data sets
that identify isolated wetland systems (see Burne 2001;
Lathrop et al. 2005).

Frohn et al. (2009) developed a method for satellite
remote sensing and mapping of isolated wetlands in Alachua
County, Florida, USA, using segmentation and object-
oriented analysis of Landsat-7 Enhanced Thematic Mapper
Plus (ETM+) data to identify isolated wetlands > 0.20 ha (0.50

acres) with an accuracy of 89%. While Frohn et al. (2009)
were successful in identifying wetlands with a significantly
different vegetation structure than their surrounding uplands
(e.g., graminoid marshes or Taxodium ascendens Brongn.-
dominated forested wetlands embedded in Pinus spp. flat-
woods of Florida, USA), not all isolated wetlands fall neatly
into this category, such as isolated wetlands with a mixed
wetland/upland canopy and small, ephemeral wetland fea-
tures in upland settings, such as woodland vernal pools
(Colburn 2004; Calhoun and deMaynadier 2008). Initial
analyses in more temperate ecoregions (Frohn, unpublished
results) found poor segmentation and object-oriented anal-
ysis results in areas without such well-defined, high-contrast
boundaries between wetland and surrounding upland. For
these types of isolated wetlands, a new methodology needed
to be developed. Because these types of wetlands are small
and have mixed vegetation and soil wetness within a single
pixel, an approach coupling subpixel processing of remotely
sensed data with Normalized Difference Vegetation Index
(NDVI) masking was explored.

The NDVI is a useful transformation of satellite data
for wetland analysis to enhance the wetland/upland
boundary and mask out non-wetland areas and has been
widely used in satellite remote sensing of wetlands
(Tucker 1979; Narumalani et al. 1997; Hui et al. 2009).
Hui et al. (2009) used NDVI in a decision tree classification
scheme with Landsat TM data to map wetland paddies and
lakes. Melesse et al. (2001) also used NDVI with multi-
temporal Landsat TM data to help delineate the boundary
between wetlands and water and wetlands and uplands.
Because of its sensitivity to vegetation spectral response,
NDVI has been found beneficial for wetland mapping even
with coarse spatial resolution sensors such as MODIS (Zhao
et al. 2009) and AVHRR (Tamura et al. 1998).

A number of subpixel processing methods have been
developed in remote sensing for the classification of
various land use and land cover types with mixed pixels.
These include fuzzy classifications (Stankiewicz et al.
2003), linear spectral unmixing (Shanmugam et al. 2006),
and direct subpixel techniques (Huguenin et al. 1997;
Ozesmi and Bauer 2002). Subpixel processing is defined
as the search for a specific material of interest within a
mixed pixels composition (Ozesmi and Bauer 2002). Sev-
eral researchers have been successful in applying these
techniques for the classification of wetlands. Shanmugam
et al. (2006) compared linear spectral unmixing with tradi-
tional classifiers in southern India and determined that sub-
pixel methods outperformed traditional methods for the
classification of wetlands. Oki et al. (2002) also used linear
unmixing on multi-temporal Landsat Thematic Mapper
(TM) imagery to map Kushiro mire wetlands in Japan, and
their method outperformed traditional maximum likelihood
classifications. Wang and Lang (2009) recently used linear
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unmixing to classify cypress (Taxodium) canopies in the
Florida Panhandle with multi-temporal Landsat ETM+ data
at an accuracy of 88%. Huguenin et al. (1997) used a direct
subpixel processing technique to classify bald cypress
(Taxodium distichum Brongn.) and tupelo gum (Nyssa
spp.) wetlands with Landsat TM at an accuracy of 89%
and 91%, respectively.

Subpixel classification can be achieved using spectral
unmixing methods, including full unmixing and partial
unmixing methods (Boardman et al. 1995; Nielsen 2001;
Mundt et al. 2007). Linear spectral unmixing (Hu et al.
1999; Heinz and Chang 2001) is the standard full unmixing
method that has been used for subpixel remote sensing
classification of wetlands (Oki et al. 2002; Shanmugam et
al. 2006). Linear spectral unmixing assumes a linear com-
bination of reflectance of all classes of spectrally pure mate-
rials within a mixed pixel. These spectrally pure materials
are known as endmembers in spectral unmixing processing.
To use full unmixing methods, like standard linear spectral
unmixing, all endmembers (or classes) must be accounted
for within the pixel. The spectral signatures for all endmem-
bers must be known, and the number of endmembers in the
model cannot exceed the number of bands in the dataset
(Nielsen 2001). The full unmixing methods produce the
fractional abundance estimates for all endmembers within
a pixel. Partial unmixing methods (Mundt et al. 2007),
however, do not model all endmembers; instead, they only
detect one or a few target endmembers of interest and
estimate the subpixel abundance of these target endmem-
bers in each pixel, ignoring other endmembers that are
not related to the specific goal of the detection problem.
Since a priori knowledge of spectral signatures for many
unimportant endmembers in the background is not required,
the difficulty and cost associated with the identification
of a complete set of endmembers and acquisition of
spectra for all endmembers are dramatically reduced in
partial unmixing methods (Settle 2002; Kuenzer et al.
2008). Recently, a number of partial unmixing methods have
been developed, including matched filtering (Boardman et al.
1995), constrained energy minimization (CEM; Settle
2002), and orthogonal subspace projections (OSP; Harsanyi
and Chang 1994).

This study focused on Cuyahoga County, an area of
the USA in the Erie Drift Plain ecoregion (Omernik
1987) and a focal area for recent wetland research (e.g.,
White and Fennessy 2005; Carrino-Kyker and Swanson
2007; Fennessy et al. 2007; Kettlewell et al. 2008). The
study area and has a relative abundance of scattered, dense
patches of wetlands and isolated wetlands located in multi-
modality upland landscapes, often with full facultative and/
or upland tree canopy closure (e.g., Burne and Lathrop
2008). Woodland vernal pools were initially targeted as they
are temporarily to semi-permanently inundated wetland

features relatively common in the glaciated midwestern to
northeastern North America (Colburn 2004; Calhoun and
deMaynadier 2008). Numerous in certain landscapes–al-
though difficult to identify–woodland vernal pools are im-
portant areas for pond-breeding amphibians, migratory
passerine and waterfowl, and invertebrates (Colburn 2004).
Like most isolated wetlands, they generally lack predatory
fish species and are inhabited by characteristic taxa such as
fairy shrimp (Order: Anostraca) and certain salamanders (e.g.,
Ambystoma maculatum Shaw, the spotted salamander),
amongst other organisms (see Colburn et al. 2008; Cutko
and Rawinski 2008; Semlitsch and Skelly 2008). However
desirable, it was not possible to a priori identify and cate-
gorize these specific wetland types on the landscape; there-
fore, all wetlands defined herein as isolated (see Methods)
were included. The goal of this research was to determine
the utility of subpixel processing of multi-temporal Landsat
ETM+ data for the mapping of isolated wetlands in Cuyahoga
County, Ohio, USA, with potential application to other parts
of North America.

Methods

Study Area and Data Acquisition

The study area for this research was Cuyahoga County,
located in the Erie Drift Plains ecoregion (Omernik 1987)
of the northeast corner of the state of Ohio. Cuyahoga
County occupies an area of 1,189 km2 (459 mi2) and is
within the Cuyahoga River basin, which is apocryphally
infamous for being an impetus for the modern Clean Water
Act after catching fire in 1969 (Broderick 2005). The Cuya-
hoga basin has a long history of land use change, primarily
due to industrialization dating back to the mid-1800 s
(Beach 1998). The county is dominated by developed
(76%) and forested (19%) land uses (www.mrlc.gov,
accessed March 2010), and characterized by loamy soils
with both perched and apparent water tables (Carrino-Kyker
and Swanson 2007).

GIS Reference Data

Two reference datasets were built and later combined to test
the isolated wetland classification methods developed in this
study. The first reference dataset consisted of a combination
of three wetland datasets from local Cuyahoga sources–the
Cuyahoga Remedial Action Plan (CuyRAP), the Davey
Resource Group (DaRG), and the Cuyahoga Valley National
Park (CVNP). The CuyRAP dataset was developed by the
Davey Resource Group (2003) for the Cuyahoga River
watershed in Cuyahoga County, Ohio using aerial photos
from 1993, National Wetlands Inventory (NWI) data, and
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soil survey maps. Emphasis was placed on identifying wet-
lands > 0.41 ha (1.0 acre) in size, with a goal of mapping all
wetlands in the study area; efforts were also made to field
verify the wetlands in the CuyRAP dataset. The average
wetland size in the CuyRAP dataset is 0.73 ha (1.8 acres),
with size ranges from 0.01 ha (0.03 acres) to 19.95 ha (49.30
acres); 274 wetlands were < 0.20 ha (0.50 acres). The
Cuyahoga County portion of the Cuyahoga River watershed
comprises the extent of the CuyRAP study area. DaRG
wetland data was similarly developed by the Davey Resource
Group (2006) and incorporates the CuyRAP dataset, but has
a greater extent–the entirety of Cuyahoga County. The
DaRG dataset was developed based on 2002 aerial photos
and wetlands were field verified (Davey Resource
Group 2006). The wetlands in the DaRG dataset range in
size from <0.01 ha (0.01 acres) to 95.26 ha (235.40 acres),
with an average size of 0.73 ha (1.8 acres). There are 2721
polygons in the DaRG dataset, 1153 of which are < 0.20 ha
(0.50 acres). The final component of this first reference
dataset was data on wetlands within the Cuyahoga Valley
National Park (CVNP), again identified by the Davey
Resource Group (2001 [unpublished]; Skerl 2001). The
CVNP dataset used 1:24,000 black and white orthophotog-
raphy (date unknown) and other datasets to identify 1217
wetlands averaging 0.57 ha (1.4 acres) in size, with only 190
wetlands > 0.41 ha (1.0 acre). Wetlands within the CVNP
dataset were clipped to Cuyahoga County for use in this
study. There was substantial overlap between the CVNP,
DaRG, and CuyRAP datasets; these datasets were merged
together, and when combined, provided for coverage of
Cuyahoga County in its entirety. The 2752 wetland poly-
gons in the merged Cuyahoga County dataset ranged in size
from < 0.01 ha (< 0.01 acres) to 94.86 ha (234.40 acres),
with an average wetland size of 0.81 ha (1.99 acres).

Isolated wetlands for Cuyahoga County were determined
using a buffer geoprocessing procedure. Any wetland in the
combined Cuyahoga County wetland dataset that was > 10-m
from a water feature identified on the USGS 1:24,000 National
Hydrography Dataset (NHD; available from http://nhd.usgs.
gov/data.html, accessed Fall 2008) was determined to be
isolated (Reif et al. 2009). Water features included named
lakes and ponds, as well as any linear feature within the
NHD, with the exception of features that were obviously
artificial, ditched channels, and/or disconnected streams.
The combined Cuyahoga County wetland dataset was
post-processed to remove all non-isolated wetlands (i.e.,
wetlands within the 10-m hydrology buffer).

Of the isolated wetlands remaining in the post-processed
Cuyahoga County wetland dataset, those ≥ 0.20 ha (0.50
acres) in size (1088 polygons) were used as reference data.
The 0.20 ha (0.50 acre) size cut off was established to allow
comparisons between this area of study and that of Frohn et
al. (2009); this size represents approximately two Landsat

ETM+ 30-m pixels, and encompasses 53% of all isolated
wetlands in the post-NHD processed dataset. Of the 1088
polygons ≥ 0.20 ha (0.50 acres) in the Cuyahoga County
reference dataset, the average isolated wetland size was
0.89 ha (2.19 acres), with a range from 0.20 ha (0.50 acres)
to 44.95 ha (111.08 acres).

The second reference dataset was constructed from
an updated National Wetland Inventory (NWI) dataset
acquired from the Ducks Unlimited Great Lakes/Atlan-
tic Region (http://www.ducks.org/Conservation/GLARO/
3822/GISNWIData.html#oh, accessed 2009). The updated
NWI dataset included 2250 polygons within the study area,
ranging in size from 0.02 ha (0.05 acres) to a lacustrine area
of 249.88 ha (617.46 acres), with an average wetland size of
1.18 ha (2.92 acres). Wetlands < 0.20 ha (0.50 acres) repre-
sented 947 of the 2,250 polygons.

The updated NWI dataset was post-processed to remove
all non-isolated wetlands using the NHD buffer procedure
previously described. Only isolated wetlands ≥ 0.20 ha
(0.50 acres)–47% of the post-processed NWI isolated wet-
lands dataset–were used as reference data. The resulting
NWI reference dataset had 750 wetland polygons ranging
in size from 0.20 ha (0.50 acres) to 28.92 ha (71.47 acres),
with a mean of 0.82 ha (2.03 acres). The 145 polygons in the
NWI reference dataset that overlapped with wetlands in the
Cuyahoga County reference dataset (created from the
DaRG, CuyRAP, and CVNP data) were not used. A final
reference dataset of 1693 isolated wetland polygons was
developed for method testing by combining the NWI and
Cuyahoga County reference data. Table 1 shows the prop-
erties of the two sets of reference data combined to create
the final reference dataset. It should be noted that the ma-
jority (98.9%) of the reference wetland polygons came from
the DaRG dataset that was originally derived from 2002
aerial photographs and verified with field observations.
Due to its high accuracy, high spatial resolution and approx-
imate coincidence in time with the acquisitions of satellite
data used in our analysis, the reference data are well qual-
ified for training the classifiers and evaluating the wetland
classification result.

Remote Sensing Data Acquisition and Merging

We acquired two Landsat-7 ETM+ scenes for our study area
(Path 19, Row 31) from the U.S. Geological Survey (USGS)
Global Visualization (GLOVIS) data server with dates from
the time period coinciding with the DaRG study (2002–
2003). These scenes consisted of a leaf-on July 16, 2002
image and a leaf-off April 14, 2003 image. The two image
scenes were radiometrically corrected using the log resid-
uals calibration method implemented in ENVI software
package (Research Systems Inc. 2007). This method creates
a pseudo reflectance image through dividing the input image
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data values by the spectral geometric mean and then by the
spatial geometric mean. Since the atmospheric transmittance
and other effects are considered multiplicative, logarithm
transform of the data values were performed. The use of
the spectral mean of all bands for each pixel removed
topographic effects. The use of spatial mean of all pixels
for each band accounted for the effects of solar irradiance,
atmospheric transmittance, and instrument gain from radi-
ance data. The radiometrically corrected images were then
co-registered to one another, and georeferenced to UTM
Zone 17 N projection with reference to WGS84 ellipsoid.
Initial experiments had been performed by applying various
classification methods to the leaf-on image acquired in July,
2002, including Maximum Likelihood Classification
(MLC), minimum distance classification, Mahalanobis dis-
tance classification, and Spectral Angle Mapper (SAM).
Applying these classification methods to the single leaf-on
image resulted in low overall classification accuracy, rang-
ing from 65 to 79%. Inspired by the idea that the combina-
tion of leaf-on and leaf-off imagery may capture the unique
phenology characteristics of wetland vegetation, we used a
multi-temporal satellite dataset for better wetland classifica-
tion in this study. The six sharpened spectral bands from
each of two images scenes (leaf-on and leaf-off) were
stacked to form a multi-temporal dataset with 12 data layers.
Thermal bands (i.e., band 6) were not used in the analysis
due to their coarse (60-m) spatial resolution. To merge the
30-m spectral data with the 15-m panchromatic data of
Landsat-7 ETM+, a Gram-Schmidt sharpening algorithm
(Laben and Brower 2000; Research Systems Inc. 2007) was
utilized. First, a low resolution (30-m) panchromatic band
was simulated from the lower spatial resolution spectral
bands of Landsat ETM+ imagery using a specific weighting
scheme for Landsat ETM+. Then, the Gram-Schmidt algo-
rithm was applied to the simulated panchromatic band and
the rest of the 30-m spectral bands. The simulated panchro-
matic band became the first band of the new dataset. Then,
the actual high resolution (15-m) Landsat-7 panchromatic
band was used to substitute for the first Gram-Schmidt band.
The inverse Gram-Schmidt transform was applied to the
entire dataset, resulting in a 15-m sharpened dataset.

NDVI Mask

This study used the Normalized Difference Vegetation Index
(NDVI) mask to enhance the wetland/upland boundary,
mask out non-wetland areas, and help to eliminate false
positives (i.e., commission errors). A NDVI was calculated
using the July 2002 Landsat ETM+ data and Eq. 1:

NDVI ¼ ETMBand4� ETMBand3Þð
ETMBand4þ ETMBand3Þð ð1Þ
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NDVI values range from −1.00 to+1.00. Figure 1 shows
the NDVI image of the leaf-on July 2002 Cuyahoga County
data, which had NDVI values ranging from −1.00 to+0.46.
A subset of the 1693 polygons in the final reference dataset
was used as training data. A NDVI mask was created for the
study area with a NDVI threshold value of −0.05, which is
determined by the mean NDVI of the training data (i.e., +
0.25) minus one standard deviation (0.30). Inside the mask,
the features with a NDVI value lower than −0.05 were
considered to have a low likelihood of isolated wetland
presence. The NDVI mask was applied to the 12-band
multi-temporal Landsat dataset and the unmasked data were
then used in subpixel processing for classification of wet-
lands. As shown in Fig. 1, the features masked out mainly
correspond to buildings, pavements, parking lots, roads, and
open waters.

Subpixel Classification Based on Spectral Unmixing

This study aimed to map the subpixel abundance of a single
land cover class (isolated wetlands); other land cover classes
surrounding the wetlands were treated as spectrally-mixed
composite background. We identified the wetlands as iso-
lated based on a masked constraint and the reference dataset.
This basically reduced the classification problem to a two-
component unmixing algorithm: the abundance of one
known endmember (isolated wetlands) against an unknown
composite background of all other land cover classes. The
partial unmixing method used in this research was the
matched filtering algorithm implemented in the ENVI soft-
ware package (Research Systems Inc. 2007). Matched fil-
tering was originally developed for use in electrical and

signal processing (Turin 2002); the algorithm is designed
to filter and project the input data to maximize the response
of the known target endmember, while suppressing the
response (variance) of the unknown composite background
endmember of all other land cover materials (Boardman et
al. 1995; Mundt et al. 2007). The matched filtering algo-
rithm was applied to the masked 12-band dataset. The
reference dataset (consisting of post-processed isolated wet-
lands from the updated NWI, CuyRAP, DaRG, and CVNP)
was used as the training dataset to obtain the spectral signa-
ture of the target endmember–isolated wetlands. The com-
putation result was the matched filtering score image,
representing the relative match degree (similarity) of the pixel
spectra to the reference isolated wetland spectra (Williams and
Hunt 2002; Harris et al. 2005; Mitchell and Glenn 2009). A
matched filtering score of 1.0 is a perfect match to the target
endmember, and a zero value represents the background (no
target endmember material). The matched filtering score can
be interpreted as the estimate for the relative fractional
abundance of the target endmember (i.e., isolated wetlands)
within each image pixel of the study area. In order to create
the final classification, the matched filtering scores were
compared with a threshold value. Those image pixels with
a matched score larger than the threshold value were
classified as isolated wetlands, and all other pixels were
classified as the composite background. The threshold
value was selected as the mean matched filtering score
minus one standard deviation (x� 1SD) of the pixels in
the reference isolated wetland polygons of the training data-
set. The final classified isolated wetland map was then post-
processed to clump and merge adjacent pixels, in which the
adjacency is defined by four neighbors. The post-classification

Fig. 1 Normalized Difference
Vegetation Index (NDVI) image
of the July 2002 leaf-on Landsat-
7 ETM+ data. Areas in green
have higher NDVI values, while
magenta areas have lower NDVI
values; NDVI values of the image
ranged from −1.00 to+0.46
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processing produces a cleaner version of the isolated wetlands
map for the subsequent analyses.

Accuracy Assessment

The final classification map of isolated wetlands was
assessed for accuracy using a dataset that consisted of
5,000 randomly selected data points extracted from the
reference wetland dataset for verification. A contingency
matrix was constructed to compare classified data with the
reference data, and overall accuracy, producer accuracy, user
accuracy, and Kappa statistic were calculated. Overall accu-
racy was calculated by dividing the total correct pixels by
the total number of pixels in the error matrix. Individual
class producer accuracy (error of omission) and user accu-
racy (error of commission) were calculated following Story
and Congalton (1986). The Kappa coefficient was calculated
to compare the accuracy of the classification to that of a
random classification (Congalton et al. 1983). The Kappa
coefficient is a measure of the agreement between the remote
sensing classification and the reference data determined both
from the major diagonal of the confusion matrix and the
chance agreement calculated from the non-diagonal rows
and columns (Jensen 2004).

Results and Discussion

In this study, 328 potential isolated wetlands ≥ 0.20 ha
(0.50 acres) in size–a total isolated wetland area of > 43 km2

(16 mi2)–were mapped in Cuyahoga County, Ohio, USA
(Fig. 2). The NDVI mask was useful in masking out

impervious surfaces and open water bodies (see Fig. 1),
avoiding possible misclassification of impervious surfaces
and open waters to wetland occurrence and hence reducing
the commission errors (false positives) in the classification
process . The overall accuracy of the final classification of
isolated wetlands was 92.79%, with a Kappa coefficient of
0.86; producer accuracy was 87.9% (omission error 12.1%)
and user accuracy was 97.4% (commission error 2.6%).
Figure 3 shows a comparison of the isolated wetlands
mapped in this study and those in the reference isolated
wetland dataset. The areas in yellow color shows the correct
classification, which are wetlands indicated by both classi-
fication result and the reference data. The areas in red color
show commission errors, which were classified as wetlands,
but they are not in the reference data. The areas in blue color
show omission errors, which are indicated as wetlands in the
reference data, but they were not classified as wetlands. It is
acknowledged that the wetlands determined to be isolated in
this study were derived a priori from post-processed GIS
layers; it may be that the wetlands are in fact connected to
other systems, but our algorithms and GIS resolution were
unable to identify those links.

As shown in Fig. 3, the classification performed well in
identifying isolated wetlands ≥ 0.20 ha (0.50 acres), but
tended to slightly overestimate the area of individual wet-
lands. This is understandable because the Landsat ETM+
imagery used in classification had a 30-m pixel size,
resampled down to 15-m through Gram-Schmidt sharpen-
ing, and the reference isolated wetland dataset included only
isolated wetlands ≥ 0.20 ha (0.50 acres) in size (i.e., approx-
imately two 30-m pixels or eight 15-m pixels in size). In
addition, the reference data was based on aerial photographs

Fig. 2 Final classification of
Cuyahoga County isolated wet-
lands (in white). The inset box is
presented at a finer scale in
Fig. 3
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and site visits and was derived from a vector-based data
layer.

Reif et al. (2009) used object-oriented classification with
a similar pan-merged 15-m pixel size and were able to
identify well-defined wetlands < 0.20 ha (0.50 acres) in size,
with an accuracy of up to 82%. However, isolated wetlands
of the temperate Erie Plain ecoregion appeared to lack the
well-defined spectral signature of flatwoods ponds and
cypress domes required for object-oriented analyses, and
poor results in initial analyses (not shown) limited our study
to wetlands ≥ 0.20 ha. While smaller wetlands may on
occasion, be identified with subpixel classification, it is
not yet feasible to accurately map them as single pixels.
Thus, depending on the landscape context and contrast,
smaller isolated wetlands should be provisionally mapped
with aerial photography or finer resolution satellite imagery
(e.g., Burne 2001; Lathrop et al. 2005).

A number of other researchers have also found success
using subpixel methods to classify wetlands. For example,
Wei et al. (2008) mapped wetlands in the Yellow River
Delta Area in China with an accuracy of 88.7% and Kappa
coefficient of 0.86. Wang and Lang (2009) recently used a
subpixel classification to identify cypress distribution in the
Florida Panhandle with an accuracy of 88%. Because most
of these studies used linear unmixing approaches, mapped
different types of wetlands, and did not attempt to classify
wetlands as isolated, it is difficult to directly compare their

results to the results found in this study. To our knowledge,
this study has been the only attempt at using subpixel
classification of multi-temporal satellite remote sensing data
to map isolated wetlands.

The accuracy of isolated wetland mapping in this study is
also similar to the accuracy of that in our previous study in
Alachua County, Florida (Frohn et al. 2009). In that study,
isolated wetlands > 0.20 ha (0.50 acres) were mapped with a
producer accuracy of 88% and user accuracy of 89%. As
noted previously, the segmentation object-oriented approach
used by Frohn et al. (2009) does, however, map the bound-
aries between wetland and upland much better than the
subpixel approach used here. Therefore, in areas where there
are high-contrast, well-defined boundaries between wetland
and upland, the segmentation object-oriented methodology
is preferred. On the other hand, when boundaries for wet-
lands are not easily detected, a subpixel method, such as
the matched filtering algorithm described in this research,
can provide mapping of isolated wetlands with high
accuracy. It should be noted, however, that there are
significant limitations on the size class currently detect-
able by Landsat ETM+ imagery. The minimum size of
the isolated wetlands that can be identified largely depends on
the spatial resolution of source satellite imagery. Although the
multi-spectral bands of Landsat ETM+ imagery have been
sharpened with the panchromatic band and although the sub-
pixel method is utilized, we suggest that isolated wetlands
with a width smaller than 30 m cannot be reliably identified
using Landsat ETM+ imagery.

Conclusion

This research is the first attempt at mapping potential iso-
lated wetlands using subpixel analysis of multi-temporal
satellite remote sensing data and a partial unmixing algo-
rithm (matched filtering), which was applied to multi-
temporal Landsat ETM+ data. This research demonstrates
that matched filtering is efficient and powerful for identify-
ing the subpixel presence of a single target land cover class–
isolated wetlands–and estimating its relative fractional
abundance. Its main advantage over multi-endmember full
unmixing methods, like traditional linear spectral unmixing,
is that only the spectral characteristics of the wetlands is
required, and a priori knowledge of the spectral signatures
of other land cover classes in surrounding uplands are not
necessary. This method largely simplifies the classification
problem and significantly reduces the operational difficulty
and cost in identifying and acquiring the spectral character-
istics (signatures) of the complete set of distinct land cover
classes in uplands, as in linear spectral unmixing method. A
NDVI mask was useful in masking out non-wetland areas
such as urban imperious surfaces and hence reducing the

Fig. 3 Color comparison of the isolated wetland identification results.
The pixels in yellow color shows the correct classification, which are
wetlands indicated by both classification result and the reference data.
The pixels in red color show commission errors, which were classified
as wetlands, but they are not in the reference data. Blue pixels color
show omission errors, which are indicated as wetlands in the reference
data, but they were not classified as wetlands
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classification commission error (false positives) to 2.6%.
Our preliminary experiments show low classification accu-
racy (65–79%) when a number of classification methods
were applied to the single leaf-on image scene. In contrast,
with the multi-temporal dataset our subpixel classification
method achieved the overall accuracy of 92.8%, with producer
accuracy of 87.9% and user accuracy of 97.4% respectively,
for isolated wetlands ≥ 0.20 ha (0.50 acres). Smaller wetlands
were not assessed due to the spatial resolution limitation of
Landsat ETM+ data.

The following recommendations and conclusions were
drawn from this research:

(1) The subpixel matched filtering method in this research
provided an effective means for mapping isolated wet-
lands, especially those with boundaries that are not
easily identified.

(2) Landsat data are useful and adequate for mapping
isolated wetlands with a size of 0.20 ha (0.50 acres)
or greater. For smaller isolated wetlands, either finer
resolution satellite data or aerial photographs (or per-
haps both) are necessary.

(3) The NDVI can be a useful tool for enhancing the wet-
land/upland boundary for isolated wetlands; it is also
effective in masking out various urban imperious surfa-
ces (buildings, pavements, parking lots, and roads) and
open waters and hence reducing commission errors.

(4) A partial unmixing algorithm, such as matched filter-
ing, is advantageous in that it allows the signature of
the wetland to be identified without the need to model
all other land cover classes within a mixed pixel (such
as in linear spectral unmixing method).

(5) The derivation of unique phenology characteristics of
isolated wetlands from combining multi-temporal im-
agery (in this case, leaf-on and leaf-off imagery) allows
for better mapping of isolated wetlands, in comparison
with the use of only a single time image scene in
classification.

More studies are needed to determine regional or national
approaches for rapid, high-accuracy inventorying of isolated
wetlands. It appears that no single method is superior to others
for identifying and mapping isolated wetlands. Although this
research shows that the subpixel matched filtering method is
effective for isolated wetlands with fuzzy transitional bound-
aries, the segmentation object-oriented approach described by
Frohn et al. (2009) is preferred for isolated wetlands that do
have more easily identified boundaries. Multiple methods
may be necessary for satellite remote sensing of isolated
wetlands, depending on the location and type of wetlands
that are being mapped. Furthermore, a hybrid classifier
could be developed that takes into account the type and
location of these wetlands, so that the highest accuracy of
isolated wetland maps can be achieved. Additional efforts

should be directed towards identifying wetlands < 0.20 ha
(0.50 acres), which while small, remain important landscape
components (Semlitsch and Bodie 1998; Creed et al. 2003;
Yavitt 2010).
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