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Abstract
The Lower Vindhyan (Semri) Group substantially consists of unmetamorphosed and undeformed sedimentary sequences 
of Palaeoproterozoic age. A detailed geochemical study has been carried out to infer the paleoenvironment and the source 
of REEs for the Palaeoproterozoic Kajrahat Limestone, Vindhyan Supergroup, Central India. This study investigates the 
geochemical composition of major, trace and rare earth elements (REEs). The studied limestones, have a high percentage of 
CaO (ranging from 30.87 to 48.59) implies that calcite was the primary mineral phase in these carbonates.  SiO2 is second 
most abundant major oxide. Sr is dominant trace element showing a negative correlation with CaO. All trace elements exhibit 
depletion with respect to Post-Archean Australian Shale (PAAS). The PAAS-normalized REE pattern of studied limestone 
has a relatively uniform pattern, with slightly enriched LREE compared to HREE with negative Ce anomaly. Collectively, 
low concentration of U and U/Th, Ce/Ce* ratios clearly indicates an oxic depositional condition for the samples. The ΣREE 
shows a positive correlation with  SiO2,  TiO2 and  Al2O3 (r2 = 0.87, 0.84and 0.91 respectively) and a week positive correlation 
with CaO (r2 = 0.12) suggested that siliciclastic sediments also serve as a source for the REEs beside seawater. This, in turn, 
indicates that the deposition of this limestone occurred in a coastal/shallow marine environment with some contribution 
from continental part.
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Introduction

One of the prime focus of sedimentological study is to con-
cede ancient sedimentary environments, and the present 
study attempts to decode the depositional environment of 
Palaeoproterozoic Kajrahat Limestone of Central India. 
Characteristics of sedimentary rocks depend on formation, 
transport and depositional processes and include physical, 
chemical and biological factors in any depositional envi-
ronment (Nichols 2009). Geochemistry is an important tool 
used in ascertaining the depositional imprints and overprints 
of post-depositional processes on sediments. The chemical 
composition of carbonate rocks helps to infer the physico-
chemical conditions in the deposition basin. Major oxides 
and trace elements act as indicators, revealing the composi-
tion of the carbonate rocks and provide information about 
the environmental conditions during deposition (Srivastava 
and Singh 2018). The source of the chemical elements to 
the oceans are various such as river, wind, hydrothermal 
sources, groundwater, etc. (Martin and Whitfield 1983; 
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Birgel et al. 2011; Coimbra et al. 2015). Carbonate deposi-
tion and seafloor redox dynamics act as depositional sinks 
because major and trace elements are incorporated into 
the calcium carbonate lattice, as seen in modern neritic and 
oceanic environments (Takematsu et al. 1993). Therefore 
major oxides and trace elements act as indicators of depo-
sitional environment of carbonate rocks. The low solubil-
ity of rare earth elements (REEs) in seawater means they 
are entirely incorporated into clastic sediments due to their 
short residence time in the water. Additionally, REEs tend to 
remain immobile during subsequent processes like diagen-
esis (Chaudhuri and Cullers 1979; Gong et al. 2018) and 
metamorphism (Muecke et al. 1979), chemical weathering 
and transport (Yang et al. 2017). Consequently, REE con-
centrations in ancient carbonate rocks serve to distinguish 
the sources of REEs, whether they originate from marine 
or non-marine milieu (Banner et al. 1988; Frimmel 2009; 
Zhao et al. 2009). The average provenance compositions can 
potentially be determined through REE patterns (Taylor and 
McLennan 1985; Bakkiaraj et al. 2010). Carbonate rocks 
typically contain low concentrations of REEs (Goldberg 
et al. 1963; Haskin and Haskin 1966; Tlig and M’Rabet 
1985; Nogueira et al. 2019) and the distribution of REEs in 
these rocks is mostly affected by the conditions of deposition 
(Murray et al. 1990, 1992; Patra and Singh 2017; Srivastava 
and Singh 2018) and diagenetic processes (Scherer and Seitz 
1980; Schieber 1988; Armstrong-Altrin et al. 2003; Morad 
et al. 2010; Fu et al. 2011). REEs are useful for determining 
the type of depositional environments including widespread 
marine anoxia (Liu et al. 1988; German and Elderfield 
1990), oceanic palaeo-redox conditions (Wang et al. 1986; 
Elderfield and Pagett 1986; Kato et al. 2002), changes in 
surface productivity (Toyoda et al. 1990), distance from the 
source area (Murray et al. 1991), lithology and diagenesis 
(German and Elderfield 1990; Nath et al. 1992; Madhavaraju 
and Lee 2009) and palaeogeography and depositional mod-
els (Kamber and Webb 2001; Kemp and Trueman 2003).

Examining rare earth elements (REEs), mainly LREE, in 
sedimentary rocks offers insights into the initial composition 
of seawater. As a result, ancient sedimentary rocks have been 
recognized as trustworthy sources for REE proxies (Holser 
1997). The Rare Earth Elements (REEs) in carbonate rocks 
preserved valuable information on paleo-seawater chemis-
try and local–regional redox conditions (Zhang and Shields 
2023). REEs are substituted for  Ca2+ in the carbonate lattice. 
It is believed that REEs exhibit greater stability compared 
to oxygen or carbon isotopes in the carbonate lattice dur-
ing diagenetic processes (Zhong and Mucci 1995). Further-
more, diagenetic fluids typically exhibit low concentrations 
of REEs ranging from  10–6 to  10–4 ppm (Sholkovitz et al. 
1989; Banner and Hanson 1990). Consequently, REE con-
centrations in ancient carbonate rocks are likely to remain 
unchanged, even during periods of considerable diagenesis 

(Webb and Kamber 2000; Frimmel 2009). Seawater REE 
patterns found in marine chemical sediments, regardless of 
their age of deposition, show a uniform LREE depletion; 
enrichment of La, depletion of Ce and slight enrichment of 
Gd, in shale-normalized patterns (Shields and Webb 2004; 
Bolhar and Kranendonk 2007; Zhang and Nozaki 1996).

The Indian subcontinent is crucial in both Columbian 
and Rodinian reconstructions (Li et al. 2008; Meert and 
Santosh 2017). It has numerous Proterozoic sedimentary 
basins, mostly undeformed and unmetamorphosed, holding 
potential clues to tectonic, climatic and biological evolu-
tion on Earth's Proterozoic Eon. Only a few studies, explore 
evidence for Proterozoic global events from the carbonate 
formations in these basins (e.g., Ray et al. 2003; Mohanty 
et al. 2015; Ansari et al. 2018; George et al. 2018; Choud-
huri et al. 2023). The Vindhyan Basin provides most of the 
data, boasting the largest Proterozoic sedimentary sequence 
in India. Ray et al. (2002, 2003) analyzed isotope systematic 
in carbonate sequences of the Vindhyan Supergroup, India 
to explore their geological significance, and age. According 
to their study of Pb–Pb dating and Sr isotope stratigraphy 
established the Kajrahat Limestone as Palaeoproterozoic age 
(1600 ± 130 Ma). Furthermore, there has been an investi-
gation into the depositional environment by stable isotope 
composition of the Kajrahat Limestone (Banerjee et al. 
2007). Singh et al. (2020) have recorded soft sedimentary 
deformation structures (SSDs) in the Kajrahat Limestone 
and have envisaged that earthquakes might have occurred 
multiple times between 1700 and 1600 Ma in Central India. 
Furthermore, this implies that the Vindhyan Basin experi-
enced instability and the seismicity was primarily a result 
of rift-related tectonics in this intra-cratonic basin. Even 
after years of research, a comprehensive study of the REE 
geochemistry of Palaeoproterozoic Kajrahat Limestone of 
Lower Vindhyan succession remains unavailable. Therefore, 
the present study major, trace and REEs geochemistry of 
Kajrahat Limestone are analyzed and their variations are 
recorded to gain insights into the physico-chemical condi-
tions that were prevailed during formation of these carbon-
ates of the Vindhyan Basin. This study aims to investigate 
the depositional setting, identify potential REE sources, and 
provide insights into the variations in Eu and Ce anomalies 
within the studied limestones. Additionally, this study will 
contribute to understand the seawater chemistry during Pal-
aeoproterozoic times in Central India.

Geological setting

The Vindhyan Supergroup of Central India records a con-
siderable portion of Proterozoic time and holds the distinc-
tion of being the largest of the Proterozoic sedimentary 
basins in the Indian subcontinent, known as the Purana 
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Basins (Kale and Phansalkar 1991). This sedimentary basin 
holds unmetamorphosed and slightly deformed layers that 
are approximately 4500 m thick. These beds have well-
preserved sedimentary structures and provide evidence of 
paleo-environmental conditions during a significant portion 
of the Proterozoic eon (~ 1800–900 Ma) with good time 
resolution (Deb et al. 2002; Ray 2006; Malone et al. 2008; 
Gopalan et al. 2013). The Proterozoic Vindhyan Supergroup 
is found in Central India and covers an area of ~ 100,000 
 km2. A substantial portion of this Supergroup is concealed 
under the Gangatic alluvium and the Deccan traps (Gopa-
lan et al. 2013). The western boundary of this Supergroup 
is defined by the Great Boundary Fault (GBF), while the 
southern limit is marked by the Narmada-Son lineament 
(Fig. 1A). These sequences have been found in two areas: 
the western region (Rajasthan) and the eastern region (Son 
valley) (Fig. 1A). The Supergroup overlies the Bundelkhand 
Granite massif (2.5 Ga; Azmi et al. 2008). The Semri Group 
occurs in the lower part of the Vindhyan succession and is 
primarily composed of carbonates and shales with subor-
dinate sandstones and volcaniclastic units (Ramakrishnan 
and Vaidyanadhan 2008). The Upper Vindhyan succession 
comprises three groups, i.e., Kaimur, Rewa and Bhander.

Vindhyan sequences were deposited mostly in shallow 
marine environments (Chanda and Bhattacharyya 1982). 
According to Bose et al. (1997, 2001), the Lower Vindhyan 
sedimentation occurred in an intracratonic rift basin, and 
the change from a rifted basin to an intracratonic sag basin 
occurred during the Upper Vindhyan deposition. Well pre-
served sections of the Semri and Kaimur Groups of the Vin-
dhyan Supergroup are exposed in Son Valley, Central India. 

The Semri Group is primarily characterised by its volca-
nogenic and biochemical sediments, whereas the overlying 
Kaimur Group is predominantly composed of siliciclastic 
deposits. The Kajrahat Limestone of the Semri Group is 
conformably underlain by the Basal Conglomerate and, in 
turn, is overlain by the Porcellanite Formation (Table 1). The 
Porcellanite Formation contains volcanic tuffs and rhyolite 
indicating significant felsic volcanic activity in the early 
Mesoproterozoic Era. The Kajrahat Limestone is exposed 
along the southern side of the Vindhyan basin in the Son 
Valley region (Rasmussen et al. 2002) (Fig. 1B).

The lower most and middle part of the Kajrahat Lime-
stone Formation is exposed around Dala town and Kajrahat 
village, which is 1 km east of Dala town. The formation 
composed of alteration of thinly bedded and laminated lime-
stones and characterized by the presence of stylolites along 
the stromatolitic layers. The upper division of this limestone 
formation consists of several shallowing-upward stromato-
lite cycles. The general trend is larger stromatolites are fol-
lowed by smaller one at the top of the cycle (Banerjee et al. 
2007). The middle part of the succession is characterized 
by Soft Sedimentary Deformation (SSD) structures. These 
are convolute bedding, contorted cross-bedding, autoclastic 
breccia, and small-scale folds characterized by narrow anti-
clines and broad synclines (Singh et al. 2020). The studied 
limestones are exposed in the vicinity of Dala town with 
a notable presence of different lithologies. The succession 
starts with thinly bedded grey coloured limestone which 
turns into laminated and then thickly bedded. After thickly 
bedded unit there is again alteration of laminated and thinly 
bedded unit (Fig. 2). In the study area three different facies 

Fig. 1  A  Generalized geological map of the Vindhyan Supergroup, 
India (after Shukla  et al.  2020). The samples of Kajrahat Lime-
stone of Semri Group analyzed in the present study were collected 

from nearby Dala Town. B Detailed geological map of the Vindhyan 
Supergroup in Son Valley (after Auden 1933). The yellow square rep-
resents the sampling area



 Carbonates and Evaporites (2024) 39:3030 Page 4 of 18

Table 1  Lithostratigraphic succession of Vindhyan Supergroup of Son valley, Central India (modified after Auden 1933; Kumar 1978)

Kaimur Group

Unconformity

Vindhyan Supergroup Semri Group Rohtas Limestone Formation 1599 ± 48 Ma (Sarangi et al. 2004)
Kheinjua Formation
Chopan Porcellanite Formation 1631 ± 5 Ma (Rasmussen et al. 2002); 1628 ± 8 Ma 

(Ray et al. 2002); 1640 ± 4 Ma (Bickford et al. 
2017)

Kajrahat Limestone Formation 1600 ± 130 Ma (Ray et al. 2003)
Basal Conglomerate Formation

Fig. 2  Litho-column displaying 
vertical organisation of different 
lithofacies in the Palaeoprote-
rozoic Kajrahat Limestone with 
sample locations
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are identified: laminated, thinly bedded and thickly bedded 
limestone. Gradational contacts are observed in between 
the different unit throughout the succession. Elephant skin 
weathering and stylolites are commonly found within these 
limestones.

Methodology

Unweathered limestone samples were collected from the 
exposed outcrops of Kajrahat Limestone Formation, Vin-
dhyan Basin located near Dala town. The selected samples 
were grinded in an agate mortar after washing with distilled 
water and subsequent air drying. The chemical analyses of 
seventeen representative samples were performed for major, 
trace and rare earth elements (REEs) at Wadia Institute of 
Himalayan Geology (WIHG), Dehradun, India. Sample 
preparation of major elements used pressed powder pellet 
mode and analyzed using X-Ray Fluorescence (XRF). The 
samples were dissolved using standard HF-HNO3 dissolu-
tion technique for trace elements and REEs. About ~ 50 mg 
powdered samples were completely dissolved using ultra-
pure acids. The final solutions were prepared in 2%  HNO3. 
Then to avoid matrix effect highly diluted samples were 
analyzed using ICP-MS along with USGS rock standard 
BHVO-2.

Results

Major elements

Major element concentrations are listed in Table 2. The 
dominant oxide among all the oxide is CaO making up 
30.87–48.59% (Table 2). CaO also shows a positive correla-
tion with  SiO2 and  TiO2 (Table 4). On the other hand, MgO, 
shows variation ranging from 0.51 to 19.17%, (Table 2) 
and has a positive correlation with  Fe2O3, MnO and  Na2O 
(Table 4). The  SiO2 content ranges from 1.14 to 15.42% 
(Table 2) and shows negative correlation with  Fe2O3, MgO, 
MnO, but positive correlation with  TiO2,  Al2O3, CaO,  Na2O, 
 K2O and  P2O5 (Table 4).  Al2O3 ranges from 0.23 to 4.09% 
(Table 2), and there is a negative correlation with CaO, 
MgO, and MnO (Table 4). In these limestones, the concen-
tration of  TiO2 ranges from 0.02 to 0.11%. The amount of 
 Fe2O3 is relatively low ranging from 0.6 to 1.86% (Table 2). 
Additionally,  Fe2O3 and CaO have a negative correlation 
(Table 4). These limestones have very low concentrations of 
MnO (0.01–0.05),  K2O (0.34–1.27),  Na2O (0.02–0.05) and 
 P2O5 (0.12–0.78) (Table 2). The dolomitization ratio, as sug-
gested by Singh et al. (2013) varies from 0.01 to 0.62 in the 
studied limestones. The PAAS-normalized major elements 
concentrations exhibit notable variations. The CaO content 

is higher, while the  Na2O content is moderately depleted in 
studied limestones (Fig. 3).

Trace elements

The concentrations of trace elements are shown in Table 2. 
These trace elements are normalized using PAAS values 
(Taylor and McLennan 1985) and these values are important 
to know the minute enrichment and deficiencies in certain 
elements (Rollinson 1993). Additionally, their distribution is 
represented in the spider diagram (Fig. 4). The concentration 
of Cu and Sr shows large variations while the concentra-
tions of other elements are relatively minimal (Table 2). As 
compared to PAAS, Ba and Co are significantly depleted, 
whereas Cu concentrations are roughly similar in some sam-
ples. The PAAS normalized patterns of studied limestones 
shows an enrichment in V, Sc, Cu, Zn, U and Sr while deple-
tion in Ba, Co, Rb, Th, Zr (Fig. 5). The Sr concentrations 
in these limestones ranging from 126 to 514 ppm are lower 
than the average lithospheric carbonate value of 610 ppm. 
The Ba concentrations range from 10.1 to 38.4 ppm while 
U varies from 0.3 to 1.3 ppm (Table 2).

Rare earth elements

The concentrations of REEs are reported in Table 2 and are 
normalized to PAAS values (Taylor and McLennan 1985) in 
Fig. 5. The limestones show seawater like REE pattern with 
negative Ce and Eu anomaly (except for three samples which 
shows positive Eu anomaly). The ΣREE content varies sig-
nificantly among the limestone samples, ranging from 13.7 
to 68.3 ppm. The LREE ranges from 13 to 64.2 ppm, while 
the HRRE ranges from 0.7 to 4.1 ppm. The higher content 
of REE than typical marine carbonate indicates the presence 
of silt and clay fractions because REE accommodated easily 
in the clay structure (McLennan 1989). The ΣREE shows a 
positive correlation with  SiO2,  TiO2,  Al2O3 (r2 = 0.87, 0.84, 
0.91, respectively) and a week positive correlation with CaO 
(r2 = 0.12) (Table 4). Correlation pattern indicates that the 
concentration of these elements may control by the influence 
of terrigenous material. The PASS-normalized REE patterns 
of these limestones (Fig. 5) exhibit a minor enrichment in 
LREE relative to HREE. Additionally, these samples exhibit 
a negative Ce anomaly (Ce/Ce* = 0.66–0.89) (Table 3). 
Similarly, most of the studied samples show negative Eu 
anomalies (Eu/Eu* = 0.88–0.94), barring three samples (Eu/
Eu* = KJ5 = 1.07, KJ1 = 1.09, LB10 = 1.43; Table 3). The 
majority of the samples show positive La anomalies, nega-
tive Ce anomalies, positive Gd anomalies and negative Eu 
anomalies (Fig. 5). The (Gd/Yb)N ratio varies from 1.53 to 
2.33 with an average of 1.81, whereas the (La/Yb)N ratio 
varies from 0.98 to 2.13 (Table 3) with an average value of 
1.48.
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Discussion

Significance of major and trace elements

The studied limestones contain a significant amount of CaO 

(Table 2). The primary carbonate phase is mainly calcite, 
as indicated by the high concentration of CaO and the low 
percentage of MgO, which is further supported by the mini-
mal dolomitization ratio. The concentration of  SiO2 varies 
from 1.14 to 14.97%. The relatively higher concentration 

Table 2  Major (wt %), trace and rare earth elements concentrations (ppm) for the Kajrahat Limestone of Vindhyan basin, Central India

Sample KJ16 KJ7 KJ5 KJ1 SKJ14 SKJ9 SKJ3 SKJ1 B28 B15 B9 B1 LB20 LB16 LB10 LB6 LB1

SiO2 7.28 14.97 8.80 14.35 12.55 12.54 11.21 11.37 13.19 12.95 9.48 9.51 15.42 12.08 1.14 9.22 10.27
TiO2 0.05 0.11 0.05 0.08 0.09 0.08 0.08 0.07 0.10 0.11 0.08 0.08 0.13 0.08 0.02 0.10 0.08
Al2O3 1.09 2.76 1.24 2.41 2.47 2.35 2.19 2.24 2.79 2.94 2.10 1.80 4.09 2.40 0.23 1.89 2.49
Fe2O3 0.88 0.89 0.74 1.36 1.23 0.95 1.29 1.24 1.47 1.65 1.11 1.46 1.35 1.45 1.86 0.60 1.03
MnO 0.01 0.01 0.01 0.03 0.02 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.05 0.01 0.01
CaO 46.56 43.78 48.59 44.08 41.85 44.63 42.37 41.94 39.89 40.54 43.93 41.89 37.2 39.88 30.87 46.70 42.26
MgO 2.39 0.87 0.51 0.71 3.28 1.07 3.35 3.16 4.32 3.84 2.94 4.36 4.96 4.99 19.17 0.80 3.31
Na2O 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.03 0.03 0.05 0.03 0.02 0.02 0.03
K2O 0.39 0.64 0.34 0.60 0.65 0.58 0.58 0.57 0.81 0.86 0.7 0.68 1.27 0.81 0.14 0.64 0.79
P2O5 0.16 0.41 0.12 0.44 0.37 0.19 0.25 0.23 0.50 0.66 0.78 0.38 0.60 0.43 0.03 0.35 0.45
SUM 58.83 64.46 60.41 64.09 62.55 62.43 61.37 60.87 63.12 63.6 61.16 60.19 65.08 62.16 53.54 60.32 60.73
LOI 39.81 35.15 38.67 36.07 37.40 36.80 38.00 42.78 36.94 36.84 38.77 39.04 35.54 37.79 45.72 38.00 37.43
D.R 0.05 0.02 0.01 0.02 0.08 0.02 0.08 0.07 0.11 0.09 0.07 0.10 0.13 0.12 0.62 0.02 0.08
Ba 23.90 30.90 21.10 32.60 31.20 30.90 27.40 28.70 15.50 38.40 13.50 34.80 11.60 31.10 10.10 30.50 32.10
V 19.60 23.60 19.60 22.50 24.50 25.30 22.60 23.90 20.30 28.90 20.20 19.60 35.70 28.40 18.70 28.00 29.40
Sc 2.80 3.80 3.20 3.20 3.40 3.00 2.80 2.80 3.30 4.10 3.30 3.20 5.10 3.60 2.10 3.90 3.90
Co 1.60 2.50 2.60 2.70 2.30 2.40 2.00 2.30 2.50 3.00 2.70 2.20 3.40 2.50 1.60 2.90 2.20
Cu 16.10 53.40 33.50 31.80 9.50 9.40 6.60 6.90 4.20 9.20 3.60 3.60 12.30 9.80 8.60 11.90 8.40
Rb 15.40 27.40 13.90 23.90 27.70 24.10 21.40 23.50 30.00 36.30 26.30 24.30 57.70 31.40 4.30 29.80 32.60
Zn 18.10 21.70 17.70 21.10 23.90 18.30 15.90 17.10 25.10 47.9 18.80 34.00 31.60 24.50 14.30 22.60 20.40
Pb 4.40 5.40 4.70 6.10 4.90 4.90 4.40 4.60 5.50 5.70 4.40 5.60 6.00 4.70 3.50 5.80 4.80
Th 1.40 3.10 1.40 2.20 2.40 2.60 2.10 2.40 3.20 3.10 2.30 2.20 4.20 2.20 0.40 2.70 2.30
U 0.30 0.80 0.40 0.40 0.40 0.60 0.30 0.40 0.60 0.50 1.30 0.50 0.50 0.30 0.50 0.60 0.60
Zr 16.40 35.40 18.60 21.80 24.60 24.90 18.00 21.70 28.60 34.60 21.70 20.70 41.40 25.70 4.40 34.80 33.10
Sr 137.0 139.0 134.0 134.0 154.0 144.0 144.0 145.0 316.0 347.0 426.0 240.0 145.0 126.0 480.0 514.0 417.0
La 6.66 9.90 7.42 8.83 8.46 9.23 7.05 8.41 8.75 9.34 8.11 6.68 14.68 8.89 2.48 8.77 8.85
Ce 12.38 20.95 14.66 17.11 15.51 18.50 14.79 15.62 17.94 18.18 15.21 13.25 28.24 18.12 5.61 15.24 16.07
Pr 1.57 2.80 2.12 2.40 1.93 2.37 1.87 1.91 2.38 2.38 2.03 1.78 3.59 2.46 0.88 1.90 2.07
Nd 4.84 9.75 7.93 8.42 6.13 7.59 6.06 6.74 8.26 8.16 6.73 6.04 12.65 8.86 2.92 5.92 6.51
Sm 0.87 1.97 1.59 1.59 1.12 1.42 1.12 1.12 1.55 1.56 1.24 1.16 2.35 1.67 0.51 1.10 1.20
Eu 0.17 0.36 0.37 0.37 0.20 0.24 0.20 0.23 0.29 0.30 0.26 0.21 0.42 0.31 0.15 0.20 0.23
Gd 0.79 1.86 1.64 1.59 1.01 1.26 1.00 1.17 1.43 1.51 1.19 1.10 2.26 1.57 0.47 1.03 1.11
Tb 0.10 0.27 0.25 0.23 0.13 0.18 0.13 0.14 0.19 0.21 0.16 0.15 0.32 0.21 0.06 0.14 0.15
Dy 0.53 1.47 1.40 1.19 0.68 0.90 0.67 0.77 1.02 1.10 0.83 0.81 1.65 1.11 0.29 0.76 0.76
Ho 0.11 0.30 0.28 0.23 0.13 0.18 0.13 0.17 0.21 0.22 0.17 0.16 0.33 0.22 0.06 0.15 0.15
Er 0.28 0.77 0.73 0.61 0.36 0.49 0.35 0.39 0.55 0.6 0.45 0.44 0.88 0.57 0.15 0.43 0.40
Tm 0.04 0.11 0.10 0.08 0.05 0.07 0.05 0.05 0.08 0.09 0.06 0.07 0.13 0.08 0.02 0.06 0.06
Yb 0.23 0.68 0.56 0.49 0.33 0.42 0.31 0.37 0.51 0.54 0.39 0.41 0.78 0.49 0.12 0.40 0.39
Lu 0.04 0.10 0.10 0.08 0.05 0.07 0.05 0.05 0.08 0.09 0.06 0.07 0.13 0.08 0.02 0.06 0.06
∑REE 28.60 51.20 39.00 43.10 36.00 42.80 33.70 37.10 43.20 44.20 36.80 32.30 68.30 44.60 13.70 36.10 37.90
LREE 27.30 47.60 35.70 40.30 34.40 40.60 32.10 35.20 40.60 41.40 34.80 30.20 64.20 41.90 13.00 34.20 36.00
HREE 1.30 3.60 3.30 2.80 1.60 2.20 1.60 1.90 2.60 2.80 2.00 2.10 4.10 2.70 0.70 1.90 1.90
LREE/HREE 21.00 13.22 10.82 14.39 21.50 18.45 20.06 18.53 15.62 14.79 17.40 14.38 15.66 15.52 18.57 18.00 18.95
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of  SiO2 may be due to the more continental influx during 
the deposition of the limestone in shallow marine condition. 
The low concentrations of other oxides such as  TiO2,  Al2O3, 
 Fe2O3, MnO,  Na2O,  K2O, and  P2O5 (Table 2) and their posi-
tive correlation with  SiO2 indicates that these oxides are 
associated with a siliciclastic phase that was present in the 
examined limestones as impurities/detrital admixtures. Pri-
marily Ca is biogenic in origin and inspite of its original 
distribution is basically behaved as a dilutant for all other 
constituents. This is evident by its negative correlations with 
most of the major and trace elements (Table 4). The relation 
between  Al2O3 and  Fe2O3 differentiates between inland and 
marine limestones by the negative and positive correlation, 
respectively (Zhang et al. 2017). The studied samples show 
positive relation between these two oxides (Table 4) which 

indicate its marine nature. In contrast,  Al2O3 has a negative 
correlation with MnO for all the limestones (r2 = −0.37), 
which indicates that the concentration of MnO is may not 
be controlled by clay minerals but other input to the lime-
stone geochemistry has a significant role. The  P2O5 contents 
are well correlated with  TiO2 (r2 = 0.72),  Fe2O3 (r2 = 0.16) 
and  K2O (r2 = 0.78) (Table 4), implying that some, maybe 
most, of the  P2O5 contents in these limestones may not be 
biogenic, because  TiO2 and  K2O are principally derived 
from aluminosilicate clastics and  Fe2O3 from hydrothermal 
Fe–Mn-oxyhydroxides (e.g., Murray 1994). All of the major 
oxides except CaO, MnO, MgO showing positive correla-
tion with each other. So, the geochemical pattern of major 
oxides reveals that the geochemistry of the present studied 
limestones is basically managed by the tectonic environment 
of the basin that may be volcanic activity, topographic eleva-
tion and the distance away from the continent.

The trace elements of the studied limestones viewed by 
their positive correlation with  Al2O3,  TiO2 (Table 4), which 
indicates that their concentrations primarily controlled by 
detrital silisiclastic fractions. The concentrations of the high-
strength-field elements (HSFEs; e.g., Th, U, Sc, Zr) and the 
transitional trace elements (e.g., Co, Cu), in the studied 
limestones are generally lower by one order of magnitude 
when compared to the PAAS (Fig. 4). However, the con-
tents of the large-ion-lithophile elements (LILEs; e,g. Ba, 
Rb, Sr)) in these limestones exhibit large range. The studied 
limestones reveal that Sr is the most abundant trace element 
in them. The Sr concentration in sedimentary rocks varies 
due to various factors that affect Sr in depositional environ-
ments under low temperatures. The presence of Ca can make 
an impact on the distribution of Sr, causing additional Sr 
to be incorporated into diagenetic carbonate. Additionally, 
weathering of feldspars, specifically plagioclase can result in 

Fig. 3  Plot of Post-Archean Australian Shale normalized major ele-
ments pattern of Kajrahat Limestone

Fig. 4  Plot of Post-Archean Australian Shale normalized trace ele-
ments pattern of Kajrahat Limestone

Fig. 5  Plot of Post-Archean Australian Shale normalized rare earth 
elements pattern of Kajrahat Limestone
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Sr fractionation (Fairbridge 1972). The negative correlation 
between Sr and CaO (Table 4) indicates that the Sr and CaO 
are not genetically connected. Therefore, the enrichment of 
Sr content may be attributed either from its own minerals or 
from the siliciclastic materials. The presence of appreciable 
amount of trace elements like Ba, V, Cu, Rb, Zn, and Zr sug-
gests that either these elements have replaced certain cations 
or they have formed their own minerals in small quantities. 
The weak positive and negative correlations of these trace 
elements with CaO (Table 4), indicate that they are either 
present in their own minerals or because of the siliciclastic 
input. Additionally, the presence of siliciclastic impurities in 
limestone may be responsible for the presence of feldspars 
and mica, resulting in to the presence of barium. Reeder 
(1983) suggested that under specific conditions, certain diva-
lent cations like Pb, Cu, Co, Ni and others can substitute for 
Ca in calcite. This suggests that during the deposition of 
limestone, Ca may have replaced by Pb, Ni, Co and Cu under 
appropriate conditions. The Mn-Sr correlation is useful for 
determining diagenetic changes in limestones (Brand and 
Veizer 1980). However, there is no significant correlation 
between Mn and Sr in this study (r2 = 0.14). This indicates 
that the studied limestones have not experienced major dia-
genetic changes and may still preserve their original geo-
chemical fingerprints.

Significance of uranium in the marine environment

The redox conditions in seawater influence uranium, caus-
ing uranium ions to remain in a higher oxidation state  (U6+) 
in an oxidizing environment. This leads to the formation 
of a soluble compound called uranyl tricarbonate  [UO2 

 (CO3)3
4–]. They maintain a lower oxidation state  (U4+) under 

reducing circumstances, and forming insoluble uranous fluo-
ride that becomes immobilized within marine carbonates 
(Wignall and Twitchett 1996). Uranium is mobile in aque-
ous solutions, whereas Th is generally immobile (Anderson 
et al. 1983; Nozaki et al. 1981; Wright et al. 1984). Within 
continental margin settings, uranium can undergo fractiona-
tion similarly to Ce, leading to its separation from other rare 
earth elements (REEs) (Whittaker and Kyser 1993). In the 
studied limestones, the U concentration is relatively low, 
ranging from 0.3 to 1.3 (Table 5). This contrasts with sedi-
ments originating from the oxygen minimum zone (Nath 
et al. 1997). However, the U concentrations in the studied 
limestones are comparable to those observed in shallow-
marine carbonates and the Kudankulam Limestone which 
were deposited under oxygen-rich conditions (Madhavaraju 
and Ramasamy 1999; Table 5). This shows that the studied 
limestones with a low U concentration are affected by the 
oxygenation level in the water column. In an oxygen-rich 
conditions (oxic environment), U is readily leached from 
the sediments and transferred into the water column. Con-
versely, under reducing conditions, U is extracted from sea-
water and precipitates onto the sediments. In some instances, 
there is no significant reduction of  U+6 to  U+4 observed in 
anoxic and suboxic environments (Anderson et al. 1989). 
In this particular case, sedimentary geochemists attempted 
to use the U/Th ratio as a redox indicator rather than the 
U concentration (Wright et al. 1984; Jones and Manning 
1994). K and Th are present in the detrital clay fraction of 
marine mudrocks shows close correlation (Myers and Wig-
nall 1987). U also present in the detrital clay fraction but 
behaves differently than Th, it is also transfer to some extent 

Table 3  Elemental ratios in the Kajrahat Limestone of Vindhyan basin, Central India

Sample KJ16 KJ7 KJ5 KJ1 SKJ14 SKJ9 SKJ3 SKJ1 B28 B15 B9 B1 LB20 LB16 LB10 LB6 LB1

La/Sc 2.38 2.61 2.32 2.76 2.49 3.08 2.52 3.00 2.65 2.28 2.46 2.09 2.88 2.47 1.18 2.25 2.27
La/Co 4.16 3.96 2.85 3.27 3.68 3.85 3.53 3.66 3.50 3.11 3.00 3.04 4.32 3.56 1.55 3.02 4.02
Th/Sc 0.50 0.82 0.44 0.69 0.71 0.87 0.75 0.86 0.97 0.76 0.70 0.69 0.82 0.61 0.19 0.69 0.59
Th/Co 0.88 1.24 0.54 0.81 1.04 1.08 1.05 1.04 1.28 1.03 0.85 1.00 1.24 0.88 0.25 0.93 1.05
U/Th 0.21 0.26 0.29 0.18 0.17 0.23 0.14 0.17 0.19 0.16 0.57 0.23 0.12 0.14 1.25 0.22 0.26
La/Th 4.76 3.19 5.30 4.01 3.53 3.55 3.36 3.50 2.73 3.01 3.53 3.04 3.50 4.04 6.20 3.25 3.85
Er/Nd 0.06 0.08 0.09 0.07 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.06 0.05 0.07 0.06
(La/Yb)N 2.13 1.07 0.98 1.33 1.89 1.62 1.68 1.67 1.26 1.27 1.53 1.20 1.39 1.34 1.52 1.62 1.67
(La/Nd)N 1.16 0.86 0.79 0.88 1.16 1.02 0.98 1.05 0.89 0.96 1.01 0.93 0.98 0.84 0.72 1.25 1.14
(Gd/Yb)N 2.05 1.63 1.74 1.93 1.82 1.79 1.92 1.88 1.67 1.67 1.82 1.60 1.73 1.91 2.33 1.53 1.70
(Pr/Yb)N 2.15 1.30 1.19 1.54 1.84 1.78 1.90 1.62 1.47 1.39 1.64 1.37 1.45 1.58 2.31 1.49 1.67
(Nd/Yb)N 1.84 1.25 1.24 1.50 1.63 1.58 1.71 1.59 1.42 1.32 1.51 1.29 1.42 1.58 2.13 1.30 1.46
(Dy/Yb)N 1.47 1.38 1.59 1.55 1.31 1.36 1.38 1.32 1.27 1.30 1.35 1.26 1.35 1.44 1.54 1.21 1.24
Eu/Eu* 0.96 0.88 1.07 1.09 0.88 0.84 0.88 0.94 0.91 0.91 1.00 0.87 0.85 0.89 1.43 0.88 0.93
Ce/Ce* 0.77 0.81 0.80 0.77 0.80 0.78 0.80 0.89 0.81 0.81 0.77 0.78 0.86 0.82 0.66 0.79 0.77
Pr/Pr* 1.15 1.11 1.12 1.14 1.13 1.14 1.12 1.06 1.11 1.11 1.14 1.13 1.08 1.10 1.24 1.14 1.15
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in solution as uranyl carbonate complexes (Langmuir 1978). 
The reducing conditions are favorable for its precipitation 
which tends to enrich the sediment in authigenic (nondetri-
tal) uranium. The authigenic component of U can be calcu-
lated if detrital component is known. The U is assumed to be 
purely detrital, is 3 in the normal mudstone with minimum 
Th/U ratio. The concentration of U which is associated with 
the detrital fraction can thus be estimated by dividing the 
measured Th content by 3. Authigenic U in the sample is the 
difference between the actual U measured and the calculated 
detrital U. Reducing conditions and the presence of a sorb-
ent, which is usually organic matter or phosphate, favoured 
the presence of U at the sediment–water interface (Kochenov 
et al. 1977; Holland 1984). Therefore, sediments enriched 
in authigenic U indicate anoxic depositional conditions that 
allow both large amounts of organic matter to accumulate 
and U to be fixed. Ratios of U/Th exceeding 1.25 are indica-
tors of suboxic and anoxic conditions and have been utilized 
to infer such environments. Additionally, sediments from the 
Arabian Sea in the oxygen minimum zone exhibit a nota-
bly high U/Th ratio (> 1.25) (Nath et al. 1997). The studied 
limestones exhibit a U/Th ratio (0.12–1.25, Table 3) which 
is lower than the samples deposited under anoxic and sub-
oxic conditions. Nevertheless, the U/Th in these limestones 
is similar to shallow-marine carbonates found in southern 
India that were deposited under an oxic environment (Mad-
havaraju and Ramasamy 1999; Table 5). This strongly shows 
that the studied limestone was also deposited under oxic 
conditions. Moreover, the studied limestone samples show 
minimal variations in both U contents and U/Th ratios. This 
suggests that there were no significant changes in oxygen 
levels within the water column during deposition of these 
shallow-marine limestones.

Source of REE and provenance characteristics

Total REE abundances (ΣREE) of the studied limestones are 
generally lower when compared to the PAAS. The ΣREE 
concentrations in studied limestone samples ranging from 
13.7 to 68.3 are comparable to Upper Cretaceous shallow-
marine carbonates (Madhavaraju and Ramasamy 1999) and 
modern Arabian Sea carbonates (Nath et al. 1997) (Table 5). 
The variation in the ΣREE content among different samples 
is primarily due to differences in the terrigenous sediment 
content within the limestone samples. This is likely attrib-
uted to lower levels of Si and Al and higher  CaCO3  content, 
suggesting that the ΣREE content is influenced by impurities 
other than carbonate.

The low ΣREE in certain samples of studied limestones is 
attributed to the presence of marine carbonate phases. These 
phases typically have lower rare earth elements (REEs) 
compared to detrital clays and heavy minerals (Piper 1974; 
Palmer 1985). In limestone samples, the REE contents are Ta
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typically lower compared to clastic sediments. Seawater con-
tributes lesser amount of REE to the chemical sediments 
but the samples with non-seawater like pattern exhibits 
higher REE concentration (Nothdurft et al. 2004) due to the 
contamination of non-carbonate materials such as silicates, 
Fe–Mn oxides, phosphates or sulfides during the chemical 
leaching (Zhao et al. 2009). The higher REE concentrations 
in clastic sediments primarily result from the presence of 
silt and clay fractions. This occurs because REEs are readily 
being incorporated into the clay structure (McLennan 1989). 
The variation in the REE contents of Kajrahat Limestone 
may be attributed to the varying amounts of terrigenous 
sediments present. The lower REE content in some samples 
may be attributed to REE dilution by carbonate minerals.

The average (La/Yb)N ratio in the studied limestone 
samples (0.98–2.13) is similar to the shallow-marine car-
bonates of southern India, Kudankulam Limestone. How-
ever, (La/Yb)N ratios are lower in the studied limestones 
than observed in Arabian Sea carbonate sediments, Indian 
Ocean carbonates and Shahabad Formation Limestone 
(Table 5). Additionally, the (La/Yb)N ratio is higher than 
the commonly assumed average value for terrigenous sedi-
ments [(La/Yb)N = 1.3; Sholkovitz 1990]. The (La/Yb)N 
ratios variation in different samples could be attributed to 
two factors: (1) variations in REEs input from the source 
area; and (2) potential diagenetic processes leading to remo-
bilization and exchange with interstitial water (Murray et al. 
1991), alongside a decreasing trend of the (La/Yb)N ratio 
with increasing depth (Worash and Valera 2002). Such dia-
genetic processes which is responsible for variation of (La/
Yb)N ratio have been reported in recent, shallow, buried 
estuaries (Sholkovitz et al. 1989). The present study resem-
bles shallow-marine conditions where REE fractionation 
should have been low.

REE patterns and (La/Yb)N ratios can be used to iden-
tify the characteristics of source rocks. Additionally, spe-
cific trace-element ratios like Th/Sc, La/Sc, and La/Th can 
provide valuable information about the source rocks char-
acteristics, as these ratios are influenced by the average 
compositions of the provenance. Th is considered a highly 
incompatible element, while Sc is somewhat more compat-
ible. During the sedimentation processes, both of these ele-
ments are transferred relatively uniformly into terrigenous 
sediments as they are transported from their source areas 
and deposited (Taylor and McLennan 1985). The stud-
ied limestone samples show a slightly enriched light rare 
earth elements (LREEs) and flat heavy rare earth elements 
(HREEs) patterns (Fig. 5). Additionally, they have relatively 
high average ratios of (La/Yb)N, Th/Sc, La/Sc and La/Th 
(1.48, 0.68, 2.45 and 3.78, respectively; Table 3) which are 
comparable to felsic rocks (Nagarajan et al. 2011). The felsic 
source rock for terrigenous sediments of the studied samples 
also confirmed by the positive correlation between Eu/Eu* 

and K/Al, Na/Al. These findings suggest that the terrigenous 
sediments within the shallow-marine Kajrahat Limestone 
originate predominantly from felsic source rocks.

Europium anomaly

The Eu/Eu* ratio of the studied limestone samples ranges 
from 0.84 to 1.43, (Table 3). Typically, a dearth of nega-
tive Eu anomaly and the presence of a positive Eu anomaly 
in shale-normalized REE patterns can be attributed to the 
influence of eolian input (Elderfield 1988) or hydrothermal 
solutions (Michard et al. 1983; Worash and Valera 2002). 
Positive Eu anomalies in bulk sediments may arise from a 
small increase in the primary or detrital feldspar compo-
nent (Murray et al. 1991). The presence of a positive Eu 
anomaly in some studied limestone samples (KJ5, KJ1, 
LB10) (Table 3) suggests that it could be attributed to local 
feldspar enrichment rather than a regional phenomenon such 
as eolian input or hydrothermal solutions. The correlation 
between Eu/Eu* and elemental ratios such as K/Al and Na/
Al provides support for this interpretation, which helps to 
determine the existence of detrital feldspar in the bulk sedi-
ments (Madhavaraju and Lee 2009). Based on the results of 
this study, a strong positive correlation exists between the 
K/Al and Na/Al ratios and the Eu/Eu* (r2 = 0.73, r2 = 0.88), 
respectively. This suggests that the presence of feldspars in 
these limestones could be the reason behind the observed 
positive Eu anomaly. This interpretation was strengthened 
by the high enrichment of Sr in studied samples (Table 2, 
Fig. 6). Eu is one of the REE shows a changing valency in 
the near surface environment (Brookins 1989), where  Eu3+ 
reduced to  Eu2+ under extremely reducing conditions. Redox 
potential of Eu/Eu* in aqueous solutions depends mainly 

Fig. 6  Bivariate plot of Eu/Eu* verses Sr for the Kajrahat Limestone
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on temperature and to a lesser extent on pressure, pH, and 
REE speciation (Bau 1991); which explains the positive Eu 
anomalies typically found in acidic, reducing hydrothermal 
fluids. Additionally, the presence of negative Eu anomaly 
suggests the oxic depositional environment.

Cerium anomaly and paleo‑redox conditions

Several studies have been conducted the use of the Cerium 
(Ce) within the marine environments to infer paleoceano-
graphic conditions (Liu et al. 1988; Grandjean and Albarede 
1989; German and Elderfield 1990; Nath et al. 1997). The 
depletion of Ce in oceanic water result in redox-related fluc-
tuations in cerium concentration compared to other REEs 
(Elderfield 1988; Piepgras and Jacobsen 1992). In modern 
seawater, a distinctive feature is the lower concentration of 
Ce in comparison to its neighbouring rare earth elements 
(REEs). This anomaly is caused by the conversion of tri-
valent Ce into less soluble tetravalent Ce due to oxidation. 
Subsequently, these trivalent Ce ions are removed as they 
bind to suspended particles that sink through the water col-
umn, a process known as scavenging (Bolhar et al. 2004). 
The Ce/Ce* ratios within the examined limestones range 
from 0.66 to 0.89, with an average of 0.79. The consistent 
Ce anomalies in these limestones indicate a relatively stable 
level of oxygen in the bottom water during their deposition. 
The negative Ce anomalies observed in the studied lime-
stones (Table 5) closely resemble those found in deep-sea 
carbonates from the Indian Ocean (Nath et al. 1992), Ara-
bian Sea sediments (Nath et al. 1997), and shallow-marine 
Maastrichtian carbonates from the Cauvery Basin in south-
ern India (Madhavaraju and Ramasamy 1999). The pres-
ence of both Ce concentrations and Ce anomalies is likely 
attributed to differences in terrigenous sediments within the 
studied limestones, as well as other factors like diagenesis.

Negative Ce anomalies are predominantly found in ocean 
basins due to absence of Ce in seawater, as  Ce4+are selec-
tively eliminated from the water column (Elderfield and 
Greaves 1982). The presence of a slight Ce anomaly allows 
for the measurement and representation of the extent of the 
La anomalies, which can be observed as a negative anomaly 
(Zhao et al. 2009). It is best to utilize a bivariate plot to prop-
erly analyze and discriminate between Ce and La anomalies 
(Bau and Dulski 1996; Zhao et al. 2009). The studied lime-
stone samples represented in the discrimination diagram (Pr/
Pr* vs. Ce/Ce*, Fig. 7) indicates that these samples display 
original negative Ce anomalies. As there is no chemical 
explanation for the formation of Nd or Pr anomalies, the 
presence of a true Ce anomaly should result in Pr/Pr* ≥ 1. 
The range of Pr/Pr* (1.06–1.24) in the studied samples indi-
cates that the anomalous enrichment of La is likely the only 
factor contributing to any Ce anomaly. The degree of Ce 

depletion in the samples is a reflection of oxygenation level 
of the water (Komiya et al. 2008).

The findings of the present study indicate that the Kajra-
hat Limestone exhibits negative Ce anomalies, indicating 
that it was formed in an oxygen-rich environment. Further-
more, minimal Ce anomalies variation within these lime-
stones, suggests stable bottom water oxygen levels. The 
differences in Ce anomalies and Ce concentrations within 
the limestone samples are likely a result of variations in ter-
rigenous sediments rather than diagenesis.

Conclusions

On the basis of detailed study of the major, trace and rare 
earth elements (REEs) geochemistry of carbonate rocks 
from the Palaeoproterozoic Kajrahat Limestone, Vindhyan 
Supergroup, Central India, the following conclusions were 
made:

1. The studied limestones are calcitic in nature with domi-
nance of CaO.  SiO2 present as second most abundant 
major oxide. The enrichment of certain trace elements 
such as Ba, V, Cu, Rb, Zn and Zr may be due to the 
siliciclastic input.

2. The PAAS-normalized REE pattern exhibits a relatively 
uniform pattern characterized by enriched LREE, a neg-
ative Ce anomaly, a negative Eu anomaly and a low U/
Th ratio. Variations in the abundance patterns of both 
LREE and HREE, as well as the variability observed 
in shale-normalized elemental ratios, are likely a result 
of varying contamination from continental material and 

Fig. 7  Bivariate plot of Ce/Ce* verses Pr/Pr* for the Kajrahat Lime-
stone



Carbonates and Evaporites (2024) 39:30 Page 15 of 18 30

early diagenetic process that occurred in the carbonate 
sediments.

3. The REE patterns and ratios, including La/Sc, La/Th, 
Th/Sc and (La/Yb)N collectively indicate that the ter-
rigenous sediments within the studied limestones pre-
dominantly originated from felsic source rocks.

4. The consistent presence of low U content and a low U/
Th ratio indicates that oxic conditions were predominant 
at the sediment/water interface during the deposition of 
the Kajrahat Limestone. The presence of a negative Ce 
anomaly suggests that REEs are directly incorporated 
from seawater or from pore water in oxygen-rich condi-
tions. This suggests a mixing oftwo-component systems, 
including terrigenous clay (detrital), within the marine 
sediments.

5. Tectonic environment of the basin played major role for 
geochemical pattern of the present studied limestones.
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