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Abstract We propose a regional classification for wetlands
of the Mid-Atlantic region, USA. It combines functional
characteristics recognized by the hydrogeomorphic (HGM)
approach with the established classification of the National
Wetland Inventory (NWI). The HGM approach supple-
ments the NWI classification by recognizing the importance
of geomorphic setting, water sources, and flow dynamics
that are key to functioning wetlands. Both NWI and HGM
share at their highest levels the Marine, Estuarine, and
Lacustrine classes. This classification departs from the NWI
system by subdividing the Palustrine system into HGM
classes of Slope, Depression, and Flat. Further, the Riverine
class expands to include associated Palustrine wetlands,
thus recognizing the interdependency between channel and

floodplain. Deepwater habitats of NWI are not included
because they differ functionally. Mid-Atlantic regional
subclasses recognize two subclasses each for Flat, Slope,
and Marine Tidal Fringe; three subclasses for Depression;
four subclasses for Lacustrine Fringe and Estuarine Tidal
Fringe, and five subclasses for Riverine. Taking a similar
approach in other geographic regions will better characterize
wetlands for assessment and restoration. This approach was
applied successfully during a regional wetlands condition
assessment. We encourage additional testing by others to
confirm its utility in the region.

Keywords Estuarine wetlands . National Wetlands
Inventory

Introduction

The inherent variability in natural characteristics defines
wetlands, leads to their diverse ecological functions, and
instills societal values that have challenged those seeking to
classify them. The classification developed by Cowardin et
al. (1979) was designed as the basis for nation-wide
mapping and inventory in the USA, where it is the
prevalent method used for the National Wetlands Inventory
(NWI). It has been applied successfully in other geographic
regions of the world (Vives 1996; Finlayson et al. 2002).
As such, it has been used to “…furnish units for
mapping, and provide uniformity of concepts and
terms.” (Cowardin et al. 1979). Five systems and related
subsystems form the basis of the hierarchical classifica-
tion. The NWI arrangement, however, does not highlight
differences in morphometry, landscape position, or
dominant water source, factors that also contribute to
characterizations of wetland functions. Given the expansion

R. P. Brooks (*) :D. H. Wardrop : J. M. Rubbo
Riparia, Department of Geography, 302 Walker Building,
Pennsylvania State University,
University Park, PA 16802, USA
e-mail: rpb2@psu.edu

M. M. Brinson :R. D. Rheinhardt
Department of Biology, East Carolina University,
Greenville, NC, USA

K. J. Havens : C. S. Hershner
Virginia Institute of Marine Science,
College of William and Mary,
Gloucester Point, VA 23062, USA

D. F. Whigham
Smithsonian Environmental Research Center,
Box 28, Edgewater, MD 21037, USA

A. D. Jacobs
Delaware Department of Natural Resources and
Environmental Control, Division of Water Resources,
820 Silver Lake Blvd., Suite 220,
Dover, DE 19904, USA

Wetlands (2011) 31:207–219
DOI 10.1007/s13157-011-0158-7



of knowledge about wetlands over the nearly 40 years
following the Clean Water Act (NRC 1995), and additional
needs to assess their condition and restore them (NRC 2001),
functional classification of wetlands also can play a
prominent role (Brinson 1993a).

There have been a few previous efforts using functional
properties to develop wetland classification systems; a
functional classification for coastal ecological systems
(Odum et al. 1974), a classification of mangrove ecosys-
tems (Lugo and Snedaker 1974), and links between wetland
classification and hydrogeomorphic functions in the north-
eastern USA (Tiner 2000, 2003). Empirical evidence
suggests that there is utility in classifying all wetland types
based on their hydrogeomorphic (HGM) characteristics,
specifically the source of water, flow dynamics, and
geomorphic setting (Brinson 1993a; Brooks 2004a, Cole
et al. 2006). The overall HGM system, modified from
Brinson (1993b), recognizes seven major classes: Mineral
Soil Flat, Organic Soil Flat, Slope, Depression, Lacustrine
Fringe, Riverine, and Tidal Fringe (Marine and Estuarine)
(Smith et al. 1995). These can be further divided into
regional and local subclasses.

We developed regional subclasses for the Mid-Atlantic
while participating in the Atlantic Slope Consortium, a
regional research project that was part of a national effort to
develop ecological and socio-economic indicators for
aquatic ecosystems (e.g., Niemi et al. 2004; Brooks et al.
2007). During that project, we sought ways to blend similar
research approaches being conducted between estuarine
segments of coastal systems and the freshwater wetlands of
small watersheds (Brooks et al. 2006). In addition, during
development of a Stream-Wetland-Riparian Rapid Assess-
ment Index (Brooks et al. 2009), we needed a way to
consistently describe components of aquatic ecosystems
among ecoregions. Based on these experiences, we
developed this regional classification system for the
following reasons:

1. We recognized the need for a standardized classifi-
cation system for estuarine and freshwater wetlands
in the region that linked inventory and mapping
activities with ground-based monitoring and assessment
efforts.

2. We wanted a system that emphasized fundamental
hydrogeomorphic characteristics rather than dominant
vegetation classes (Bedford 1996; Winter 1992).

3. We wanted to design a system that built on the existing
NWI terminology, but that was not constrained by it
(e.g., expansion of subclasses currently lumped under
Palustrine system).

4. We wanted a system that would provide consistency in
nomenclature, use, and communication across a large
geographical region.

Study Area

In spite of the broad range of physiography in the region,
the Mid-Atlantic has physiographic patterns that warrant
the development of relevant regional subclasses specific to
the area (Fig. 1). The climate is moist temperate, natural
vegetation is mostly forest, the coastline of mostly
unconsolidated substrate is exposed to severe storms, and
the area drains both toward the Atlantic coast and into the
Ohio River Basin from the Appalachian Mountains. To the
east, these drainages connect marine and estuarine ecosys-
tems with freshwater wetlands as far away as the Allegheny
Plateau physiographic province in the continental interior.
Biotic connections include anadromous fish species be-
tween the ocean and coastal plain streams and north-south
migration of avifauna along the Atlantic Flyway.

Many of the Mid-Atlantic watersheds cut across several
of eight geopolitical boundaries (Pennsylvania, New York,
New Jersey, Delaware, Maryland, West Virginia, Virginia,
North Carolina), giving further justification for working
from a regional classification based on functional types.
Toward the west, several major rivers collect water from
tributaries from the Appalachians, and link waters to the
Mississippi River Basin through the Ohio River. A small
portion of the Mid-Atlantic watersheds flow north into
various segments of the St. Lawrence and Great Lakes
basins. Despite these diverse drainage patterns and having
both glaciated and unglaciated landscapes, the wetlands
within the region display many similarities, which led to
our decision to formulate the proposed classification
system.

Combining NWI and HGM Classes for Regional
Classification

We propose a classification system for coastal and inland
wetlands of the Mid-Atlantic region that begins with the
system level defined by NWI and incorporates additional
classes recognized by HGM. We further propose regional
subclasses based on HGM characteristics, NWI vegetation
types, and other modifiers. The lesser reliance on
vegetation cover is recognition that similar species
composition can be found in very different geomorphic
settings and flow dynamics (Fig. 2). For example, red
maple (Acer rubrum), a facultative wetland species, is so
ubiquitous as to defy its usefulness in distinguishing
wetland types.

The collective experience of the authors of this paper in
wetland classification and assessment covers eight states of
an expanded Mid-Atlantic Region (Fig. 1). Here, we
describe how the two systems were blended and revised,
at the highest, hierarchical level; we have adopted the HGM
term class, rather than the NWI term system, for this
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highest level. This is followed with descriptions of specific
regional subclasses. We used a combination of NWI and
HGM classes as a starting point, evolved a series of
regional subclasses through discussions, and selectively
added the NWI vegetation types and specific examples to
complete the hierarchical system. In a HGM approach to
classification, regional subclasses are locally recognized
types, often with names that can be readily associated with
HGM terminology (Brinson 1993a). For example, Del-
marva bays are depression wetlands and pocosin peatlands

are organic soil flats. We believe that this approach to
classification has region-wide and national applicability for
assessing wetland functions and for developing ecological
indicators of wetland condition. Terminology draws from
Cowardin et al. (1979) and Smith et al. (1995), as well as
terms developed to address features specific to wetlands of
the Mid-Atlantic.

For consistency with the NWI, the upper levels of our
regional HGM classification system for Mid-Atlantic
wetlands begin with four of the five designated systems

Fig. 2 The relationship of
geomorphic settings and domi-
nant waters source and flow
dynamics. Some dominant
hydrophytes span several
geomorphic settings

Fig. 1 The extended Mid-
Atlantic region for which
regional subclasses of wetlands
were developed
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(i.e., Marine, Estuarine, Riverine, and Lacustrine). The
exception is the Palustrine system (Cowardin et al. 1979)
that we considered too broad for characterizing the diversity
of freshwater, vegetated wetlands. In its place, we substi-
tuted the HGM classes of Flat, Slope, and Depression
(Table 1). The Riverine HGM class is expanded to
encompass the adjacent Palustrine types of NWI that occur
in the floodplain, which heretofore, were delineated as
distinct Palustrine polygons on maps, separate from other
riverine wetlands. This decision is based on the irrefutable
functional interdependency between channel and floodplain
for hydrology (Junk et al. 1989; Friedman and Auble
2000), biogeochemistry (Brinson 1990), and habitat
(Welcomme 1979). The best way to distinguish vegetated

wetlands associated with the Riverine class from others is
to note the location of the outer boundary of the floodplain.
Those vegetated wetlands occurring between that edge and
the river itself should be classified using subclasses of the
Riverine class, rather than in Flat, Slope or Depression
classes. These latter classes pertain to wetlands that are
primarily not under the hydrologic influence of a river
during flood stages.

For mapping purposes, we recommend linking these
HGM-based classes to the Palustrine (P) mapping con-
ventions of the NWI (W. Wilen, personal communication,
1995; Tiner 2000). Through interactions with colleagues,
we were aware of concurrent work to blend NWI and HGM
systems for the state of Ohio (e.g., Mack et al. 2000, Mack

Table 1 Comparison of the proposed HGM subclasses for Mid-Atlantic region wetlands with National Wetland Inventory categories of Cowardin
et al. (1979)

Hydrogeomorphic
Classes

Subclasses for the Mid-Atlantic
region

NWI Systems: Subsystems Common NWI classes in
Mid-Atlantic

FLAT Mineral soil Palustrine Forested (FO), Scrub-Shrub
(SS), Emergent (EM)

Organic soil Palustrine FO, SS, EM

SLOPE Topographic Palustrine FO, SS, EM

Stratigraphic Palustrine FO, SS, EM

DEPRESSION Temporary Palustrine FO, SS, EM, Aquatic Bed (AB)

Seasonal Palustrine FO, SS, EM, AB

Perennial Palustrine FO, SS, EM, AB

Human impounded, excavated
or beaver impounded

Palustrine SS, EM, AB

LACUSTRINE
FRINGE

Permanently flooded Lacustrine: Limnetic or Littoral
Palustrine

SS, EM, AB

Semi-permanently flooded Lacustrine: Littoral Palustrine FO, SS, EM, AB

Intermittently flooded Lacustrine: Littoral Palustrine FO, SS, EM, AB

Artificially flooded Lacustrine: Littoral Palustrine FO, SS, EM, ABa possible but
generally suppressed

RIVERINE Intermittent Palustrine FO, SS, EM

Headwater complex Palustrineb FO, SS, EM

Upper perennial Palustrine and Riverine FO, SS, EM, AB

Lower perennial Palustrine and Riverine FO, SS, EM, AB

Floodplain complex Palustrine and Riverine FO, SS, EM, AB

Beaver-impounded Palustrine, Lacustrine Littoral,
and Riverine

FO, SS, EM, AB

Human-impounded Lacustrine FO, SS, EM, AB

ESTUARINE
TIDAL FRINGE

Estuarine lunar intertidal Estuarine: Intertidal EM, AB

Estuarine wind intertidal Estuarine: Intertidal FO, EM, AB

Estuarine subtidal Estuarine: Subtidal AB

Estuarine impounded Estuarine: Subtidal EM, AB

MARINE TIDAL
FRINGE

Marine intertidal Marine Unconsolidated Shore (US)

Marine subtidal Marine Unconsolidated Bottom (UB)

a Aquatic bed is suppressed where steep banks typical of reservoirs limit habitat
b Riverine in NWI is restricted to the channel with the following exceptions: (1) wetlands dominated by trees, shrubs, persistent emergents, emergent
mosses, or lichens and (2) habitats with water containing ocean-derived salts in excess of 0.5 ppt
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2004) and several other northeastern states (e.g., Tiner 2003,
2004). The Ohio classification system also uses HGM
classes at the higher levels of organization, followed by
modifiers and then, NWI vegetation classes (Mack 2004).
That system addresses the freshwater coastal wetlands of the
Great Lakes, at least for those along the Ohio border. We
have included both freshwater and saline wetland types in
the proposed system, and have attempted to incorporate the
range of types found in a large geographic region that
encompasses several ecoregions or physiographic provinces.

We made several other changes that diverge from standard
nomenclature of the NWI.We elected to place tidal freshwater
wetlands in Estuarine Fringe rather than Riverine. Freshwater
tidal wetlands have frequent, often twice-daily flooding that is
more characteristic of estuarine wetlands than the normally
seasonal overbank flooding that defines floodplain wetlands
(Odum et al. 1984). Given that hydrology is the most
important component of wetland functioning, we choose to
maintain tidal effects on water flow, rather than salinity, as
the primary control. For habitat functions where structural
vegetation differences (i.e., marsh versus forest) dispropor-
tionately influence utilization by fauna, the use of vegetation
modifiers, including those used in NWI, can be used in the
lower levels of the classification hierarchy. This preserves the
HGM emphasis of our classification. Similarly, we diverged
somewhat from the nomenclature of an earlier HGM
classification by Cole et al. (2006) for the Appalachian
Mountain portion of region. Our classification provides
strong linkages to the existing NWI approach, with the
intent of encouraging use of our system not only for
functional and condition assessments, but also for mapping
and inventory purposes. As is true for most hierarchical
classification systems, upper levels preserve consistency
across broadly recognized classes, whereas lower levels can
be modified to meet the specific needs of the user.

Deepwater habitats of NWI (>2 m depth) are not
included in this treatment because of the large functional
differences between the primarily planktonic and pelagic
life forms found in deep waters and the predominance of
rooted plant forms in wetlands and shallow water. To our
knowledge, deepwater habitats can potentially be associated
with, and segregated from, all classes except for Flat, Slope,
and Depression. A major difference occurring among
physiographic provinces in the Mid-Atlantic is the restric-
tion of Estuarine Tidal Fringe and Marine Tidal Fringe
classes to the Coastal Plain; all other classes occur
throughout all physiographic provinces in the region.

Regional Subclasses

Each class of geomorphic setting contains subclasses based
on further distinctions in geomorphic setting, water sources,

and hydrodynamics (Table 1). These are called regional
subclasses because they coincide with wetland types
recognized by practicing scientists and naturalists.

& Marine Tidal Fringe is separated based on hydroperiod
alone.

& Estuarine Tidal Fringe is first separated by hydroperiod
and secondarily by salinity.

& Flats are separated into regional subclasses with mineral
soils and those with organic-rich soils. The former would
be equivalent to wet pine savannas (Walker and Peet
1983) and the latter to pocosin peatlands (Richardson
1981). These were originally separate classes in Smith et
al. (1995).

& Slope wetlands are separated into topographic and
stratigraphic subclasses, following Cole et al. (2006).
They can be separated further based on soil organic or
mineral content, with spring seep and forested fen being
examples.

& Depressions are subclassified in much the same way
that prairie potholes are divided, with water persistence
as the major variable (Stewart and Kantrud 1971). This
is tentative because few studies have been conducted to
quantify hydroperiods across the range of depression
types. Isolated and surface-connected depressions are
another way to differentiate types since they may have
very different trophic structures (Sharitz and Gibbons
1982; Leibowitz and Nadeau 2003; Brooks 2004c) that
may not be apparent from hydroperiod alone. Julian
(2009), working along the upper Delaware River on
amphibians using breeding ponds, distinguished
wetlands by size, water permanence, and degree of
isolation from other surface waters. He used the terms
strictly isolated, seasonal, and permanent. We adopted
similar terms, but apply them to water permanence:
temporary, seasonal, and permanent.

& Lacustrine Fringe subclasses are separated by hydro-
period. In the Great Lakes region of the USA, by
contrast, distinctions are based largely on degree of
protection from waves and geomorphic setting (Keough
et al. 1999; Mack 2004).

& Riverine wetlands are separated by watershed drainage
area and associated stream order because of the
profound effects on the sources of water and the
capacity to process nutrient inputs (Brinson 1993b).
The decision to encompass floodplain wetlands in the
Riverine class has resulted in further modifications to
prior systems. We kept intermittent streams separate
from upper perennial streams because the two vary in
their annual hydrologic cycles and mapping scales.
Further, with emphasis on the floodplain portion of the
Riverine class, forest species composition in the coastal
plain separates more by stream order than it does by
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flow persistence (Rheinhardt et al. 1998). We have
described two new subclasses, headwater and flood-
plain complexes. The first represents the mosaic of
microhabitats that occur together in the upper reaches of
many Mid-Atlantic watersheds. In these areas, ground-
water is prevalent, emanates from wetlands at the toe of
topographic slopes, providing water to low gradient
meandering stream channels, and fills depressions in the
riparian zone (formerly called riparian depressions by
Cole et al. 1997, 2008). In some cases, the entire
valley bottom is saturated (Brooks and Wardrop
unpublished data). The proximity and interconnectiv-
ity of these microhabitats are critical for amphibian
communities (Farr 2003) and other wetland-dependent
taxa. Marking relevant boundaries among these micro-
habitats in the field is difficult, and only becomes more
problematic when mapping polygons at landscape
scales. Thus, the inclusion of a headwater complex
subclass seeks to recognize their hydrologic interde-
pendence and provide a practical solution for mapping
small areas of interspersed wetlands. The second,
floodplain complexes, serves a similar function for
lower perennial streams and rivers, where a mix of
microhabitats, often formed during large flooding
events, occur in proximity.

We recommend that wetlands classified using this
system follow a hierarchical list of labels. We propose a
set of standard abbreviations to facilitate consistent labeling
and for cross-listing with existing NWI mapping conven-
tions (Table 2, Appendix). NWI vegetation types are
included as modifiers to regional subclasses once hydro-
logic and geomorphic setting have been assigned. For
example, an isolated, temporary vernal pool supplied by
precipitation in a forested setting, would be labeled as:
depression, temporary, forested, or abbreviated as DPAFO.
The equivalent NWI abbreviation would be a more generic
PFO that is applied to other types as well. Similarly, we
have provided additional detail for estuarine wetlands such
that an emergent Spartina salt marsh would be labeled as:
estuarine tidal fringe, lunar intertidal, and abbreviated as
EF2lEM, distinguishing it from estuarine wind intertidal,
subtidal, and impounded. The equivalent NWI abbreviation
would be E2EM. Again, by placing the vegetation
component toward the end of the type label, the HGM
aspects of the classification are emphasized. The classifi-
cation remains open ended to allow the addition of other
modifiers as needed.

With regard to geographic extent, we recommend use of
this regional classification system throughout the states of
an expanded Mid-Atlantic Region (Fig. 1). Although our
original focus was on the Atlantic Slope, our collective
experience with wetlands on the western slope of

the Eastern Continental Divide along the Appalachian
Mountains, including our field trials held in 2008 and
2009, indicates that these wetlands will be properly
classified. Some caution should be exercised when extend-
ing this system northward as far as the Adirondacks of
northern New York, as Cole et al. (2008) found the
wetlands of this portion of the region to be wetter than
those in comparable subclasses further south. Despite these
differences in the degree of wetness, they were usually
assigned to the appropriate HGM class (Cole et al. 2008).

Verification

In 2008 and 2009, we used the proposed system during
regional field studies. Two field teams conducting rapid
condition assessments visited about 400 wetlands through-
out the Mid-Atlantic Region, and applied this classification
system. The wetlands assessed were randomly selected
using a Generalized Random Tessellation Stratified (GRTS)
design, a spatially restricted sampling method (e.g., Stevens
and Olsen 2004) from a sampling frame based on digitized
NWI polygons. Rapid assessments of wetland condition are
considered to be intermediate in the effort required and data
collected (Level 2) compared to remote-sensing based
landscape assessments (Level 1) and intensive, field-
assessments (Level 3)(Brooks et al. 2004; Brooks et al.
2006).

Rapid assessments typically are designed to do two
primary tasks, confirm classification during ground recon-
naissance, and to observe stressors in and around the
targeted wetland (Fennessy et al. 2007). During quality
assurance training sessions for the Mid-Atlantic regional
wetlands assessment, two field teams consistently classified
dozens of wetlands in the field in the same way (Coastal
Plain and Piedmont of Virginia in 2008; Piedmont, and
Ridge and Valley of Maryland, Virginia and West Virginia
in 2009)(Fig. 1). A few minor variations in identifying
subclasses were adjusted during on-site discussions (e.g.,
choosing upper versus lower perennial subclasses for
transitions between second and third order streams; sepa-
rating or combining (as complexes) microhabitats in the
assessment area when slopes and depressions are in
proximity to upper and lower perennial streams). These
discussions evolved around the scale of field sampling, not
the correct identification of subclasses.

A second test of this classification system to verify its
efficacy and repeatability was conducted in 2010 by two
principal investigators of the project (Brooks and Havens,
both authors of this paper), after the fieldwork was
completed. Twenty sites (5% of the total sample of 400
wetlands) were visited during a Quality Assurance audit for
the project. Although all aspects of the rapid assessment
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protocol were examined (i.e., HGM classification, vegeta-
tion community, invasive species, stressors), only the
results of the wetland classification are reported here. The
audit covered a cross section of sites from three of five
ecoregions (Piedmont, Ridge and Valley, Allegheny Pla-
teau, four of five states covered by the project (Maryland,
Pennsylvania, Virginia, West Virginia)(Fig. 1), and a
variety of wetland types. For 19 of 20 sites (95%; for one
site, the original field team did not designate the presence
of a wetland), the subclass classification described by the
original field team agreed with the one chosen by the
independent audit team. Three minor discrepancies were
related to which microhabitat was chosen as the dominant
type for a site when multiple types were present, as in
riverine headwater complexes. Thus, based on both the
authors’ collective experience in wetland identification
across the region and two independent assessments of
classification accuracy, we believe that the proposed system
can be used by multiple observers with a high level of
confidence.

Discussion

The classification proposed here has greater region-wide
applicability for use in assessing wetland functions and for
developing ecological indicators of wetland condition than
either of the original approaches by themselves. As such,
the framework is presented as an example of what could be
applied in many other regional settings. Subclasses else-
where in the USA have been identified for Riverine in
western Kentucky (Ainslie et al. 1999), northern Rocky
Mountains (Hauer et al. 2002), western Tennessee (Wilder
and Roberts (2002), the Yazoo Basin (Smith and Klimas
2002), and peninsular Florida (Uranowski et al. 2003).
Subclasses of Flat have been described for the wet savannas
of the Gulf and Atlantic coastal plains (Rheinhardt et al.
2002) and the Everglades (Noble et al. 2002). Subclasses of
Depression include intermontane prairie potholes in the
northern Rocky Mountains, USA (Hauer et al. 2002), and
the Rainwater Basin of Nebraska (Stutheit et al. 2004).
Estuarine tidal fringe subclasses have been described for the
northwestern Gulf of Mexico, USA (Shafer et al. 2002).
Mack et al. (2000) and Mack (2004) proposed HGM
classes for both inland and freshwater coastal types.
Although the Great Lakes proper are deep environments,
their nearshore wetlands would fall into the Lacustrine class
of a HGM-based system or the Lacustrine system of
Cowardin et al. (1979). The Mid-Atlantic region does not
contain comparable habitats to these immense lakes, which
produce powerful wave energies and display significant
depth variations over time. Thus, appropriate subclasses
and modifiers should be developed to better characterize

the range of wetland types found there (e.g., Keough et al.
1999). Similarly, regional subclasses can be developed
elsewhere as needs are identified.

State and local governments in the USA increasingly
have taken on the responsibility for wetland regulation and
management, especially in the areas of restoration and
implementation of best management practices. As a natural
consequence of this regionalization, coupled with increas-
ing awareness by resource managers of variation across
wetland types, a natural outcome is to develop classifica-
tions that meet local and regional needs. Rather than
forcing a top-down approach at the national level, the
recognition of regional subclasses identified here can be
further subdivided and adapted for inventory, mapping, and
selection of reference sites for restoration. Regional
subclasses for Slope would differ for mountainous western
USA where the distinction is between wetlands in alluvial/
colluvial deposits with large groundwater sources and drier
sites associated with bedrock landslides with small ground-
water sources (Stein et al. 2004). Marine Tidal Fringe in
New England and the Maritime Provinces would include
rocky shorelines, not found in the Mid-Atlantic region. The
introduction of wetland shape, vegetation mosaics, and
other patterns (Seminuik 1987; Semeniuk and Semeniuk
1997) could be introduced, if deemed useful. Such
flexibility allows a particular classification to be modified
or adapted so that it best meets the needs of specific
program objectives it serves.

As stated by Cowardin et al. (1979) for the original NWI
classification, “Below the level of class, the system [NWI] is
open-ended and incomplete.” The proposed system pre-
sented here is also open-ended and incomplete. We verified
the accuracy of using this system during regional field
studies and found it to be repeatable by multiple observers. It
has not been tested for mapping large geographic regions.
We find it useful as a tool, however, for partitioning natural
variation among wetland types, communicating distinctions
among wetland types, and developing indicators of ecosys-
tem condition across a large geographic region. Further
refinement is needed in developing the subclass descriptors
or modifiers and providing regional examples.
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Appendix

Key for selecting among tidal and nontidal hydrogeomor-
phic wetland types in the Mid-Atlantic Region of the U.S.
Descriptions and definitions are based on Cowardin et al.
(1979), Brinson (1993a, b), Cole et al. (1997, 2006).
Classes and subclasses are in bold. Please read footnote
before using this wetland classification system.a

aBefore using this wetland classification system:
No classification system can capture effectively all of the

inherent variability in natural systems, nor can it provide a
foolproof determination given the different experiences of
users. This wetland classification system for the Mid-
Atlantic region is designed to distinguish among major
wetland types with recognizable differences. It also pur-
ports to serve both the needs of the regulatory community
where certainty is preferred, and the science community
that grapples with variability in ecological systems. Given
that dual function, it is critical that users consider the
landscape and hydrologic contexts of each wetland. How
large an area is being classified? A river channel and the
associated floodplain on both sides of the channel, or just
the wetland associated with a property on the upland edge
of a floodplain. Context really matters, and should be
carefully and succinctly documented.

When seeking to classify a particular wetland, the most
fundamental question the user must ask is, ’How was the
wetland formed?”, which can be stated as, “What is the
origin of the wetland?”. If this question is thoughtfully
answered and described in a brief narrative, then the actual
label assigned to the wetland matters less, because the user
will have considered where and how the wetland fits in a
given landscape and hydrologic setting. Obviously, this is
more relevant for regions where wetlands do not form the
dominant matrix of a landscape (e.g., coastal salt marshes,
bottomland hardwood forests).

For example, is it a depression that is isolated during drier
times of the year, but located in a floodplain setting? Or is it
isolated from all riverine influences, and receiving a combi-
nation of groundwater and precipitation? Clearly, these
wetlands are distinctively different in many of their attributes
and functions, but they could have the same morphometric
dimensions. Either wetland also could have some character-
istics of yet another type, warranting a dual label (e.g.,
depression/slope) just as NWI mapping recognizes mixed
vegetation classes (e.g., forested/scrub-shrub, FO/SS). Thus, it
is important to recognize these distinctive elements and
document the reasons for labeling the wetland as a specific
type. This is especially important when addressing wetlands
that occur along a broad hydrologic gradient and when a
group of microhabitats occur in a cluster. Thoughtful selection
of classes supported by careful documentation will make any
classification system more consistent among users.
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